

You make possible

Monitoring and Troubleshooting Nexus 9000 (standalone) Switches

Yogesh Ramdoss Principal Engineer, Customer Experience @YogiCisco

BRKDCN-3020

cisco

Barcelona | January 27-31, 2020

Cisco Webex Teams

Questions?

Use Cisco Webex Teams to chat with the speaker after the session

How

- 1 Find this session in the Cisco Events Mobile App
- 2 Click "Join the Discussion" -
- 3 Install Webex Teams or go directly to the team space
- 4) Enter messages/questions in the team space

Agenda

- Introduction
- Monitor and Health-Check
- Troubleshooting Tools
- Troubleshooting Traffic Forwarding
- Best Practices and Recommendations
- Summary and Take-Aways

cisco

Introduction

Switching Architecture Changes Consolidation of Functions

FWD - Forwarding FIRE - Fabric Interface and Replication Engine ASIC CTS - Cisco TrustSec SOC - Switch on Chip

NFE - Network Forwarding Engine Generations of Nexus 9000 ASE - Application Spine Engine SOC - Switch On Chip NFE NFE ASE SOC Leverages merchant Merchant Switch "is" Silicon + Cisco ASIC Silicon the ASIC to enhance services SOC SOC SOC SOC Non-Blocking Leaf and Spine based CLOS Network inside the Switch SOC SOC SOC SOC

cisco / ile

Nexus 9000 Product Family

Focus For This Session

	ASICs	Platforms	
	StrataXGS Trident*	94XX, 9636	
	StrataXGS Tomahawk*	9432C, C950X-FM-S	
	StrataXGS Trident* + Northstar	9396, 93128, 95XX	
	StrataXGS Trident* + Donner	9372, 9332, 93120	This session
	StrataDNX Jericho*	X9600-R/X-9600-RX	is going to
ſ	Tahoe-Sugarbowl	93XX-EX, 97XX-E/EX	discuss
	Tahoe-Lacrosse	92XX, C950X-FM-E	Cisco
	Tahoe-Davos	92160YC	Cloud-Scale
	Rocky-Homewood	F/FX/FXP	ASICs
	Rocky-Bigsky	9364C,C95XX-FM-E2	
	Rocky-Heavenly	FX2	
	Rocky-Sundown	FX3	

cisco ile

* Merchant Silicon from Broadcom

Building Data Center Fabrics with Nexus 9000

Application Centric Infrastructure (ACI) – Turnkey Fabric

cisco ile

Standalone – Programmable Fabric with VXLAN+EVPN Standalone -Programmable IP Network

Standalone – Traditional Data Center Network

DCNM - Data Center Network Management

Just to let you know...

- With wide range of Nexus9000 platforms available in the marketplace, this session is going to focus on models that are with Cloud-Scale ASICs and are at the cuttingedge.
- We will not be discussing hardware architecture in detail, but will provide a quick refresher
- With good number of topics to cover, we are not going to discuss Multicast, QoS or Buffering.
- Please hold on to your questions till end of the section.
- At any point of time during the presentation and after, you can ask your question in *Webex Teams* room.

Just to let you know...

- Focus on Nexus 9000 models with Cloud-scale ASICs
- No deep-dive hardware architecture discussion. Will provide a quick refresher.
- No discussion on Multicast, QoS or Buffering
- Please hold on to your questions till end of the section.
- At any point of time during the presentation and after, you can ask your question in *Webex Teams* room.

Nexus 9000 ... platform of possibilities

Monitor and Health-Check

cisco live!

Agenda

- Introduction
- Monitor and Health-Check
- Troubleshooting Tools
- Troubleshooting Traffic Forwarding
- Best Practices and Recommendations
- Summary and Take-Aways

- Hardware Diagnostics
- On-board Failure Logging
- Device Resource Usage
- Control-Plane Policing
- Hardware Rate-Limiters

cisco Live!

Hardware Diagnostics Configuration and Commands

Diagnostic tests status and testing intervals:

Run "**show diagnostic result** <options>" to find the test results.

On-Board Failure Logging (OBFL) Why we need it and what it does?

- OBFL logs failure data to persistent storage
- Persistent storage: Non-volatile flash memory on the modules. Accessible for future analysis.
- Enabled by default for all features
- As OBFL Flash supports limited numbers of Read-Write operations, choose key set of features for logging.

^{-'ense} Requireq

On-Board Failure Logging (OBFL) Configuration and Status

N93128(config) # hw-module logging onboard ?

<CR>

counter-stats	Enable/Disable	OBFL	counter statistics
cpuhog	Enable/Disable	OBFL	cpu hog events
environmental-history	Enable/Disable	OBFL	environmental history
error-stats	Enable/Disable	OBFL	error statistics
interrupt-stats	Enable/Disable	OBFL	interrupt statistics
module	Enable/Disable	OBFL	information for Module
obfl-logs	Enable/Disable	OBFL	(boot-uptime/device-version/obfl-history)

N93128# show logging onboard status

OBFL Status

Switch OBFL Log:	Enabled
Module: 1 OBFL Log:	Enabled
card-boot-history	Enabled
card-first-power-on	Enabled
<snip></snip>	

cisco ile

On-Board Failure Logging (OBFL) CLI Options

Nearly 20 different options!

N93128# show logging onboard ?

boot-uptime	Boot-uptime
card-boot-history	Show card boot history
card-first-power-on	Show card first power on information
counter-stats	Show OBFL counter statistics
credit-loss	Show OBFL Credit Loss logs
device-version	Device-version
endtime	Show OBFL logs till end time mm/dd/yy-HH:MM:SS
environmental-history	Environmental-history
error-stats	Show OBFL error statistics
exception-log	Exception-log
flow-control	Show OBFL Flow Control log
internal	Show Logging Onboard Internal
interrupt-stats	Interrupt-stats
kernel-trace	Show OBFL Kernel Trace
module	Show OBFL information for Module
obfl-history	Obfl-history
obfl-logs	Show OBFL Tech Support Log.
stack-trace	Stack-trace
starttime	Show OBFL logs from start time mm/dd/yy-HH:MM:SS
status	Status

CISCO Ne!

On-Board Failure Logging (OBFL) Example - OBFL Exception Log

N93128# show logging onboard EXCEPTION-LOG					
Module: 1					
<pre><snip> exception informat Device Id Device Name Device Errorcode Device ID Device Instance Dev Type (HW/SW) ErrNum (devInfo) System Errorcode Error Type PhyPortLayer Port(s) Affected <snip></snip></snip></pre>	<pre>tion exception instance 1 : 49 : Temperature-sensor : 0xc3101203 : 49 (0x31) : 01 (0x01) : 02 (0x02) : 03 (0x03) : 0x4038001e Module recovered from minor temperature alarm : Minor error : :</pre>				
Time	: Sun Oct 20 13:41:51 2019				

cisco (

Device Resource Usage

Checking Usage of Resources

Device Resource Usage Checking Usage of Resources					
	1	Resource	What it gives?		
		Module	Usage of Bootflash, Logflash, and NVRAM		
shov capac	w hardware city <options></options>	Interface	Total Tx/Rx drops (per module) and ports with highest drop count		
	F	orwarding	L2 CAM table resource, ACL resources, IPv4/v6 Unicast Host and Route entries resources, IPv4/v6 Multicast entries resources, QoS resources (aggregate and distributed policers) – per module and per forwarding engine instance		
		Fabric	Fabric channel bandwidth, current ingress and egress traffic rate		
		Power	PSU redundancy mode, total capacity, power reserved (for Sup, fabric modules and fans), and power drawn		
_	EOBC (Ether Band	net Out of Channel)	Total packets forwarded, transmit rate, dropped packets		
cisco	live				

Device Resource Usage Usage - Hardware Forwarding Resource

Command outputs are tailored to highlight key features

N9504# show hardware capacity FORWARDING <snip></snip>					
INSTANCE 0x0: ACL Hardware Resource Uti	lization	n (Mod 1)			
	Used	Free	Percent Utili		
Ingress L2 QOS	2	254	0.78		
Ingress L2 QOS IPv4	0		0.00		
Ingress L2 QOS IPv6	0		0.00		
Ingress L2 QOS MAC	0		0.00		
Ingress L2 QOS ALL	2		0.78		
Ingress L2 QOS OTHER	0		0.00		
Ingress L2 SPAN ACL	0	256	0.00		
Ingress RACL	2	1534	0.13		
Ingress L3/VLAN QOS	24	488	4.68		
Ingress L3/VLAN SPAN ACL	0	256	0.00		
SPAN	0	512	0.00		
Egress RACL 2 1790 0.11					
Feature BFD	3	103	2.83		
<snin></snin>					

csuib>

Both LOU Operands Single LOU Operands LOU L4 src port: LOU L4 dst port: LOU L3 packet len: LOU IP tos: LOU IP dscp: LOU ip precedence: LOU ip TTL: TCP Flags Protocol CAM Mac Etype/Proto CAM L4 op labels, Tcam 0 L4 op labels, Tcam 1 Ingress Dest info table Egress Dest info table

cisco

Control-Plane Policing (CoPP) Things to Check

- Choose either *strict* (default), *moderate*, *lenient* or *dense* policy.
- CoPP is performed per forwarding-engine. Configure rates to make sure the aggregate traffic doesn't overwhelm CPU.
- Monitor drop counters continuously and justify drop counters.
- Remember... CoPP configuration is an on-going process.

Control-Plane Policing (CoPP) Quick Check – Config and Stats

N9504# show copp status

Policy-map attached to the control-plane: copp-system-p-policy-strict (match-any)

```
N9504# show policy-map interface control-plane | include class-map
    class-map copp-system-p-class-l3uc-data (match-any)
    class-map copp-system-p-class-critical (match-any)
    class-map copp-system_p-class-important match-any)
    class-map copp-system-p-class-multicast-router (match-any)
    class-map copp-system-p-class-multicast-host (match-any)
    class-map copp-system-p-class-l3mc-data (match-any)
    class-map copp-system-p-class-normal (match-any)
    class-map copp-system-p-class-ndp (match-any)
   <snip>
    class-map copp-system-p-class-redirect (match-any)
    class-map copp-system-p-class-exception (match-any)
    class-map copp-system-p-class-exception-diag (match-any)
   <snip>
    class-map copp-system-p-class-undesirablev6 (match-any)
    class-map copp-system-p-class-12-default (match-any)
```

Control-Plane Policing (CoPP) Quick Check – Config and Stats (Contd.)

```
N9504# show policy-map interface control-plane
<snip>
  class-map copp-system-p-class-important (match-any)
     match access-group name copp-system-p-acl-hsrp
     match access-group name copp-system-p-acl-vrrp
     match access-group name copp-system-p-acl-hsrp6
     match access-group name copp-system-p-acl-vrrp6
     match access-group name copp-system-p-acl-mac-lldp
     match access-group name copp-system-p-acl-icmp6-msgs
     set cos 6
     police cir 3000 pps , bc 128 packets
     module 1 :
        transmitted 2121674 packets;
       dropped 143189 packets;
                                           Do "clear copp statistics"
<snip>
                                               and check again!
  class-map class-default (match-any)
      set cos 0
     police cir 50 pps , bc 32 packets
     module 1 :
        transmitted 2231318 packets;
        dropped 4239 packets;
```

cisco We!

Hardware Rate-Limiters (HWRL) Things to Check

Things to UNEUX
Rate-limiters prevent redirected-due-to-exception packets from overwhelming
CPU. E.g., ACL Log or Layer3 Glean

Enable/disable or update rates with "hardware ratelimiter ... " config command.

Clear stats with "clear hardware rate-limiter ..." command.

N9504# show hardwar Units for Config: p second for span-egn Allowed, Dropped &	Have a close look at the allowed and dropped stats				
clear counters					
Module: 1					
R-L Class	Config	Allowed	Dropped	Total	
+	++-		-+	-++	
L3 MTU	0	0	0	0	
L3 ttl	500	65	0	65	
L3 glean	100	28874211	9539369	38413580	
L3 mcast loc-grp	3000	0	0	0	
access-list-log	100	0	0	0	
bfd	10000	0	0	0	
exception	50	0	0	0	
span	50	0	0	0	
<snip></snip>					

Monitor and Health Check Summary

- Hardware diagnostic capabilities... bootup, runtime and on-demand. Help to check hardware failure and run-time issues.
- OBFL helps to keep an eye on the systems' events and exceptions. Critical for analysis.
- Monitoring resource usage is critical, and it helps to implement precautionary measures
- Fine-tune CoPP and HWRL to protect control-plane and ensure stability

"show tech-support detail" command captures detailed hardware diagnostics results, OBFL, hardware capacity and usage, CoPP and HWRL statistics. Never underestimate the power of **syslog** (*show logging log*), **interface counters and errors** (*show interface*) or **memory/CPU usage** (show process memory/CPU)

You are going to find valuable things!!

Nexus 9000 ... platform of possibilities

Troubleshooting Tools

Agenda

- Introduction
- Monitor and Health-Check
- Troubleshooting Tools
- Troubleshooting Traffic Forwarding
- Best Practices and Recommendations
- Summary and Take-Aways

- Ethanalyzer
- SPAN to CPU
- Consistency Checkers
- Virtual TAC Assistant
- Port ACL / Router ACL

Ethanalyzer Process and Configuration

- (1) Identify Capture Interface
 - mgmt captures traffic on mgmt0 interface
 - Inband captures traffic sent to and received from the control-plane/CPU
- (2) Configure Filter
 - Display-Filter captures all traffic but displays only the traffic meeting the criteria
 - · Capture-Filter captures only the traffic meeting the criteria
- (3) Define Stop Criteria
 - By default, it stops after capturing 10 frames. Can be changed with **limitcaptured-frames** configuration. 0 means no limit, runs until user issues **cntrl+C**
 - autostop can be used, to stop the capture after specified duration, filesize, or number of files.

CISCO / Ne

- Built-in tool to analyze the traffic sent and received by CPU. Helpful to troubleshoot High CPU or Control-plane issues like HSRP failover or OSPF adjacency flaps.
- Based on tshark code
- Two filtering approaches for configuring a packet capture

Display-Filter Example	Capture-Filter Example
"eth.addr==00:00:0c:07:ac:01"	"ether host 00:00:0c:07:ac:01"
"ip.src==10.1.1.1 && ip.dst==10.1.1.2"	"src host 10.1.1.1 and dst host 10.1.1.2"
"snmp"	"udp port 161"
"ospf"	"ip proto 89"
l se l	

Ethanalyzer Putting It All Together

N9K# ethanalyzer local interface inband display-filter "stp" limit-captured-frames 0 capturering-buffer filesize 200 write bootflash:stp_ring.pcap display autostop files 5

- Captures on the inband interface
- Uses a **display-filter** searching for **"stp"** frames
- Sets limit-captured-frames to zero to allow continuous capturing of frames
- Uses a capture-ring-buffer to create a new file every 200 KB
- Write files to **bootflash:stp_ring.pcap**, adding a timestamp as a prefix
- autostop after 5 files have been created

Real World Example

Slow Download Rate

- Server in VI AN 527
- Downloads/Uploads over the WAN are slow
- Downloads/Uploads on the LAN have no problem
- No incrementing errors on any interface and low average interface utilization

10.5.27.38

cisco / ille

Real World Example Slow Download Rate

Host

172.18.37.71

cisco / ila.

37

Real World Example Slow Download Rate

Root cause:

 Server has a firewall enabled to block ALL ICMP Redirects to avoid poisoning

Fix Options:

- Re-configure the Server's firewall to allow ICMP redirects
- 2. Add a route for WAN subnets to the Server, with Internet Gateway as next-hop
- 3. Configure "no ip redirects" under the SVI VLAN527

Host

172.18.37.71

SPAN to CPU

Introduction and Configuration

Switch Port ANalyzer (SPAN) mirrors the traffic from source ports/VLANs to destination port(s).

monitor session 1

source interface eth1/1

destination interface eth1/6

In SPAN to CPU, the destination port is the CPU in the switch.

monitor session 1

source interface eth1/1

destination interface sup-eth 0

<options>

cisco / Alla

But, how to differentiate the regular control-plane packets to SPAN to CPU packets?

SPAN to CPU

Troubleshooting Packet Loss

SPAN to CPU

Troubleshooting Packet Loss

Captures only the SPAN to CPU packets, not regular packets!!

SPAN to CPU Troubleshooting Packet Loss (contd.)

SPAN to CPU Narrow-scoped Troubleshooting

CISCO

SPAN to CPU VXLAN – Topology and Traffic Flow

SPAN to CPU VXLAN Decode Example

Available in release 7.0(3)I7(4), 9.2(1) and later releases

```
N9200# ethanalyzer local interf inband mirror display-filter icmp limit-cap 0 detail
Frame 1 (148 bytes on wire, 148 bytes captured)
<snip>
   [Protocols in frame: eth:ip:udp:vxlan:eth:ip:icmp:data] <<< frame structure
Ethernet II, Src: 78:0c:f0:a2:2b:df (78:0c:f0:a2:2b:df), Dst: 70:0f:6a:f2:8c:05
(70:0f:6a:f2:8c:05)
   <snip>
   Type: IP (0x0800)
Internet Protocol, Src: 10.1.1.1 (10.1.1.1), Dst: 10.1.1.2 (10.1.1.2) <<< VTEPs
   Version: 4
   Header length: 20 bytes
   <snip>
   Source: 10.1.1.1 (10.1.1.1)
   Destination: 10.1.1.2 (10.1.1.2)
Source port: 22790 (22790)
   Destination port: 4789 (4789)
<snip>
```

SPAN to CPU VXLAN Example (Contd.)

- All SPAN replication is done in the hardware with no impact to CPU
- SPAN packets to CPU are rate-limited, and excess packets are dropped in the inband path. Use *"hardware rate-limiter span ..."* command to change the rate.
- Starting from 7.0(3)I7(1) onwards, SPAN packets truncation is supported only in Nexus 9300-EX/FX/FX2 platforms
- SPAN is not supported for management ports

Consistency Checkers What it does?

state against the hardware state for consistency, Protocol Configurations and report PASSED or FAILED. States N9K# show consistency-checker ? Verify copp programming from software context copp egress-xlate Check PVLAN egress-xlate fex-interfaces Compares software and hardware state of fex interfaces forwarding Display Forwarding Information Software L2 consistency 1.3 L3 consistency 13-interface Compares software and hardware properties of L3 interf Programming link-state Compares software and hardware link state of interfaces Check various memberships / VLANs, Port-Channel membership Verify pacl programming in the hardware pacl Hardware Verify racl programming in the hardware racl Verify spanning tree state in the hardware stp-state Tables Verify vacl programming in the hardware Verify vpc state in the hardware vpc vxlan VxLAN consistency checker

Consistency Checkers compares the software

Consistency Checkers Example – Unicast Route and vPC

Consistency-Checker for an IP address. Same can be used for a prefix.

N9K# show consistency-checker forwarding single-route ipv4 10.127.101.1 prefix 32 vrf L3-Inner Starting consistency check for v4 route 10.127.101.1/32 in vrf L3-Inner Consistency checker passed for 10.127.101.1/32

Consistency-Checker for vPC

N9K# show consistency-checker vpc source-interface port-channel 45
VPC 45 name Po45
Validating vpc 45 member: Ethernet1/1/3
Error vpc 45, is_vpc is not 1 and remote vpc state is Up
VPC Consistency Check Failed

Virtual TAC Assistant

Commands Cascading

What is it?

 It takes output and parameters from one command and pass them on to the next command as inputs and cascade them through the entire sequence of troubleshooting.

How it helps with troubleshooting?

- · speeds up troubleshooting
- avoids missing out commands
- avoids entering wrong commands inputs
- · no need to know the procedure or methodology

Virtual TAC Assistant L2 MAC – Command Options

```
DC2-VTEP# show troubleshoot ?
```

L2 Display L2 information L3 Display L3 information

DC2-VTEP# **show troubleshoot L2** ? mac MAC address

DC2-VTEP# show troubleshoot L2 mac ? E.E.E Address (Option 1) EE-EE-EE-EE-EE Address (Option 2) EE:EE:EE:EE:EE Address (Option 3) EEEE.EEEEE Address (Option 4)

Virtual TAC Assistant

L2& L3 – Command Options

DC2-VTEP# show troubleshoot ? L2 Display L2 information L3 Display L3 information Validates programming of a MAC Address in a given VLAN

DC2-VTEP# **show troubleshoot L3** ? ipv4 Choose IPv4 address ipv6 Choose IPv6 address

DC2-VTEP# show troubleshoot L3 ipv4 172.16.144.254 ?
 src-ip Source IP for routing hash CLI
 vrf Check routes for a specific VRF

DC2-VTEP# show troubleshoot L3 ipv4 172.16.144.254 vrf ?
WORD Vrf name

Pipe command output to filter

Virtual TAC Assistant Example - L3 IPv4

methodical DC2-VTEP# show troubleshoot L3 ipv4 172.16.144.254 vrf tenant-1 CHECKING HARDWARE ASIC TYPE slot 1 quoted "show hardware internal dev-version" <snip> CHECK ROUTE IN PI RIB show ip route 172.16.144.254 vrf tenant-1 <snip> CHECK ROUTE IN PD FIB show forwarding route 172.16.144.254/32 vrf tenant-1 <snip> CHECK HOST ROUTE IN HARDWARE show hardw internal tah L3 v4host | grep 172.16.144.254 <snip> CHECK FOR THE ADJACENCY show hardware internal tah 13 adjacency 0xd0001" <snip> CHECK ROUTE IN SOFTWARE PT sh hardw internal tah 13 trie detail 172.16.144.254/32 table 3" <snip> CHECK FOR THE ROUTE IN E-TABLE show hardware internal tah sdk 13 sw-table e-table | grep 172.16.144.254" <snip> CHECK FOR THE ROUTE IN HASH-TABLE show hardware internal tah sdk 13 sw-table ipv4 hash-table | grep 172.16.144.254" <snip> RUNNING CONSISTENCY CHECKER Consistency checker passed for 172.16.144.254/32

Step-by-step

check

Virtual TAC Assistant

Example - ECMP Hardware Programming Failure Detection

Port ACL / Router ACL Tool and Requirements

- For intermittent packet loss issue specifically in scenarios where the exact packet count can be defined, Router ACL (RACL) and Port ACL (PACL) can be a useful tool
- Requires TCAM allocation for PACL followed by switch reload.

N9K(config-if) # ip port access-group test1 in ERROR: TCAM region is not configured. Please configure TCAM region and retry the command

TCAM space is limited. The choice for what is best for you depends entirely on the specific use-case. By default, all TCAM space is already allocated, so you need to decide where you want to 'steal' TCAM space from in order to allocate elsewhere.

Port ACL / Router ACL

Troubleshooting Packet Loss

Port ACL / Router ACL Troubleshooting Packet Loss (Contd.)

Using a Port-ACL (PACL) to match bridged traffic on an L2 switchport

More Tools

- SPAN / ERSPAN, SPAN-on-Drop
- Embedded Logic Analyzer Module (ELAM)
- Flow Tracer
- VXLAN, DME and KSTACK Consistency Checkers
- Streaming Hardware Telemetry
- Flexible Netflow / sFlow

cisco Li

Tools and Supported Products

Summary

ΤοοΙ	Supported in Nexus 9000 (Broadcom)?	Supported in Nexus 9000 (Tahoe/Rocky)?	Impact
Ethanalyzer	yes	yes	•
SPAN to CPU	yes ¹	yes	\bigcirc
Consistency Checkers	yes ²	yes	•
Virtual TAC Assistant	yes ²	yes	
PACL/RACL ³	yes	yes	•

1 = "dMirror" feature
 2 = Limited capabilities
 3 = TCAM carving needed

cisco ile

Nexus 9000 ... platform of possibilities

Troubleshooting Traffic Forwarding

"It is a capital mistake to theorize before one has data. Insensibly one begins to twist facts to suit theories, instead of theories to suit facts."

Sherlock Holmes (A Scandal in Bohemia)

63 © 2020 Cisco and/or its affiliates. All rights reserved. Cisco Public BRKDCN-3020

Troubleshooting Methodology

- Define the problem, understand the impact, and determine the scope of the problem based on the information gathered. This helps you to make progress towards resolution.
- Perform network-wide assessment. Check SNMP, syslogs, Netflow data, real-time performance/SLA monitoring tools for alerts, unexpected events, threshold violations etc.
- Choose the right tool(s) and troubleshooting procedure(s) to isolate the problem at a granular level and diagnose to achieve a fast resolution.

Agenda

- Introduction
- Monitor and Health-Check
- Troubleshooting Tools
- Troubleshooting Traffic Forwarding
- Best Practices and Recommendations
- Summary and Take-Aways

- Nexus 9000 Hardware Forwarding Refresher
- Path-of-the-Packet Troubleshooting
 - Control-Plane Traffic
 - Data-Plane Traffic

#CLUS

Nexus 9000 Traffic Forwarding SoC and Slice

 SoC has one or more slices, and a slice interconnect if more than one slice

- Slice
 - a self-contained forwarding complex controlling subset of ports on single ASIC
 - Separated into Ingress and Egress functions
 - Ingress of each slice connected to egress of all slices
 - Slice interconnect provides non-blocking any-to-any interconnection between slices

Slice Forwarding Path

Ingress Lookup Pipeline

Flexible Forwarding Tiles

- Provide fungible pool of table entries for lookups
- Number of tiles and number of entries in each tile varies between ASICs
- Variety of functions, including:
 - IPv4/IPv6 unicast longest-prefix match (LPM)
 - IPv4/IPv6 unicast host-route table (HRT)
 - IPv4/IPv6 multicast (*,G) and (S,G)
 - MAC address/adjacency tables
 - ECMP tables

BRKDCN-3020

IP Unicast Forwarding

- Router MAC match triggers L3 lookup
- Hardware performs exact-match on VRF and longest-match on IP Destination Addr
- Lookup result returns either adjacency pointer (index into MAC table), or ECMP pointer
- MAC table has output Bridge Domain (BD), rewrite MAC, and output port "What are the output BD,

VXLAN Forwarding

Encapsulation

- VXLAN and other tunnel encapsulation/ decapsulation performed in single pass
- Encapsulation
 - L2/L3 lookup drives tunnel destination
 - Rewrite block drives outer header fields (tunnel MACs/IPs/VNID, etc.)
- Decapsulation
 - Packet parser determines whether and what type of tunnel packet
 - Forwarding pipeline determines whether tunnel is terminated locally, drives inner lookups

Classification TCAM

- Dedicated TCAM for packet classification
- Capacity varies depending on platform
- Leveraged by variety of features:
 - RACL / VACL / PACL
 - L2/L3 QOS
 - SPAN / SPAN ACL
 - NAT
 - COPP
 - Flow table filter (LS1800FX/ LS3600FX2)

		2
256	256	2
256	256	2
256	256	2
256	256	2
256	256	2
256	256	2
256	256	2
256	256	2
 Ingres	s Slice	 Ir
Egress	s Slice	 E
256	256	2
256	256	2
256	256	2
256	256	2
		_

LSE 4K ingress ACEs / 2K egress ACEs LS1800FX / S6400 / LS3600FX2 5K ingress ACEs / 2K egress ACEs

TCAM Region Resizing

- Default carving allocates 100% of TCAM and enables:
 - Ingress / Egress RACL
 - Ingress QOS
 - SPAN, SPAN ACLs
 - Flow table filter (LS1800FX / LS3600FX2 only)
 - Reserved regions
- Based on features required, user can resize TCAM regions to adjust scale
 - To increase size of a region, some other region must be sized smaller
- Region sizes defined at initialization changing allocation requires system reboot
 - Configure all regions to desired size ("hardware access-list tcam region"), save configuration, and reload

Path of the Packet Control-Plane Traffic - Setup

Nexus 9508 with 97XX modules

N950)8-A#	show mod			
Mod	Ports	Module-Type	Model	Status	
					Modules
2	52	48x10/25G + 4x40/100G Ethernet Module	N9K-X97160YC-EX	ok 🖊	
3	32	32x100G Ethernet Module	N9K-X9732C-EX	ok	
5	36	36x100G Ethernet Module	N9K-X9736C-EX	ok	
22	0	8-slot Fabric Module	N9K-C9508-FM-E	ok	abria Madulaa
23	0	8-slot Fabric Module	N9K-C9508-FM-E	ok	-abric Modules
24	0	8-slot Fabric Module	N9K-C9508-FM-E	ok	
26	0	8-slot Fabric Module	N9K-C9508-FM-E	ok	
27	0	Supervisor Module	N9K-SUP-B	active *	
28	0	Supervisor Module	N9K-SUP-B	ha-standby	7
29	0	System Controller	N9K-SC-A	active	
30	0	System Controller	N9K-SC-A	standby	
		Supervisor Engine	es	System Control	lers

cisco ile

Path of the Packet Control-Plane Traffic: Interface Counters

```
N9508-A# show interface e3/1
Ethernet3/1 is up
admin state is up, Dedicated Interface
<snip>
RX
   0 unicast packets 11 multicast packets 2 broadcast packets
   13 input packets 2294 bytes
   0 jumbo packets 0 storm suppression bytes
   0 runts 0 giants 0 CRC 0 no buffer
   0 input error 0 short frame 0 overrun 0 underrun 0 ignored
   0 watchdog 0 bad etype drop 0 bad proto drop 0 if down drop
   0 input with dribble 0 input discard
   0 Rx pause
 ТΧ
   0 unicast packets 3 multicast packets 0 broadcast packets
   3 output packets 702 bytes
   0 jumbo packets
   0 output error 0 collision 0 deferred 0 late collision
   0 lost carrier 0 no carrier 0 babble 0 output discard
   0 Tx pause
CISCO.
```

Do you remember the slide with a **treasure chest**?

Path of the Packet Control-Plane Traffic: ASIC Counters

N9508-A# show system internal interface ii3/1/1 counters Internal Port Statistics for Slot: ii3/1/1 If Index 0x4a100000

<snip>

Mac Pktflow:

Rx Counters:

<snip>

Tx Counters:

<snip>

Mac Control:

Rx Pause:	$0 \times 0000000000000000000000000000000000$
Ix Pause:	0x0000000000000000000000000000000000000
Reset:	0x00000000000000000/0

Mac Errors:

Undersize:	0x00000000000000000/0
Runt:	0x000000000000000000000000000000000000
Crc:	0x00000000000000000/0
Input Errors:	0x000000000000001/1
< continued >	

<...continued...>

In Discard: Giants: Bad Proto: Collision: No Carrier:

0x0000000000000000/0 0x000000000000001/1 0x0000000000000000/0 0x0000000000000000/0 0x0000000000000000/0

cisco / ille

Control-Plane Traffic: ASIC Counters (for front-panel ports)

N9508-A# sho Important Co	ow hardware inte ounters/Drops	ernal interface asic c	counters mod 3		
Interface Dr	rop Reasons for	the Interface, See be	low output for detail if any		
9 5 Eth3/1 . Eth3/2 . Eth3/3 . Eth3/4 . <snip> Eth3/32 .</snip>	9 9 9 9 9 9 9 8 8 5 4 3 2 1 0 9 8 .	8 8 8 8 8 8 8 8 8 7 7	7 7 7 7 7 7 7 6 6 6 6 6 6 6 6 6	0 1 . . .	
Drop Conditi	ions 		Indicates traffic dropped because of ACL!!		
67 : TAHOE Ingress DROP_ACL_DROP					
Do "clear hardware internal interface-all asic counters mod <mod#>" to clear the conditions</mod#>					

Path of the Packet Tahoe ASIC Counters

#	Description		#	Description
1	DROP_PARSE_ERR		26	DROP_MC_GIPO_MISS
2	DROP_EOF_ERR		27	DROP_UC_HIT_NO_PATH
3	DROP_OUTER_IDS_G0		28	DROP_UNUSED
4	DROP_OUTER_IDS_G1		29	DROP_AC_SUP_DROP
5	DROP_OUTER_IDS_G2		30	DROP_AC_POL_DROP
6	DROP_OUTER_IDS_G3		31	DROP_AC_STORM_POL_DROP
7	DROP_OUTER_IDS_G4		32	DROP_FAST_CONV_LOOP_PREVENT
8	DROP_OUTER_IDS_G5		33	DROP_PP_BOUNCE_MYTEP_MISS
9	DROP_OUTER_IDS_G6		34	DROP_VLAN_MBR_INPUT
10	DROP_OUTER_IDS_G7		35	DROP_IEOR_PP_RETURN_PC_2_HG2_MISS
11	DROP_OUTER_XLATE_MISS		36	DROP_IEOR_UPLINK_UC_SAME_IF
12	DROP_INFRA_ENCAP_SRC_TEP_MISS		37	DROP_IEOR_SPINE_PROXY_PC_2_HG2_MISS
13	DROP_INFRA_ENCAP_TYPE_MISMATCH		38	DROP_VIF_MISS
14	DROP_UC_TENANT_MYTEP_ROUTE_MISS		39	DROP_UNEXPECTED_VFT
15	DROP_TENANT_MYTEP_BRIDGE_MISS		40	DROP_MISSING_VNTAG
16	DROP_ARP_ND_UCAST_MISS		41	DROP_VLAN_XLATE_MISS
17	DROP_QIQ_EXPECT_2_QTAGS		42	DROP_RBID_FTAG_MISS
18	DROP_MC_DVIF_MISS		43	DROP_IP_MTU_CHECK_FAILURE
19	DROP_SHARD_OVERRIDE_VLAN_XLATE_MISS		44	DROP_UC_RPF_FAILURE
20	DROP_FCF_CHECK_FAILED		45	DROP_MC_RPF_FAILURE
21	DROP_TTL_EXPIRED		46	DROP_L3_BINDING_FAILURE
22	DROP_SECURITY_GROUP_DENY		47	DROP_IP_UNICAST_FIB_MISS
23	DROP_LOOPBACK_OUTER_HEADER_MISMATCH		48	DROP_FIB_SA
24	DROP_OVERLAYL2_OUTER_HEADER_MISMATCH		49	DROP_FIB_DA
25	DROP_MC_IIC]	50	DROP_NSH_NOT_ALLOWED

cisco ile

Tahoe ASIC Counters

# Description	# Description
51 DROP_SRC_VLAN_MBR	74 DROP_INNER_IDS_G2
52 DROP_NSH_SRC_SW_CHK_FAILED	75 DROP_INNER_IDS_G3
53 DROP_L2MP_IIC_FAILED	76 DROP_INNER_IDS_G4
54 DROP_L2MP_ON_CE_BD	77 DROP_INNER_IDS_G5
55 DROP_L2MP_ENCAP_FROM_EDGE	78 DROP_INNER_IDS_G6
56 DROP_L2MP_NOENCAP_FROM_CORE	79 DROP_INNER_IDS_G7
57 DROP_OUTER_TTL_EXPIRED	80 DROP_INFRA_ENCAP_SRC_TEP_DROP
58 DROP INCORRECT VNTAG TYPE	81 DROP SPLIT HORIZON CHECK
59 DROP_L2MP_FTAG_COMP_MISS	82 DROP_MC_FIB_MISS
60 DROP_IPV6_UC_LINK_LOCAL_CROSS_BD	83 DROP_MC_L2_MISS
61 DROP_IPV6_MC_SA_LOCAL_DA_GLOBAL_SVI	84 DROP_UC_DF_CHECK_FAILURE
62 DROP_IPV6_MC_SA_LOCAL_DA_GLOBAL_L3IF	85 DROP_UC_PC_CFG_TABLE_DROP
63 DROP_ROUTING_DISABLED	86 DROP_ILLEGAL_EXPL_NULL
64 DROP_FC_LOOKUP_MISS	87 DROP_MPLS_LOOKUP_MISS
65 DROP_NO_SGT_FROM_CORE	88 DROP_OUTER_CBL_CHECK
66 DROP_IP_SELF_FWD_FAILURE	89 DROP_NULL_SHARD_WITH_E_BIT_SET
67 DROP_ACL_DROP	90 DROP_LB_DROP
68 DROP_SMAC_MISS	91 DROP_NAT_FRAGMENT
69 DROP_SECURE_MAC_MOVE	92 DROP_ILLEGAL_DCE_PKT
70 DROP_NON_SECURE_MAC	93 DROP_DCI_VNID_XLATE_MISS
71 DROP_L2_BINDING_FAILURE	94 DROP_DCI_SCLASS_XLATE_MISS
72 DROP_INNER_IDS_G0	95 DROP_DCI_2ND_UC_TRANSIT
73 DROP_INNER_IDS_G1	

cisco in

Control-Plane Traffic: FM and Linecards Connectivity

Control-Plane Traffic: Linecards Drops (on HiGig links to Fabric Modules)

N9508-A# s Important	show h Count	ard. ers/	ware /Drop	int o ps	erna	lfa	bri	cin	ntei	rfa	ce	asi	.c c	eoun	ter	s I	mod	3	C	mod onne	ule or cted f	n the ii to fabr	iterfa	ace odule
Interface	Drop	Reas	 sons 	for	 the	 Int 		ace,	 , S€	ee]	 oel 	 ow 	out	 put	 fo	or (deta 	 ail 	 if 	any				
	9 9 5 4	9 9 3 2	9 9 1 0	8 8 9 8	8 8 7 6	8 8 5 4	8 3	8 8 2 1	8 ⁻ 0 9	7 7	7 7	7 7 6 5	' 7 5 4	7 7 3 2	' 7 2 1	7 0	6 6 9 8	6 7	6 6 6 5	6 6 4 3		0 0 0	0 0 3 2	0 1
iEth1		• •	• • • •	• •					· · · · · · · · · · · · · · · · · · ·	• •	• •		.					•						
iEth3		• •	• • • •						• ·	• •	• •							• •						
iEth4 <snip></snip>		• •						
iEth32							
Drop Conditions																								

cisco i

Good news!! No drop in the

Path of the Packet Control-Plane Traffic: Inband Counters

N9508-A#	show hardware internal cpu-mac inband counters
eth2	Link encap:Ethernet HWaddr 00:00:00:01:1b:01
	BROADCAST MULTICAST MTU:9400 Metric:1
	RX packets:0 errors:0 dropped:0 overruns:0 frame:0
	TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
	collisions:0 txqueuelen:1000
	RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
eth3	Link encap:Ethernet HWaddr 00:00:00:01:1b:01
	UP BROADCAST RUNNING MULTICAST MTU:9400 Metric:1
	RX packets:8484226 errors:0 dropped:0 overruns:0 frame:0
	TX packets:4523271 errors:0 dropped:0 overruns:0 carrier:0
	collisions:0 txqueuelen:1000
	RX bytes:860671333 (820.8 MiB) TX bytes:493276319 (470.4
ps-inb	Link encap:Ethernet HWaddr 00:00:00:01:1b:01
	UP BROADCAST RUNNING MULTICAST MTU:9400 Metric:1
	RX packets:14327 errors:0 dropped:0 overruns:0 frame:0
	TX packets:14312 errors:0 dropped:0 overruns:0 carrier:0
	collisions:0 txqueuelen:1000
	RX bytes:38890552 (37.0 MiB) TX bytes:37871460 (36.1 MiB)

SC-A

FM1

MiB)

cisco ile

4

Path of the Packet Control-Plane Traffic: Inband Statistics

N9508-A# show hardware	internal cpu-mac	inband stats
<snip></snip>		
eth3 stats:		
RMON counters	Rx	Tx
	++	
total packets	8406058	4481386
<snip></snip>		
65-127 bytes packets	8391840	44'/0'/48
<snip></snip>		
broadcast packets	15	561531
multicast packets	0	0
<snip></snip>		
Error counters		
	+	
CRC errors		
Alignment errors		
Symbol errors		
Sequence errors	0	Good health-che
RX errors	· · · · · · · · · 0	Set a baselinel
< continued>		

< continued>			
Missed packets (FIFO overflow)	0		
Single collisions	0		
Excessive collisions	0		
Multiple collisions	0		
Late collisions	0		
Collisions	0		
Defers	0		
Tx no CRS	0		
Carrier extension errors	0		
Rx length errors	0		
FC Rx unsupported	0		
Rx no buffers	0		
Rx undersize	0		
Rx fragments	0		
Rx oversize	0		
Rx jabbers	0		
Rx management packets dropped	0		
Tx TCP segmentation context	0		
Tx TCP segmentation context fail	0		
Rate statistics			
+			
Rx packet rate (current/peak) 16	50 /	1254	l pps
Tx packet rate (current/peak) 11	12 /	889	pps
<snip></snip>			

cisco live

Path of the Packet Data-Plane: L3 Flow

Troubleshooting communication failure for traffic flowing through Nexus 9300

Slice 1

Path of the Packet Data-Plane: L3 Flow – Check SW/HW FIB

Check Forwarding Information Base (FIB) in Software

Data-Plane: L3 Flow – Adjacency Programmed in ASIC

Data-Plane: L3 Flow – Adjacency Programmed in ASIC

Entry in Tahoe-Sugarbowl Adjacency Table

Adjacency Entry programmed in the Tahoe-Sugarbowl ASIC

module-1# debug hardware internal sug dump asic 0 slice 0 fp 13 table
0:tah_sug_fpx_fptile 0x4 field-per-line | grep 12_entry_mac
tile_entry_12_entry_mac_entry_mackey_vld=0x00000001
tile_entry_12_entry_mac_entry_mackey_fid_type=0x00000001
tile_entry_12_entry_mac_entry_mackey_fid=0x00001008
tile_entry_12_entry_mac_entry_mackey_fid=0x00001008
tile_entry_12_entry_mac_entry_entry_type=0x0000000
tile_entry_12_entry_mac_entry_intf=0x0000001
tile_entry_12_entry_mac_entry_intf=0x0000001
tile_entry_12_entry_mac_entry_intf=0x0000001
tile_entry_12_entry_mac_entry_intf=0x0000001
tile_entry_12_entry_mac_entry_intf=0x0000001
tile_entry_12_entry_mac_entry_intf=0x0000001
tile_entry_12_entry_mac_entry_intf=0x0000002

Path of the Packet Data-Plane: L3 Flow

Troubleshooting communication failure for an L3 Flow

What we just did?

- Yverified Routing and Adjacency Tables in the Software (steps 1 and 4)
- Verified Routing and Adjacency Tables in the ASIC (steps 2 and 5)
- $rac{M}{2}$ Verified Routing and Adjacency entries programmed in the ASIC (steps 3 and 6)

Do you remember Virtual TAC Assistant and its benefits?

Best Practices and Recommendations

Agenda

- Introduction
- Monitor and Health-Check
- Troubleshooting Tools
- Troubleshooting Traffic Forwarding
- Best Practices and Recommendations
- Summary and Take-Aways

Based on true data!!

cisco Live!

Customer-reported Problems Trends

cisco / ile

Best Practices and Recommendations Layer 1 and Transceivers

 Connect the cable/media at both ends, insert the transceivers completely and through following commands verify speed, duplex, capabilities, supported modes and DOM values.

show interface eth x/y transceiver details

show interface eth x/y capabilities

show interface brief - check for the interface tuple display and others

show interface eth x/y status

- Enable auto-negotiation at both ends. Yes, we need it!
- · Check transparent device or circuit in the middle, if any
- Have you checked Transceiver compatibility? Review Transceiver Compatibility Matrix at https://tmgmatrix.cisco.com/
- Internal event-history commands can be helpful to determine which device have initiated link-down first.

Best Practices and Recommendations Redundancy and High-Availability

- Do you have port-channel members distributed?
 - Have peer-link, peer-keepalive, vPC members distributed across modules and chassis
- Are you taking advantage of...?
 - vPC peer-gateway to avoid traffic looping over peer-link, and for optimized forwarding
 - vPC peer-switch to build single L2 logical domain from spanning-tree perspective
 - vPC L3 peer-router letting routing adjacency build on vPC VLANs
 - vPC auto-recovery to avoid dual-active condition (on by default)
- Are you taking advantage of...?
 - Graceful Insertion and Removal (GIR)
- Do you have enough room to handle transient bursty traffic?
- Do you have enough resources free for new feature(s)? Refer latest Scalability Guide

Best Practices and Recommendations System Management – Choose right NX-OS version

<u>Nexus 9000</u> <u>Recommended Software</u> bulletin at Cisco.com

General Recommendation for New and Existing Deployments:

Platform	Recommended Release					
Nexus 9000	7.0(3)17(7)					

Earlier Recommendations and Releases:

Туре	Release Number						
Current Long-lived Release	7.0(3)I7(x)						
Upcoming Long-lived Release	9.3(x)*						
Previous Long-lived Release and Recommended Software	7.0(3)I4(x) / 7.0(3)I4(8b)						
Short-lived Releases	7.0(3)I1(x), 7.0(3)I3(x), 7.0(3)I5(x), 7.0(3)I6(x), and 9.2(x)*						

* If 9.2(x) or 9.3(x) is needed to deploy new hardware or features, use the latest version available on CCO

Summary & Take-Aways

cisco live!

Summary

What you need to do?	How its going to help you?
monitor health and resource usage	proactively identify bottlenecks and hotspots
get familiar with built-in tools	attain better visibility and localize issues
know path-of-the-packet in a device and relevant troubleshooting commands	get data before theorize and reduce downtime
implement best practices	achieve higher network availability
Higher gate density and bandwidth achievements are transforming hardware	

Aligher gate density and bandwidth achievements are transforming hardware architecture and functions consolidation. Nexus 9000 is at the core of these transformation, and flexible to fit datacenter design of your choice. Nexus 9000 is the platform of possibilities!!

Nexus 9000 have <u>RICH SET OF CLIs</u>, <u>FEATURES</u> and <u>TOOLS</u> that are developed keeping all of you in mind.

Closely monitoring devices' health, and knowing troubleshooting techniques significantly reduce network downtime

Wealth of knowledge shared in this session <u>ENABLES AND EMPOWERS EACH ONE OF YOU</u> to achieve the goals of your organization.

References and Useful Links

- Nexus 9000 Configuration Guide
- <u>Cisco Nexus 9000 Series NX-OS Troubleshooting Guide</u>
- Nexus 9000 Scalability Guide NX-OS version 9.3(3)
- <u>Transceiver Compatability Matrix</u>
- Nexus 9000 Recommended Software Bulletin
- Nexus 9000 Programmability Guide
- Open NX-OS Programmability User Guide
- <u>Cisco Nexus 3000/9000 NX-API REST SDK User Guide and API Reference</u>
- Nexus 3000/9000 Series Telemetry Sources
- Nexus 9000 GitHub Repository

Complete your online session survey

- Please complete your session survey after each session. Your feedback is very important.
- Complete a minimum of 4 session surveys and the Overall Conference survey (starting on Thursday) to receive your Cisco Live t-shirt.
- All surveys can be taken in the Cisco Events Mobile App or by logging in to the Content Catalog on <u>ciscolive.com/emea</u>.

Cisco Live sessions will be available for viewing on demand after the event at <u>ciscolive.com</u>.

Continue your education

cisco / ile

Thank you

cisco live!

You make **possible**