

You make possible

ASR 1006-X and ASR1009-X Overview and Architecture

David Roten

Session ID : BRKARC-2013

cisco

Barcelona | January 27-31, 2020

Cisco Webex Teams

Questions?

Use Cisco Webex Teams to chat with the speaker after the session

How

- 1 Find this session in the Cisco Events Mobile App
- 2 Click "Join the Discussion" -
- 3 Install Webex Teams or go directly to the team space
- 4) Enter messages/questions in the team space

Agenda

- Introduction
- Chassis Overview
- Control Plane Hardware
- Data Plane Hardware
- New 3rd Generation QFP ASIC Hardware
- Linecards for Input / Output
- Redundancy
- Monitoring
- Key Takeaways
- Q & A

ASR1000 Platform Introduction

Cisco ASR1000 Series Routers

cisco Live!

Hardware Overview

Chassis ASR1006-X

6 power supply modules

ESP slots (ESP40 / 100 / 100X / 200X) RP slots

Linecard slots (SIP40 / MIP100 / Fixed Ethernet)

cisco / ile/

Chassis ASR1009-X

ESP slots (ESP40 / 100 / 100X / 200 / 200X) RP slots Linecard slots (SIP40 / MIP100 / Fixed Ethernet)

ASR1000-X chassis linecard slots

- Each of the linecards slots are "superslots" supporting up to 100 Gb/sec full duplex traffic with currently available hardware
- Chassis is capable of delivering 200 Gb/sec full duplex per slot when paired with potential future ESP hardware supporting that functionality
- Additional support for linecards running at 40 Gb/sec full duplex
 - SIP-40
 - ASR1000-2T+20X1GE
 - ASR1000-6TGE

ASR1000 numbering conventions

- ASR1000 part numbers indicate the number of rack units
- Items are numbered from bottom to top, left to right

cisco / ile

Chassis comparison

Chassis comparison

ASR 1006 / ASR1009-X Power Supply

- AC and DC power supply modules
- Fault tolerance
 - Detects short circuits and component failures within the PS, if a failure is found, the unit is shut down
- High efficiency
 - More than 85% efficient to reduce power waste even at low loads
- Hot-swappable

- Always load sharing and redundant (N+1, N+M)
 - software configurable for redundancy level for operation
- Minimum power number of power supplies is 2 for both ASR1006-X and ASR1009-X
- Maximum of 6 power supplies
 - Provides both chassis level and facility level power fault tolerance.

ASR 1006 / ASR1009-X Power Supplies

Router# show platform power

Chassis type: ASR1009-X

Slot	Туре	State		Allocat	tion	(W)
0 0/0 1 1/0 1/3 2 R0 F0 F1 P6 P7 P8	ASR1000-SIP40 SPA-5X1GE-V2 ASR1000-SIP40 SPA-8X1GE-V2 SPA-4XOC3-POS ASR1000-SIP40 ASR1000-RP2 ASR1000-ESP100 ASR1000-ESP100 ASR1000X-FAN ASR1000X-FAN ASR1000X-FAN	ok ok ok ok ok ok, active ok, standk ok, active ok ok ok	е ру е	64 18 64 20 14 64 105 310 350 125 125 125		
Slot	Туре	State (Capaci	ty (W)	Load	(W)
P0 P1 P3	ASR1000X-AC-1100W ASR1000X-AC-1100W ASR1000X-AC-1100W	ok 1 ok 1 ok 1 ok 1	1100 1100 1100		228 216 204	

Total load: 648 W, total capacity: 3300 W. Load / Capacity is 19%

Power capacity:3300 WRedundant allocation:0 WPS/Fan allocation:375 WFRU allocation:1009 W

Excessive Power in Reserve: 1916 W Excessive / (Capacity - Redundant) is 58% Power Redundancy Mode: none Power Allocation Status: Sufficient

cisco / il

Router# show platform power

Chassis type: ASR1006-X

-	1 L					
Slot	Туре	State		Alloca	ation	(W)
1	ASR1000-SIP40	ok		64		
R0	ASR1000-RP2	ok, activ	<i>ve</i>	105		
FO	ASR1000-ESP100	ok, activ	<i>ve</i>	350		
P6	ASR1000X-FAN	ok		125		
P7	ASR1000X-FAN	ok		125		
Slot	Туре	State	Capac	ity (W)	Load	(W)
PO	ASR1000X-AC-1100W	ok	1100		132	
P1	ASR1000X-AC-1100W	ok	1100		144	
P2	ASR1000X-AC-1100W	ok	1100		144	

Total load: 420 W, total capacity: 3300 W. Load/Capacity is 12% Power capacity: 3300 W Redundant allocation: 1100 W PS/Fan allocation: 250 W

FRU allocation: 519 W

Excessive Power in Reserve: 1431 W Excessive / (Capacity - Redundant) is 65% Power Redundancy Mode: nplus1 Power Allocation Status: Sufficient

platform power redundancy-mode nplus1

Control Plane

ASR1000 Route Processors

	RP2	RP3		
CPU	Intel Dual-core Wolfdale 2.66GHz	Intel Quad-core Broadwell 2.2GHz		
Memory	8, 16GB	8, 16, 32, 64 GB		
Built-in Boot flash	2GB	8GB		
Storage	80GB HDD External USB	100 - 400 GB SSD External USB		
Chassis Support	ASR1004 ASR1006 ASR1006-X ASR1009-X ASR1013	ASR1006-X ASR1009-X ASR1013		

cisco live!

ASR1000 RP3

cisco live!

ASR1000 control plane architecture

ASR1000 control plane architecture

Ethernet out-of-band channel (EOBC)

- indication if cards are installed and ready loading images, stats collection
- messages to program QFP

Inter-Integrated Circuit (I²C)

- monitor health of hardware components
- control resets
- communicate active/standby
- real time presence and ready indicators
- control the other RP (reset, powerdown,etc.)
- report power-supply status
- EEPROM access

SPA control links

- detect SPA OIR
- reset SPAs (via I²C)
- power-control SPAs (via I²C)
- read EEPROMs

cisco ile

Control Packet Flow: Punt to RP

ASR1000#show platform software infrastructure punt

LSMPI interface internal stats: enabled=0, disabled=0, throttled=0, unthrottled=0, state is ready <snip> IOSXE-RP Punt packet causes: 8409150 Layer2 control and legacy packets 142957 ARP request or response packets 153783 Incomplete adjacency packets 2159290 For-us data packets 2927128 RP<->QFP keepalive packets 13 Glean adjacency packets 5 RP handled ICMP packets 50 RP injected For-us data packets 3284335 For-us control packets 8 IP subnet or broadcast packet packets FOR US Control IPv4 protcol stats: 3284335 GRE packets Packet histogram(500 bytes/bin), avg size in 139, out 121: Pak-Size In-Count Out-Count 0+: 17075341 13995189 500+: 3 204377 1000+:1 4000+: 1374 0

Control Packet Flow: Inject by RP

Sydney#show plat software infrastructure inject Statistics for L3 injected packets: 11342475 total inject pak, 0 failed 0 sent, 6161717 prerouted 0 non-CEF capable, 888119 non-unicast 6393836 IP, 15 IPv6 0 MPLS, 0 Non-IP Tunnel 231032 normal, 60 nexthop 4173263 adjacency, 0 feature 0 undefined 1989486 pak find no adj, 0 no adj-id 1170 sb alloc, 6393791 sb local 0 p2mcast failed count 0 p2mcast enqueue fail per feature packet inject statistics 0 Feature multicast 0 Feature Edge Switching Service Statistics for L2 injected packets: 0 total L2 inject pak, 0 failed 0 total BD inject pak, 0 failed 0 total EFP inject pak, 0 failed 0 total VLAN inject pak, 0 failed

ESI, 11.2Gbps

RP2 vs RP3 Performance

9400 <u></u>9400 ല്ല350 ⊑ 300 300 250 250 200 200 374 376 35532 356322 150 304 305-150 276 276 208 100 100 + 204168 172 172 167 123 120 50 50 95 0 0 RIB to learn CEF to learn fman_rp to BGP RIB to learn CEF to learn fman_rp to fman_fp to CPP to BGP fman_fp to CPP to Process to install install Process to install install install install install install ■ RP2 ■ RP3 ■ RP2 ■ RP3

BGPv4 Performance

~20-30% better BGPv4 performance

~40% better BGPv6 performance

BGPv6 Performance

cisco /

RP2 vs RP3 Performance

CPU Utilization (%)

~10% faster OSPF convergence

Less CPU utilization on RP3

cisco il

Data Plane Hardware

cisco Live!

Frontside view of new ESP100 and ESP200

ASR 1000 Series Innovations Cisco QuantumFlow Processor

- Multiple generations of ASIC hardware
- Massively parallel, 2nd generation ASIC has 64 multithreaded cores
 - 4 threads per core
 - totaling 256 simultaneous processes available to handle traffic
- High-priority traffic has independent path through hardware
- Packet replication capabilities for Lawful Intercept
- Full visibility of entire L2 frame
- · Latency: tens of microseconds with features enabled
- Interfaces on-chip for external cryptographic engine
- Dedicated hardware for traffic management
- Low power per core / thread versus generic chips

Cisco QuantumFlow Processor Traffic Manager (OFP TM)

Feature Invocation Array – FIA

cisco ive

Animation

New 3rd Generation QFP ASIC Hardware

Overhead view of new ESP100X and ESP200X

cisco / ile

Data plane hardware options

	ESP-40	ESP-100	ESP-100X *	ESP-200	ESP-200X *
Marketed	Up to	Up to	Up to	Up to	Up to
throughput	40 Gb/s	100 Gb/s	100 Gb/s	200 Gb/s	200 Gb/s
Raw CEF	Up to	Up to	Up to	Up to	Up to
throughput	40 Gb/s	138 Gb/s	130 Gb/s	260 Gb/s	260 Gb/s
Minimum	IOS XE	IOS XE	IOS XE	IOS XE	IOS XE
software	3.2	3.7.1	17.2	3.10	17.2
Supported chassis	1004, 1006, 1006-X, 1009- X, 1013	1006, 1006-X, 1009- X, 1013	1006-X 1009-X 1013	1006-X, 1009- X, 1013	1006-X, 1009- X

cisco live

Data plane hardware options

	ESP-40	ESP-100	ESP-100X	ESP-200	ESP-200X
Packet buffer memory	0.25 GB	0.5 GB	1.5 GB	1 GB	3.0 GB
QFP resource memory	1 GB	2 x 4 G	32 G	4 x 4 G	2 x 32 G
TCAM memory	40 Mb	2 x 80Mb	80 Mb	2 x 80 Mb	2 x 80 Mb
Max ACEv4 entries	100 k	320 k	380 k	320 k	380 k
Max ACEv6 entries	30 k	200 k	200 k	200 k	200 k
Max IPv4 routes	4 M	4 M	4 M	8.5 M	8.5 M
Max NAT44 sessions	2 M	8 M	12 M	8 M	32 M
Max NAT44 (CGN)	4M	12 M	32 M	12 M	52 M
Max firewall sessions	2 M	6 M	16 M	6 M	16 M

cisco livel

3rd generation QFP ASIC

- Multicore architecture
 - 28 clusters of 8 PPEs @ 1GHz
 - 224 PPEs with 4 threads each = 896 threads
- Specialized Hardware Assist
 - Integrated support for IPSEC and MACSEC cryptography
 - Flow queues for complex stateful features
 - Integrated Ethernet infrastructure
- Memory
 - 32GB DDR4 Resource memory
 - 3 to 4 Billion accesses per second
 - 8 times increase in memory for feature scale
 - 50% more packet buffer 1.5GB packet buffer

Next Gen Data Plane – ESP-X

- Powered by 3rd generation QFP ASIC
- Complex services support without performance degradation.
- Enhanced services include:
 - AVC
 - IPSEC Crypto
 - MACSEC
 - NAT
 - Firewall
 - QoS
 - AppNav

• IPSEC is now done on ASIC with much higher performance

cisco / ile
3rd generation QFP ASIC

- Used in the following platforms:
 - 1x 3rd generation QFP ASIC
 - ESP-100X, FP for modular chassis
 - Future platforms
 - 2x 3rd generation QFP ASIC
 - ESP-200X , FP for modular chassis
 - Future platforms

cisco / ile

3rd generation QFP ASIC Technology

- Unified architecture NPU supporting all existing feature code
- Processing Power per packet
 - one 3rd gen QFP ASICs = two 2nd gen QFP ASICs
- System on a Chip (SoC)
 - Approximately 2x improvements in Watts/MPPS
- Integrated classification based L2 subsystem
 - Integrated 1/10/40/100 GE MACs
 - Native Support for ASR1000 / ISR4000 modular IO
 - Support for WAN MACSEC
- Virtual single NPU complex via mesh interconnect
 - Support for single use as well as 2x and 4x ASIC meshes

3rd generation QFP ASIC Technology

- Embedded security / crypto
 - Crypto engines embedded in the ASIC, with dedicated cores for IPSEC
- · Acceleration infra for complex features and flow handling

- 50% more instructions available per packet for feature processing
- High performance DDR4 resource memory subsystem (16 channels)
- Improved Classification and QoS
 - MQC compliant hardware traffic management with 256K queues
 - Ether-channel support (200G max single bundle bandwidth)
 - · Distributed traffic management with improved granularity

3rd generation QFP ASIC – L2 Subsystem

- Integrated support for 240G of aggregate ethernet ports (2x120G)
- Supports full per port, L2/L3, TCAM based classification
- Supports Rx sub-intf / MAC classification & accounting
 - 4K Rx VLAN
 - 8K HSRP-DA
 - 512 Ethertype
- Supports Tx sub-intf / MAC accounting
- Line-rate WAN MACSEC for 240G of Ethernet interfaces
- MACsec XPN extension for high speed interfaces

3rd generation QFP ASIC - Crypto

ASIC targets much higher throughput of combined Cipher + Digest
 @ IMIX packet sizes

- 16 crypto engines
- Each Crypto Engine contains
 - packet input buffer, cipher, digest, and checksum engines

• Each cipher and digest engine has all the logic necessary to execute any of the supported underlying cipher algorithms

QFP Comparison

	Cores	Total threads	Crypto cores	QoS Queues	Ethernet sub-system
1 st gen QFP	40	160	0	128 K	None
2 nd gen QFP lite	32	128	0	16 K	Yes
2 nd gen QFP	64	256	0	118 K	None
3 rd gen QFP	224	896	16	256 K	Yes, 240 G

	MACSEC	Memory	Packet buffer memory	Platforms using
1 st gen QFP	None	4 G	256 MB	ESP 2.5, 5, 10, 20, 40 ASR1001, ASR1002, ASR1002F
2 nd gen QFP cost reduced	None	4 G	512 MB	ASR1001-X
2 nd gen QFP	Integrated in some platforms	4 G	512 MB	ESP100, ESP200, ASR1002-X, ASR1001-HX, ASR1002-HX
3 rd gen QFP	Integrated in all platforms	32 G	1.5 G	ESP100-X, ESP200-X, future platforms

cisco Live!

Platform QFP specification comparison

Product	ESP-40	1001-X	1002-X	ESP-100	ESP-200	1001-HX	1002-HX	ESP100-X	ESP-200X
ASICs:	QFP 1 st gen	lite QFP 2 nd gen	QFP 2 nd gen	2x QFP 2 nd gen	4x QFP 2 nd gen	QFP 2 nd gen	2x QFP 2 nd gen	QFP 3 rd gen	QFP 3 rd gen
Performance (IPv4 @64B)	24 Mpps	19 Mpps	34 Mpps	58 Mpps	130 Mpps	43 Mpps	58 Mpps		
# of Processors	40	32	64	128	256	64	128	224	448
# of Threads	160	128	256	512	1024	256	512	896	1792
Clock Rate	1.2 GHz	1.5 GHz	1.2 GHz	1.5 GHz	1.5 GHz	1.5 GHz	1.5 GHz	1.0 GHz	1.0 GHz
Crypto Engine BW @ 1400B	10 Gbps	8 Gbps	4 Gbps	27 Gbps	70 Gbps	19 Gbps	39 Gbps	141 Gbps	197 Gbps
QFP Resource Memory	1 GB	4 GB /	1 GB	4 GB	8 GB	1 GB	4 GB	32 GB	32 GB x2
Packet Buffer	256 MB	(unified)	0.5 GB	1 GB	2 GB	0.5 GB	1 GB	1.5 GB	3 GB
TCAM	40 Mb	10 Mb	40 Mb	80 Mb	2 x 80 Mb	40 Mb	80 Mb	80 Mb	2 x 80 Mb

cisco live

ESP data processing path

- 1. Packet arrives at ESP via interconnect
- 2. Packet assigned to an available PPE a by dispatcher
- 3. Input FIA invoked
- 4. Potentially forward through BQS to crypto
- 5. Forwarding decision is made
- 6. Egress FIA invoked
- Packet forwarded through BQS for scheduling based on QoS and interface bandwidth
- 8. Packet leaves ESP via interconnect

QFP queue distribution for 4 QFP systems

ESP200

QFP 3 QFP 2 QFP 1 QFP 0

Feature processing and packet buffering are spread across all QFPs. Queuing and scheduling is divided amongst the QFPs based on location of egress interface in the chassis.

For example all packets egressing interfaces in slot 5 with ESP200 in the ASR1013 chassis would be processed by QFP3.

ASR1013 with ESP200 and MIP100

ASR1013 with ESP200 and SIP40

BRKARC-2013

ASR1009-X with MIP100

© 2020 Cisco and/or its affiliates. All rights reserved. Cisco Public 47

QFP queue distribution for 2 QFP systems

cisco / ile

Linecards for Input / Output (SIP / MIP)

cisco live!

Modular line cards

	SIP40	MIP100	
Bandwidth to backplane (full duplex)	40 G	100 G *	
Installable cards	4 half height SPAs, ethernet and / or WAN interfaces	2 EPAs, ethernet interfaces only	
Buffering	128 MB	Approximately 128 MB	
Egress Buffering	8 MB	8 MB	
Chassis support	ASR1004, ASR1006, ASR1006-X, ASR1009-X, ASR1013	ASR1006-X, ASR1009-X, ASR1013 *	
Features	Basic ingress classification for high and low priority forwarding path to ESP. Egress high and low priority paths. All other features implemented on ESP.		
Backplane channels	Two 20 Gb/s channels	One 100 Gb/s channel	

* When installed in ASR1013 chassis, 40 Gbps throughput in slots 0, 1, 4, and 5

cisco livel

MIP-100: High Density Modular Ethernet

Carrier Card + 2xEthernet Port Adapters					
EPA options	 1x100GE with CPAK (No MACSEC) 1x100GE with QSFP (MACSEC with XFP) 2x40GE via CPAK breakout cable (No MACSEC) 2x40GE and 1x40GE with QSFP (MACSEC with XFP) 10x10GE with SFP+ (MACSEC) 18X1GE with SFP (MACSEC) 				
Throughput	200G I/O with up to 100G ¹ throughput per line card				
Key Features	 Feature Parity to 2x10GE+20xGE Plus 256-bit WAN MACSEC with VLAN tags in the clear 				
RP	• RP2 + RP3				
ESP	• ESP100, ESP200, ESP100X, ESP200X				

Chassis	Slots	BW
1013	Slots 2 & 3	100G
1013	Slots 0,1,4&5	40G
1006-X	All Slots	100G
1009-X	All Slots	100G
ASR1002-HX	Integrated CC	100G

¹ Max Bandwidth per slot for EPAs (ESP100 and ESP200)

cisco live

cisco Live!

cisco / ile/

SIP40 / MIP 100 ingress data path

- 1. SPA receives packet data from its network interfaces and transfers the packet to the SIP
- 2. SPA Aggregation ASIC classifies the packet into H/L priority
- SIP writes packet data to external 128MB of ingress buffers

Ingress buffer memory is carved into 64 queues. The queues are arranged by SPA-SPI channel and optionally H/L. Channels on "channelized" SPAs share the same queue.

- 4. SPA ASIC selects among ingress queues for next pkt to send to ESP over ESI. It prepares the packet for internal transmission
- 5. The interconnect transmits packet data of selected packet over ESI to active ESP at up to 23 Gbps

SIP40 ingress data path

SIP40 egress data path

1. Interconnect receives packet data over ESI from the active ESP

2. SPA Aggregation ASIC receives the packet and writes it to external egress buffer memory

Egress buffer memory is carved into 64 queues. The queues are arranged by egress SPA-SPI channel and optionally H/L. Channels on "channelized" SPAs share the same queue.

- 3. SPA Aggregation ASIC selects and transfers packet data from eligible queues to SPA-SPI channel (Hi queue are selected before Low)
- 4. SPA transmits packet data on network interface

SPA can backpressure transfer of packet data burst independently for each SPA-SPI channel using SPI FIFO status

ESP data processing path

- 1. Packet arrives at ESP via interconnect
- 2. Packet assigned to an available PPE a by dispatcher

Animation

57

- 3. Input FIA invoked
- 4. Potentially forward through BQS to crypto
- 5. Forwarding decision is made
- 6. Egress FIA invoked
- Packet forwarded through BQS for scheduling based on QoS and interface bandwidth
- 8. Packet leaves ESP via interconnect

BRKARC-2013 © 2020 Cisco and/or its affiliates. All rights reserved. Cisco Public

IOS XE software architecture

- IOS + IOS XE Middleware + Platform Software
- Operational Consistency
 - · same look and feel as classic IOS Router
- IOS runs as its own Linux 64 bit process for control plane
- Linux kernel with multiple processes running in protected memory
- · Fault containment, re-startability
- ISSU of individual SW packages
- With redundant data plane hardware packet loss is less than 50 ms at failover

IOS XE architecture building blocks

Redundancy

Flavors of High Availability

- Hardware redundancy (intrachassis redundancy)
- Redundancy groups between chassis (interchassis redundancy)
- IOS Software redundancy
- In Service Software Upgrade (ISSU)
- SMU (Service Maintenance Upgrade)

Intrachassis redundancy

Animation

- Redundant ESP / RP on ASR 1006 & ASR 1013
- Software Redundancy on ASR 1001, 1002 & 1004
- Max 50ms loss for ESP fail-over
- Zero packet loss on RP fail-over
- Intra-chassis Stateful Switchover (SSO)
 Stateful features: PPPoX, AAA, DHCP, IPSec, NAT, Firewall
- IOS XE also provides full support for Network Resiliency NSF/GR for BGP, OSPFv2/v3, IS-IS, EIGRP, LDP
 IP Event Dampening; BFD (BGP, IS-IS, OSPF)
 first hop redundancy protocols: GLBP, HSRP, VRRP
- Support for ISSU super and sub-package upgrades

Interchassis redundancy

2 ASR 1000 chassis with single RP / single ESP

- Inter-chassis plus intra-chassis redundancy not supported
- Maximum of 2 cluster members

Physical connectivity to both member systems from adjacent routers or switches

- Need a mechanism to direct traffic to either member system in case of failover
- L2 connection between both member systems for RG control traffic
 - Used to exchange control traffic (RG hellos, RG state, fail-over signaling etc.)
 - Communication required between the two member systems to avoid split-brain condition
- L2 connection between both member systems for application state data
 - Synchronization of NAT/Firewall/SBC state tables
 - FIBs are NOT synchronized by RG infrastructure

Possible a user data cross-connect for asymmetric routing cases

IOS Software redundancy

- IOS runs as its own Linux process for control plane (Routing, SNMP, CLI etc.)
- Linux kernel runs IOS process in protected memory for: Fault containment

Restart-ability of individual SW processes

- Software redundancy helps when there is a RP-IOS failure/crash
- Active process will switchover to the standby, while forwarding continues with zero packet loss
- Can be used for ISSU of RP-IOS package for control-plane bug fixes and PSIRTs
- Other software crashes (example: SIP or ESP) do not benefit from Software redundancy

SPA

SPA

ASR1000 High Availability – ISSU

- Ability to perform upgrade of the IOS image on the single-engine systems
- Support for software downgrade
- "In Service" component upgrades (SIP-Base, SIP-SPA, ESP-Base) without requiring reboot to the system
- Hitless upgrade of some software packages
- RP Portability installing & configuring hardware that are physically not present in the chassis
- This allows the user to configure an RP in one system i.e. a 4RU and then move it to another system i.e. a fully populated 6RU
- One-shot ISSU procedure available for H/W redundant platforms

ISSU software sub-packages

- 1. RPBase: RP Linux operating system Upgrading of the OS will require reload to the RP and expect minimal changes
- 2. RPIOS: IOS executable facilitates Software Redundancy feature
- 3. RPAccess (K9 & non-K9): Software required for Router access Two versions available (with and without open SSH & SSL) facilitates software packaging for export-restricted countries
- 4. RPControl : control plane processes for IOS / hardware interface IOS XE Middleware
- 5. ESPBase: All ESP code Any software upgrade of the ESP requires reload of the ESP
- 6. SIPBase: SIP OS & control processes OS upgrade requires reload of the SIP
- 7. SIPSPA: SPA drivers and SPA FPD Facilitates SPA driver upgrade of specific SPA slots

cisco / il

Software maintenance upgrade (SMU)

- Realtime patches for software that do not require reboot or interruption in forwarding of traffic
- Primary use case is for PSIRT fixes or critical updates that do not allow time for full image certification
- Minimal change footprint versus other upgrade methods such as subpackage upgrade
- Reduces overall maintenance and upgrade cost
- Not as granular as SMU updates from IOS XR. Individual processes for BGP, OSPF, etc. are not restartable on IOS XE.

ASR1000 - Hitless SMU

• Software maintenance update - runtime update without downtime

IOS XE 16.9.1 Hitless SMU Support Matrix		ASR1001-X ASR1002-X ASR1001-HX ASR1002-HX	ASR1004 ASR1006 ASR1006-X ASR1009-X ASR1013	CSR1000v	
RP *		Yes	Yes	Yes	
	client / driver	No	No	No	
ESP ^	microcode	No	No	No	
SIP40 / MIP100 **		Yes	No	n/a	

* Not every bug fix is 'hot patchable'** Internal components for fixed chassis

cisco il

SMU Features Supported in 16.6.1

Components							
NAT	Multicast/PIM/MVPN	AAA	IPSec / IKEv2 / VPN				
FW	Trustsec	DHCP	LISP (VxLAN)				
ALG	RBAC	QoS	L2VPN				
MACSec	ISIS	SNMP	MPLS (TE/RSVP/OAM/LDP)				
Crypto	BGP	CDP	LLDP				
CGN/NPTv6	RIB	ACL					
ALG	OSPF	SSH					

cisco livel

Monitoring

Feature to ESP resources dependency

Component utilization information

Mitigation plan when running out of resources

Before upgrading RP, Memory or ESP, immediate action can be taken to reduce system utilization:

IOS/RP Memory

· Reduce prefixes received from a peer

neighbor { ip-address} maximum-prefix <number of prefixes>

Turn off Software Redundancy

redundancy mode none

QFP Resources DRAM

Reduce NAT max-entries:

```
ip nat translation max-entries <number of entries>
nat64 translation max-entries <number of entries>
```

Reduce FW session limit:

```
parameter-map type inspect <X>
    session total <count>
```

Reduce FNF cache limit:

```
flow monitor <X>
    cache entries <number of entries>
```

```
cisco live!
```

IOSd CPU & Memory Utilization

CPU Load in IOSd process

show processes cpu

 In IOSd, to investigate the memory is occupied by which process use the traditional command:

show memory

show memory allocating-process totals

cisco /

Control CPU & Memory Utilization (1)

For an overview of each Module CPU load on the ASR 1000, use the following command:

Sample EEM script to trigger the Load monitoring on the	ASR10 Load Z	00 # show Average	platform	n softw	vare status	control-processor	brief
next slide	Slot	Status	1-Min	5-Min	15-Min		
	rp0	Healthy	0.06	0.06	0.01		
	RP1	Healthy	0.06	0.04	0.01		
	ESP0	Healthy	0.01	0.00	0.00		
	ESP1	Healthy	0.00	0.00	0.00		
	SIP1	Healthy	0.04	0.03	0.01		
	SIP2	Healthy	0.00	0.00	0.00		

Load Average represents the process queue or process contention for CPU resources.

- 1. On a single core processor, an instantaneous load of "7" would mean that seven processes were "ready to run", one of which is currently running.
- 2. On a dual core processor, a load of "7" would represent seven processes were ready to run, two of which are currently running.

Triggered EEM Script to monitor system load

This is a sample EEM script that monitors RP0 one minute load.

- A load of 5 triggers actions 1 through 5.
- Action 1 generates a log message when the script triggers.
- Actions 2 through 5 run CLI, outputs them to the bootflash, and appends the cpuinfo file

```
event manager applet capture_cpu_spike
  event snmp oid 1.3.6.1.4.1.9.9.109.1.1.1.1.24.2 get-type exact entry-op ge entry-val 500 exit-time
180 poll-interval 2
  action 1.0 syslog msg "Load is high. Check bootflash:cpuinfo for details."
  action 2.0 cli command "en"
  action 3.0 cli command "show clock | append bootflash:cpuinfo"
  action 4.0 cli command "show platform software status control-processor br | append
  bootflash:cpuinfo"
  action 5.0 cli command "show platform software process slot rp active monitor | append
  bootflash:cpuinfo"
```

Control CPU & Memory Utilization (2)

Status: Critical, Warning, Healthy. Definition in reference slide at section end

Memory utilization is represented by the following:

- Total Total card memory
- Used Consumed memory
- Free Available memory
- Committed Virtual memory committed to processes

ASR100	00# show	plat	tform :	software	status	control-	proces	ssor brief	
<sni< td=""><td>ip></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></sni<>	ip>								
Memory	(kB)								
Slot	Status	r	Fotal	Used	(Pct)	Free	(Pct)	Committed	(Pct)
RP0	Critica	1 39	919788	3891940) (95응)	27848	(0응)	2005100	(98%)
RP1	Healthy	393	19788	1164924	(28%)	2754864	(66%)	1994212	(48%)
ESP0	Healthy	203	30288	520744	(24%)	1509544	(71%)	2816620	(134%)
ESP1	Healthy	203	30288	514972	(24%)	1515316	(72%)	2816356	(134%)
SIP1	Healthy	48	34332	311868	(59%)	172464	(32%)	262472	(50%)
SIP2	Healthy	48	34332	332252	(63%)	152080	(29%)	317648	(60%)
CPU Ut	cilizati	on							
Slot	CPU	User	System	m Nice	Idle	IRQ	SIRQ	IOwait	
RP0	0	1.28	1.1	5 0.00	97.25	0.01	0.10	0.20	
RP1	0	0.94	1.2	3 0.00	97.48	0.00	0.02	0.30	
ESP0	0	0.56	0.6	6 0.00	98.76	0.00	0.00	0.00	
ESP1	0	0.52	0.6	4 0.00	98.82	0.00	0.00	0.00	
SIP1	0	0.47	0.4	5 0.00	99.04	0.00	0.01	0.00	
SIP2	0	0.58	0.53	3 0.00	98.85	0.00	0.01	0.00	

Control CPU & Memory Utilization (3)

CPU utilization is a two second relative percentage average of the number of processes requesting CPU resources at a given time and is represented by the following fields:

- CPU The allocated processor
- User Non-Linux kernel processes
- System Linux kernel process
- Nice Low priority processes
- Idle Percentage of time the CPU was inactive
- IRQ Interrupts
- SIRQ System Interrupts
- Iowait Percentage of time CPU was waiting for IO

ASR1000# show platform software process slot RP active monitor cycles 2 | inc Cpu|Mem Cpu(s): 1.1%us, 1.0%sy, 0.0%ni, 97.9%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Mem: 16343244k total, 3988416k used, 12354828k free, 202964k buffers Ok total, 0k used, 0k free, 1414668k cached Swap: Cpu(s): 3.8%us, 0.3%sy, 0.0%ni, 95.8%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Mem: 16343244k total, 3988788k used, 12354456k free, 202964k buffers Ok total, Ok used, Ok free, 1414796k cached Swap:

This command must be executed two times as the first

sample will not report accurate CPU utilization information.

78

Control CPU & Memory Utilization (4)

- To check process in each Module, use following command to check in VTY
- · Enter "m" to sort by memory usage

ASR100	00# moni	tor pla	tfo	orm sof	tware	e proc	ces	ss fp	activ	e		
Tasks	: 80 to	tal,	4 ı	running	g, 76	5 slee	epi	ing,	0 st	opped, () zombie	
Cpu(s)): 1.0%	us, C	1.39	sy,	0.0%	ni, 9	98.	.7% ic	a, O.	0% wa, 0	.0% hi, 0.0% si	Ĺ
Mem:	203028	8k tota	ıl,	5252	260k i	used,	1	150502	28k fr	ee, 212	228k buffers	
Swap:		0k tota	l,		0k ι	used,			0k fr	ee, 1920)24k cached	
PID	USER	PR	NI	VIRT	RES	SHR	S	%CPU	%MEM	TIME+	COMMAND	
4750	root	20	0	645m	92m	31m	S	0.7	4.6	26:36.97	cpp_cp_svr	
5597	root	20	0	502m	45m	24m	S	0.3	2.3	6:00.44	fman_fp_image	
5737	root	20	0	16108	5732	4104	R	0.3	0.3	12:39.08	hman	
7321	root	20	0	8876	2200	1712	R	0.3	0.1	0:00.03	in.telnetd	
7392	binos	20	0	2496	1212	976	R	0.3	0.1	0:00.10	top	
1	root	20	0	2132	632	544	S	0.0	0.0	0:10.63	init	

The "monitor" command does not work with serial console. VTY sessions work by default.

Do not use the first iteration. Allow for at least 2 refreshes to get the most accurate data.

cisco /

Control CPU & Memory Utilization (5)

CISCO-PROCESS-MIB

- support 64 bits architecture which runs on IOS XE
- monitor CPUs on RP, ESP and SIP. Only Active RP/ESP can be monitored, not standby.

Find out the index for the RP's cpmCPUTotal1min

```
host> getmany -v2c 9.0.0.52 cpmCPUTotalPhysicalIndex
cpmCPUTotalPhysicalIndex.2 = 7031
```

7031 is RP CPU physical index in entity mib, so use 2 as index for RP <code>cpmCPUTotal1min</code>

2) The OID used to retrieve instance for the RP's cpmCPUTotal1min

```
host> getone -v2c 9.0.0.52 cpmCPUTotal1min.2
cpmCPUTotal1min.2 = 58
```

Please note that "cpmCPUTotal1min.2" is same as OID "1.3.6.1.4.1.9.9.109.1.1.1.1.4.2"

QFP & Resource DRAM Utilization (1)

To display the QFP utilization, use the following command:

QFP & Resource DRAM Utilization (2)

DRAM on QFP usage can be found on the following command

QFP & Resource DRAM Utilization (3)

Syslog when throughput exceeds BW license (ASR1001-X, ASR1002-X)

```
Exceeding 95% threshold:
*Sep 24 10:15:14.249: %BW_LICENSE-5-THROUGHPUT_THRESHOLD_LEVEL: F0: cpp_ha: Average
throughput rate
had exceeded 95 percent of licensed bandwidth 1000000000 bps 1 times, sample period
300 seconds, in last 24 hours
Exceeding total bw:
Sep 24 10:42:28.450: %BW_LICENSE-4-THROUGHPUT_MAX_LEVEL: F0: cpp_ha: Average
throughput rate had
exceeded the total licensed bandwidth 1000000000 bps and dropped 1 times, sample
period 300 seconds, in last 24 hours.
```

Upgrade throughput via (licensing implications apply):

platform hardware throughput level $<\!x\!>$ reload

TCAM

QFP TCAM usage can be found in following command:

			/			
(ASR1000# show platform hardwar resource-manager usage	e qfp active tcam		320 Bit Region Information		
	QFP TCAM Usage Information			Name Number of cells per entry	: Leaf Region #2 • 4	
	80 Bit Region Information			Current 320 bits entries used	: 0	
	Name	: Leaf Region #0		Current used cell entries	: 0	
	Number of cells per entry	: 1		Current free cell entries	: 0	
	Current 80 bit entries used	: 0				
	Current used cell entries	: 0		Total TCAM Cell Usage Informat	ion	
	carrent file ceri cheffes	• •				
	160 Bit Region Information			Name	: TCAM #0 on CPP #0	
				Total number of regions	: 3	
	Name	: Leaf Region #1		Total team free cell entries	· 524276	
	Current 160 bits entries used	: 2 · 6		Threshold status	: below critical limit	\mathbf{b}
	Current used cell entries	: 12				
	Current free cell entries	: 4084				-
		,	/			

cisco live!

Control-Process Health Definition (1)

Board	WARNING	CRITICAL	WARNING	CRITICAL	WARNING	CRITICAL
	1 minute		5 minute		15 minutes	
SIP10	5	8	5	8	5	8
SIP40	5	8	5	8	5	8
ESP5	5	8	5	8	5	8
ESP10	5	8	5	8	5	8
ESP20	5	8	5	8	5	8
ESP40	5	8	5	8	5	8
ESP100	5	8	5	8	5	8
ESP200	5	8	5	8	5	8
RP1	5	8	5	8	5	8
RP2	5	8	5	8	5	8
ASR1001-X	8	12	8	12	10	15
ASR1002-X	8	12	8	12	10	15

"show platform software status control-processor brief" output in slide 30, the Load Average Status can be Healthy, Warning and Critical, this table provides the Warning and Critical status threshold for each field

Control-Process Health Definition (2)

Board	FIELD	WARNING	CRITICAL	FIELD	WARNING	CRITICAL	FIELD	WARNING	CRITICAL
SIP10	Committed	95%	100%	MemFree	10%	5%	MEMUSED	90%	95%
SIP40	Committed	95%	100%	MemFree	10%	5%	MEMUSED	90%	95%
ESP5	Committed	90%	95%	MemFree	10%	5%	MEMUSED	90%	95%
ESP10	Committed	90%	95%	MemFree	10%	5%	MEMUSED	90%	95%
ESP20	Committed	90%	95%	MemFree	10%	5%	MEMUSED	90%	95%
ESP40	Committed	90%	95%	MemFree	10%	5%	MEMUSED	90%	95%
ESP100	Committed	90%	95%	MemFree	10%	5%	MEMUSED	90%	95%
ESP200	Committed	90%	95%	MemFree	10%	5%	MEMUSED	90%	95%
RP1	Committed	90%	95%	MemFree	10%	5%	MEMUSED	90%	95%
RP2	Committed	90%	95%	MemFree	10%	5%	MEMUSED	90%	95%
ASR1001-X	Committed	90%	95%	MemFree	10%	5%	MEMUSED	90%	95%
ASR1002-X	Committed	90%	95%	MemFree	10%	5%	MEMUSED	90%	95%

"show platform software status control-processor brief" output in previous slide, the Memory Status can be Healthy, Warning and Critical, this table provides the Warning and Critical status threshold for each field

BQS memory utilization

ASR1006-X #show platform buffer utilization	hardware qfp ac	tive bqs 0 packet-	Total amount of memory per ASIC
Packet buffer memory uti Yoda: 0 Total: 512.00 MB	lization details	:	Total amount of memory free on ASIC 0
Used : 66.50 KB Free : 511.94 MB			Current utilization on ASIC 0
Utilization: 0 % Threshold Values:			50 kBytes reserved for vital packets
Vital Packet Priority Priority	: 511.95 MB, : 507.12 MB, : 487.59 MB,	Status: False	4% (95 thru 99) for PAK_PRI packets
Non-Priority Yoda: 1	: 438.76 MB,	Status: False	10% (85 thru 95) for user priority packets
Total: 512.00 MB Used : 66.50 KB Free : 511.94 MB			
Utilization: 0 %			Lower 85% available for generic packets
Threshold Values:			
Vital	: 511.95 MB,	Status: False	
Packet Priority	: 507.12 MB,	Status: False	
Priority Non-Priority	: 487.59 MB, : 438.76 MB,	Status: False Status: False	If shows true, the no memory available for queueing this type of packet for the specific ASIC

cisco ive!

TCAM Exhaustion

ASR1006-X #show platform hardware qfp active tcam resource-manager usage

: 1

: 0

: 0

: 2

: 6

: 4

• 0

: 0

: 12

: 4084

: Leaf Region #0

: Leaf Region #1

: Leaf Region #2

QFP TCAM Usage Information

80 Bit Region Information

Name

Number of cells per entry Current 80 bit entries used Current used cell entries Current free cell entries

160 Bit Region Information

Name

Number of cells per entry Current 160 bits entries used Current used cell entries Current free cell entries

320 Bit Region Information

Name
Number of cells per entry
Current 320 bits entries used
Current used cell entries
Current free cell entries

Total TCAM Cell Usage Information

Name Total number of regions Total tcam used cell entries Total tcam free cell entries Threshold status : TCAM #0 on CPP #0 : 3 : 12

: 1048564 —

: below critical limit

Once TCAM starts to become fragmented, these individual counters for region size will start to change.

There are no deny statements in TCAM hardware. It is constructed only with allow rules. Therefore, for every deny statement encountered the search pointer jumps to the next class to find a permit statement. This phenomenon is called deny-jump.

For each deny statement the algorithm builds a list of entries which are derived with the product of deny and the subsequent permit statements from other classes. This increases the number of TCAM entry exponentially which leads to TCAM exhaustion.

This is the overall free TCAM memory counter/

Key Takeaways

- ESP100X and ESP200X for ASR1000 deliver
 - significant crypto performance improvements
 - significant growth for stateful feature scale
- ASR1000 platforms are a combination of multiple systems
 - Independent data plane cores and memory
 - Independent control plane cores and memory
 - · Ingress / egress linecard classification and buffering
 - · Other hardware resources TCAM, hardware QoS scheduling

Understand the problem and know where to look!

Continue your education

cisco / ile

Complete your online session survey

- Please complete your session survey after each session. Your feedback is very important.
- Complete a minimum of 4 session surveys and the Overall Conference survey (starting on Thursday) to receive your Cisco Live t-shirt.
- All surveys can be taken in the Cisco Events Mobile App or by logging in to the Content Catalog on <u>ciscolive.com/emea</u>.

Cisco Live sessions will be available for viewing on demand after the event at <u>ciscolive.com</u>.

Thank you

cisco live!

You make **possible**