cisco

Ciscolive

6-9 March 2018 • Melbourne, Australia

ACI Layer 4-7 Integration

Minako Higuchi BRKACI-2016

Session Objectives

- At the end of the session, the participants should be able to:
 - Understand the functionalities and specific design considerations associated to the ACI L4-L7 Service (Firewall, Load Balancer etc) Integration
- Initial assumption:
 - The audience already has a good knowledge of ACI main concepts (Tenant, BD, EPG, L2Out, L3Out, etc.)
 - The audience already has a good knowledge of L4-L7 Service design in traditional (non-ACI) network.

Agenda

- ACI Service Insertion Basics
- Design Use Cases and Considerations
 - Firewall
 - ADC (Load-Balancer)
 - IPS
 - PBR (Policy Based Redirect)
 - Multi-pod + Service
- Upcoming new features

ACI Service Insertion Basics

What is Service Graph?

Ciscolive,

What is Service Graph?

Ciscolive,

What is Service Graph?

*Managed Mode/Hybrid Mode Only Ciscolive

*Managed Mode/Hybrid Mode Only Ciscolive

Device Packages

- Service functions are added to APIC through device package
- Device Package contains a device model and device python scripts
- Device Model defines Service Function and Configuration
- Device scripts translates APIC API callouts
 to device specific callouts
- Script can interface with the device using REST, SSH or any mechanism

L4-L7 Devices Logical and Concrete Devices

Concrete Device

Represents a service device, e.g. one load balancer, or one firewall. Can be physical or virtual

Logical Device

Represents a cluster of 2 devices that operate in active/standby mode for instance. Configure logical interfaces (defined in the device model) to be used for device selection policy Defines Cluster wide parameters where applicable, such as NTP, DNS, etc.

L4-L7 Service Graph Template Overview

- "Generic" representation of the expected traffic flow Connections Defines • Consumer Provider EPG EPG Function Nodes ASA5525-X Pod1_BIGIP. Terminal Nodes FW ADC Connections • Terminal Function Function Terminal Node Node Node Node Reusable ٠
 - Service Graph template can be used in multiple Contracts.

Device Selection Policy Example

ALL TENANTS Add Tenant Tenant Search: Enter name, alias, descr common PBR MultiPod-Service mgmt M Tenant PBR > @ Quick Start > @ Application Profiles > @ Networking > @ Contracts > @ Policies > @ Policies > @ Services	oera:
Tenant PBR Image: Construct of the second secon	N-or
→ ■ U4-L7 Bridge Domain: FW-ext → P	rk
Service Parameters Service Graph Templates Router configurations IP/Mask Sc	cope
Function Profiles Devices Imported Devices	
Virtual IP Addresses:	

Ciscolive,

Device Selection Policy Example

cisco APIC	System	Tenants	Fabric	Virtual Networking	L4-L7 Services	Admin	Opera
ALL TENANTS Add	Tenant Tenant Se	earch: Enter na	ame, alias, de:	scr common PE	BR MultiPod-Service	mgmt	NW-or
Tenant PBR		(Logical Interfac	e Context - co	onsumer	
Tenant PBR			- 11	8 👽 🛆 🕦			
Contract r	name		- 11	Properties			
> Contracts			- 11	Connector	Name: consumer		
			- 11	Cluster Inte	erface: consumer	Y 🗳	
			_	Associated Ne	twork: Bridge Domain	L3 External Ne	etwork
V Services	Graph tem	nolate n	ame	Bridge Do	omain: FW-ext	~ 🛃	
		ipiato i	anno	L4-L7 Policy Based Re	direct: ASA-external	~ 🗳	
Service	Parameters		- 11	Permit Lo	gging:		
> Service	Graph Templates		- 11	Su	bnets:		
> Router	configurations				IP/Mask		Scope
> 🖬 Functio	n Profiles	Logic	al dev	ice name			
> 📰 Importe	d Devices						
∼ 🖿 Deves	Selection Polic	\mathbf{V}					
V 🔂 Clier	nt-Web-BD1-FW-Gra	ph-ASA		Virtual IP Addre	esses:		
\Xi c	onsumer				▲ IP Address		
a 🖬	rovider						

ciscolive;

Device Selection Policy Example

Ciscolive,

Deployed Graph Instances & Deployed Devices

Cluster Interfaces:	Logical Interface	Encap
	ASAv-L2_consumer	vlan-1040
	ASAv-L2_provider	vlan-1006

Ciscolive

Cluster Interfaces:						
Ciuster interfaces.	Logical Interface	Encap	-	Network adapter 2	T1 ASAv-L2cbxVRF1BD3	Network Connection
	ASAv-L2 consumer	vlan-1040	10	Network adapter 3	T1 ASAv-L2ctxVRF1BD1	Network Connection
			12	Network adapter 4	Management	Network label:
	ASAv-L2_provider	vlan-1006		Network adapter 5	Management	T1 ASAv-L2ctxVRF1BD3 consumer (ACI_vDS)

Cisco

Ciscolive

Ciscolive

Service Graph Operations Applied Policy View

Without Service Graph

Leaf1# show zoning-rule scope 2621442										
Rule ID	SrcEPG	DstEPG	FilterID	operSt	Scope	Action	Priority			
				======	=====	=====	=======			
<snip></snip>										
4211	32771	32774	39	enabled	2621442	permit	fully qual(7)			
4212	32774	32771	38	enabled	2621442	permit	fully_qual(7)			
<snip> 4211 4212</snip>	32771 32774	32774 32771	39 38	enabled enabled	2621442 2621442	permit permit	fully_qual(7) fully_qual(7)			

Service Graph Operations Applied Policy View

Without Service Graph

Leafl# show zoning-rule scope 2621442										

With Service Graph

Service Graph Operations Applied Policy View

Without Service Graph

Leafl# show zoning-rule scope 2621442										
Rule ID	SrcEPG	DstEPG	FilterID	operSt	Scope	Action	Priority			
				======	=====	=====	=======			
<snip></snip>										
4211	32771	32774	39	enabled	2621442	permit	fully qual(7)			
4212	32774	32771	38	enabled	2621442	permit	fully_qual(7)			

With Service Graph

Leafl# show zoni Rule ID	ing-rule scope 20 SrcEPG	521442 DstEPG	FilterID	operSt	Scope	Action	Priority
	======			======	=====	=====	=======
<snip></snip>							
4233	32772	32771	default	enabled	2621442	permit	src dst any(9)
4137	32773	32774	39	enabled	2621442	permit	fully qual(7)
4168	32774	32773	38	enabled	2621442	permit	fully qual(7)
4169	32771	32772	default	enabled	2621442	permit	<pre>src_dst_any(9)</pre>

CiscollVLi

BRKACI-2016 © 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public 14

Dynamic Attach Endpoint Overview

- APIC dynamically detect new endpoint, then EP is automatically added to
 - Member pool of VIP for ADC
 - · EPG based network objects for FW
- Device package is required
- Function connector attachment notification

APIC

New

192.168.1.3

Dynamic Attach Endpoint Overview

- APIC dynamically detect new endpoint, then EP is automatically added to
 - Member pool of VIP for ADC
 - · EPG based network objects for FW
- Device package is required
- Function connector attachment notification

VIP

EPG

Client

New

192.168.1.2

192.168.1.1

EPG

Web-Pool

Policy Based Redirect (PBR) Overview

- APIC 2.0 or later
- Use case 1: Inspect specific traffic by FW

- APIC 2.0 or later
- Use case 1: Inspect specific traffic by FW

- APIC 2.0 or later
- Use case 1: Inspect specific traffic by FW

- APIC 2.0 or later
- Use case 1: Inspect specific traffic by FW

Client Contract EPG Client Contract Contract Web Subject1: permit-http Subject2: permit-all

- APIC 2.0 or later
- Use case 1: Inspect specific traffic by FW

- APIC 2.0
- Service Graph is mandatory and EX/FX hardware is required

- APIC 2.0
- Service Graph is mandatory and EX/FX hardware is required

18

- APIC 2.0
- Service Graph is mandatory and EX/FX hardware is required

18

18 © 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

Service Graph is mandatory and EX/FX hardware is required

Copy Service

Overview

• APIC 2.0

provider consumer EPG Contract Client Copy

IDS

EPG

Web

Design Use Cases and Considerations

- Firewall
- ADC
- IPS/IDS

- PBR (Policy Based Redirect)
- Multi-pod + Service

Firewall

Firewall Mode Options

Ciscoliv/

ACI L2 FW Design

*Go-through mode will overwrite BD settings to Flooding/ARP enabled automatically.

ACI L2 FW Design

*Go-through mode will overwrite BD settings to Flooding/ARP enabled automatically.

ACI L3 FW Design

FW as Gateway for All (ACI as L2)

- If you want to insert services in the path between client and servers you normally need to make firewalls be the default gateway.
 - This means that you need to design your bridge domains in order to fit the firewall and load balancing placement requirements
 - All traffic goes to Firewall because Firewall is the default gateway.

ACI L3 FW Design

ACI as Gateway (ACI as L3) with L3out

- If you want routers/switches or ACI to be the default gateway you need to use designs such as "VRF-sandwich":
 - This means that you need to redesign your network with more VRFs than you need just to make the traffic flow via the L4-L7 device
 - All traffic goes to Firewall based on routing design.

ACI L3 FW Design

ACI as Gateway (ACI as L3) with PBR

- All BDs are in same VRF
- Support selective redirect

PBR

Design Considerations

- Supported for both managed node and unmanaged node
- Works only with GoTo (L3) devices. Transparent device (e.g IDS, IPS) is not supported today.
- Both Active/Standby service nodes should have same VMAC
- For non-EX/FX leafs, service node can not be under either consumer or provider EPG Leaf
- Prior to ACI version 3.1:
 - Service node has to be in BD. The BD must be different from provider/consumer EPG BD.
 - "Endpoint Dataplane Learning" should be disabled on BDs for service node interfaces
- Prior to ACI version 3.2:
 - Can be enabled for only one node in multi-node service graphs

ADC

ADC Design Options

	L2 (Bridged)	L3 (Routed) Two-Arm	One-Arm	DSR
	VLAN10 192.168.1.0/24 VLAN20 192.168.1.0/24	VLAN10 192.168.1.0/24 VLAN20 192.168.2.0/24	VLAN10 192.168.1.0/24 OC VLAN20 192.168.2.0/24	VLAN10 192.168.1.0/24
Default GW of server	Router	ADC alias IP (server side)	Router	Router
NAT	ADC does DNAT (VIP <-> real server IP)	ADC does DNAT (VIP <-> real server IP)	ADC does DNAT and SNAT (VIP <-> real server IP, client IP <-> ADC)	ADC doesn't do NAT
When we use	Want to use same subnet for client-side and server-side	Common case when we can have separate VLAN/subnet for client-side and server-side.	Don't want to insert new VLAN/ subnet between router and server.	Return traffic is huge and want to reduce load of ADC (ex streaming server)
comment	Current ADC device package doesn't support it.			APIC version 1.2

If dynamic attach endpoint is needed, unicast routing should be enabled and BD2 subnet (for example 192.168.2.254/24) is needed

If dynamic attach endpoint is needed, unicast routing should be enabled and BD2 subnet (for example 192.168.2.254/24) is needed

No SNAT on ADC

Ciscolive

If dynamic attach endpoint is needed, unicast routing should be enabled and BD2 subnet (for example 192.168.2.254/24) is needed

No SNAT on ADC

ADC Source: 192.168.1.100 Dest: 192.168.1.200 (VIP)	Source: 192.168.1.100 Dest: 192.168.2.100 (Web)	
--	--	--

If dynamic attach endpoint is needed, unicast routing should be enabled and BD2 subnet (for example 192.168.2.254/24) is needed

No SNAT on ADC –

ADC Source: 192.168.1.100 Dest: 192.168.1.200 (VIP) Dest: 192.168.2.100 (Web)

SNAT on ADC

Ciscolive

ACI ADC Design One-arm with SNAT

ACI ADC Design One-arm with SNAT

ACI ADC Design One-arm with SNAT

VLAN10

 $\bigcirc =$

192.168.1.0/24

VRF1

All BDs are in same VRF

VRF1

All BDs are in same VRF

VRF<u>1</u>

All BDs are in same VRF

VRF1

VRF1

All BDs are in same VRF

VRF1

All BDs are in same VRF

VRF1

All BDs are in same VRF

- It is commonly deployed when Return traffic is huge and want to reduce load of ADC
- Servers must suppress ARP response to VIP ARP requests
- ACI Dataplane end-point learning

causes VIP move within fabric

- It is commonly deployed when Return traffic is huge and want to reduce load of ADC
- Servers must suppress ARP response to VIP ARP requests
- ACI Dataplane end-point learning

causes VIP move within fabric

- It is commonly deployed when Return traffic is huge and want to reduce load of ADC
- Servers must suppress ARP response to VIP ARP requests

- It is commonly deployed when Return traffic is huge and want to reduce load of ADC
- Servers must suppress ARP response to VIP ARP requests

- It is commonly deployed when Return traffic is huge and want to reduce load of ADC
- Servers must suppress ARP response to VIP ARP requests

DSR Design Consideration

- Stop Data-path learning of VIP shared by LB and servers.
- Configure the VIP as static under server EPG > L4-L7 Virtual IPs
- Allow ACI Fabric to learn VIP to MAC address binding only from ARP, GARP, or ND
- Server and load-balancer EPGs must be in the same bridge domain.
- · GARP learning needs to be enabled
- This feature applies to the L2-DSR scenario only. Not to L3-DSR.

IPS/IDS Designs

IPS Mode Options

	L1 (Fail-wire)	L2 (Transparent)	L3 (Routed)
	VLAN10 192.168.1.0/24 VLAN10 192.168.1.0/24	VLAN10 192.168.1.0/24 VLAN20 192.168.1.0/24	VLAN10 192.168.1.0/24 VLAN20 192.168.2.0/24
Default GW of servers	Router	Router	IPS alias IP of server-side (in case of FirePOWER, active IP)
When to use	Want to insert IPS inline	Want to use same subnet for client-side and server-side	Common case when we can have separate VLAN/subnet for client-side and server-side.
comment	Firepower appliances support L1 bypass network modules		
Ciscolive	L2 and L3 mode are pretty much same with Firewall design. Next slides will focus on L1 mode.		

IPS Design Consideration

- For L1 mode, service device doesn't change VLAN ID. Traffic from both legs of service node uses same VLAN encap.
- To put inline device accordingly, use of different BD is needed.

PBR Frequently Asked Design Questions

Can we use PBR for L3out EPG?

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

Can we use PBR for L3out EPG?

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

Can we use PBR for L3out EPG?

Ciscolive

• Consumer and provider EPGs can be in same BD subnet.

- Consumer and provider EPGs can be in same BD subnet.
- One-arm mode deployment

- Consumer and provider EPGs can be in same BD subnet.
- One-arm mode deployment

- Consumer and provider EPGs can be in same BD subnet.
- One-arm mode deployment

- Note
 - ARP must be excluded from PBR
 - Service Graph for intra-EPG contract is not supported today.

Ciscolive

Ciscolive!

Multiple consumer/provider EPGs

- Multiple consumer/provider EPGs
- Multiple contracts using same PBR destination.

- Multiple consumer/provider EPGs
- Multiple contracts using same PBR destination.

- Multiple consumer/provider EPGs
- Multiple contracts using same PBR destination.

- Note
 - Depending on routing design, one-arm mode deployment may be required.

Ciscolive

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

Ciscolive,

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

• Prior to APIC version 3.1, PBR node must be different than the consumer/provider BDs.

Ciscolive!

- Prior to APIC version 3.1, PBR node must be different than the consumer/provider BDs.
- Starting from APIC version 3.1, this requirement no longer mandatory. (Need EX/FX Leaf)

Can we use PBR for inter VRF contract?

Can we use PBR for inter VRF contract?

Ciscolive
Can we use PBR for inter VRF contract?

 The PBR node can be between VRF instances or within one of the VRF instances. The PBR node must be in either the consumer or provider VRF instance. For example, you cannot put the PBR node in VRF3, which is neither a consumer nor a provider VRF instance.

Incoming traffic

Incoming traffic

Ciscoliv/

Incoming traffic

Ciscolive;

Incoming traffic

Symmetric PBR Scale-out service

47 BRKACI-2016 © 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

Ciscoli

BRKACI-2016 © 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public 47

47 BRKACI-2016 © 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

Ciscol(VC;

PBR with source IP/dest IP only hash

Use case

- Hashing is based on Source IP, Destination IP and Protocol Type by default.
- · Source IP only, Destination IP only hash option is available.
 - If you wants to make same user (same source IP address) go to the same service node.
 - Use of source IP based hash for incoming traffic
 - Use of destination IP based hash for return traffic

Tracking behavior

Tracking behavior

Tracking behavior

ACI 2.2(3)

3.1

Health group

ACI 2.2(3)

3.1

Threshold

PBR is enabled Available node =100%

Ciscolive!

(<= 20%)

PBR is disabled

Available node =20%

Node3

Threshold

PBR is enabled

Available node =100%

Node2

Node3

Node4

Node5

(<= 20%) Node1

PBR is disabled

Available node =100% Available node =20%

Node3

Node2

PBR with tracking

Threshold

PBR is enabled

Node1

ACI 2.2(3)

3.1

Node5 Node5

PBR with tracking Threshold

Ciscolive

Down Action: Permit

Down Action: Permit

Ciscolive,

Down Action: Permit

Ciscolive,

Down Action: Deny

Ciscolive!

ACI 2.2(3)

3.1

Multi-pod Design Considerations

- Active and Standby pair deployed across Pods
- No issues with asymmetric flows but causes traffic hair-pinning across the IPN

- Active and Standby pair deployed across Pods
- No issues with asymmetric flows but causes traffic hair-pinning across the IPN

- Independent Active/Standby pair deployed in each Pod
- Only for perimeter FW use case assuming proper solution is adopted to keep symmetric ingress/ egress traffic flows

- Active and Standby pair deployed across Pods
- No issues with asymmetric flows but causes traffic hair-pinning across the IPN

- Independent Active/Standby pair deployed in each Pod
- Only for perimeter FW use case assuming proper solution is adopted to keep symmetric ingress/ egress traffic flows

- FW cluster deployed across Pods
- Not currently supported (scoped for 1HCY18)

Active/Standby FW Pair across Pods

Multi-Pod and Network Services

Active/Standby Pair across Pods

- Easiest deployment models, no risk of creating asymmetric traffic paths across stateful services
- Support service nodes in both Layer 2 and Layer 3 modes
- Leverage Multi-Pod capabilities of seamlessly providing L2/L3 connectivity across Pods
- Applies to both east-west and north-south communication
- Supports both traditional Border Leaf L3Outs and GOLF L3Outs (for north-south communication)
- Future migration path to an Active/Active cluster FW solution (Q2CY18)

Option 1 FW in Layer 2 Mode

Active/Standby Pair across Pods

Option 1: FW in L2 Mode

North-South

 All traffic leaving the EPG is forced through the FW via L2 lookup (i.e. 'BD stitching')

 Support for all deployment models (service-graph managed and unmanaged, no service-graph)

East-West

Active/Standby Pair across Pods Option 1: FW in L2 Mode **IPN APIC Cluster** L3Out-Site2 L3Out-Site1 VM WAN WAN Active 🤤 Standby WAN = East-West = North-South Ciscolive!

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

BRKACI-2016

60

Option 1: FW in L2 Mode

Option 1: FW in L2 Mode

Option 2 FW in Layer 3 Mode and PBR

Option 2: FW in L3 Mode and PBR

East-West

- The default gateway for the endpoints is always deployed on the ACI leaf nodes (Anycast gateway)
- Traffic is forced through the Active FW via PBR policy
- Support for all deployment models (service-graph managed and unmanaged, no service-graph)

Option 2: FW in L3 Mode and PBR

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

Option 2: FW in L3 Mode and PBR

Option 3 FW in Layer 3 Mode and L3Outs

Option 3: FW in L3 Mode and L3Outs

North-South

East-West

- The default gateway for the endpoints is always deployed on the ACI leaf nodes (Anycast gateway)
- Traffic is forced through the Active FW via L3Out connections (VRF-sandwich) leveraging static or dynamic routing
- For the N-S scenario, alternative option is to connect the external FW interface directly to the WAN Edge router
- Support for all deployment models (service-graph managed and unmanaged, no service-graph)

Option 3: FW in L3 Mode and L3Outs

and deploying EX/FX HW for ACI service leaf nodes

Ciscolive;

Option 3: FW in L3 Mode and L3Outs

Active/Standby Independent FW Pairs in each Pod

Multi-Pod and Network Services

Active/Standby Independent Pairs in each Pod

- Only supported with network services in Layer 3 mode
- Must pay specific attention to avoid the creation of asymmetric traffic path through independent FWs (i.e. not sharing connection state)
- Recommendation is to deploy Symmetric PBR to enforce both legs of the traffic flows through the same FW
- Symmetric PBR can be used for both North-South and East-West flows
- Solution improvements in 3.1 release with the introduction of location/Pod aware PBR policy (North-South flows only)

FW in Layer 3 Mode and Symmetric PBR

Active/Standby Independent Pairs in each Pod

FW in Layer 3 Mode and Symmetric PBR

East-West

- The default gateway for the endpoints is always deployed on the ACI leaf nodes (Anycast gateway)
- Traffic is forced through the same Active FW via Symmetric PBR policy (supported only with EX/ FX ACI leaf HW)
 - Two IP/MAC nodes are specified in the same PBR policy
 - Traffic is redirected to one of the two nodes based on hashing (Source_IP, Dest_IP, Protocol Type)
- Supported only with service-graph in unmanaged mode

Active/Standby Independent Pairs in each Pod

FW in Layer 3 Mode and Symmetric PBR

Optimized behavior where the FW located in the same Pod with the destination endpoint is selected by the PBR policy

Sub-optimal traffic flow if the FW located in the remote Pod is selected by the PBR policy

Active/Standby Independent Pairs in each Pod

Location Based PBR (ACI 3.1 Release)

- The suboptimal behavior shown in the previous slide could be avoided introducing 'location based PBR'
 - The leaf node where the PBR policy is applied would always preferably select a local PBR node
 - A tracking functionality is also available to verify the liveliness of local PBR nodes
 - Remote PBR nodes start getting used if/when all the local PBR nodes have failed
- Coupled with a solution of ingress path optimization (i.e. host routes advertisement on GOLF L3Outs) helps minimizing traffic hair-pinning across the IPN

ACI 3.1

Active/Standby Independent Pairs in each Pod

Location Based PBR (ACI 3.1 Release)

Upcoming New Features

L4-L7 Service Related Enhancement in ACI 3.2

- Multi-node PBR
- vzAny with PBR
- Resilient Hash PBR
- Anycast IP/MAC support in Multi-pod(Stretch)
- Multi-site with Service Graph (PBR)

Multi-node PBR

ACI 3.2

Ciscolive!

Multi-node PBR

- Prior to ACI 3.2: Concatenating PBR nodes is not supported.
 - For example, both 1st and 2nd node can't be PBR nodes. Either one of them can be.

• ACI 3.2: Support more than 1 node PBR in a Service Graph.

PBR with vzAny

- vzAny is useful if we have a security requirement that is applied to all EPGs in same VRF and also it helps to reduce policy TCAM consumption.
- · Today, PBR with vzAny (provider) is not supported.
- vzAny (consumer) can be used for shared service use case.

PBR with vzAny

- In ACI 3.2, PBW with vzAny (provider) is also supported.
- Use case: Insert Firewall everywhere.

Resilient Hash PBR

 Symmetric PBR is supported today, but if one of the PBR nodes is down, traffic will be re-hashed. So existing connection having been going through available PBR nodes could be affected.

Ciscolive,

Resilient Hash PBR

ed node will be re-

3.2

 With Resilient Hash PBR, only the traffics that went though failed node will be rehashed.

Some traffic could be load-balanced to different PBR nodes that don't have existing connection info.

Anycast IP/MAC in Multi-pod

NOT SUPPORTED Active/Active Firewall Cluster across pods (Prior to 3.2) without Anycast IP/MAC → 192,168,1,201 51 → 192.168.1.202

BRKACI-2016 © 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public 83

Active/Active Firewall Cluster across pods (Prior to 3.2) without Anycast IP/MAC

Ciscolive,

BRKACI-2016 © 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public 83

BRKACI-2016 © 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

84

Useful Links

- Service Graph Design with Cisco Application Centric Infrastructure White Paper
 - <u>https://www.cisco.com/c/en/us/solutions/collateral/data-center-virtualization/application-centric-infrastructure/white-paper-c11-734298.html</u>
- Cisco Application Centric Infrastructure Policy-Based Redirect Service Graph Design White Paper
 - <u>https://www.cisco.com/c/en/us/solutions/data-center-virtualization/application-centric-infrastructure/white-paper-c11-739971.html</u>
- ACI Fabric Endpoint Learning White Paper
 - <u>https://www.cisco.com/c/en/us/solutions/collateral/data-center-virtualization/application-centric-infrastructure/white-paper-c11-739989.html</u>
- ACI Multi-pod white paper
 - <u>https://www.cisco.com/c/en/us/solutions/collateral/data-center-virtualization/application-centric-infrastructure/white-paper-c11-737855.html</u>

Q & A

Complete Your Online Session Evaluation

- Give us your feedback and receive a Cisco Live 2018 Cap by completing the overall event evaluation and 5 session evaluations.
- All evaluations can be completed via the Cisco Live Mobile App.

Don't forget: Cisco Live sessions will be available for viewing on demand after the event at <u>www.CiscoLive.com/Global</u>.

ıılıılıı cısco

Thank you

ıılıılıı cısco

You're

