

You make possible

Introduction to IPv6:

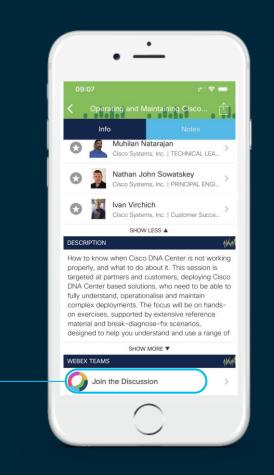
Connecting to IPv6 access networks

Nicole Wajer, Tim Martin

TECRST-1991

cisco

Barcelona | January 27-31, 2020


Cisco Webex Teams

Questions?

Use Cisco Webex Teams to chat with the speaker after the session

How

- 1 Find this session in the Cisco Events Mobile App
- 2 Click "Join the Discussion" -
- 3 Install Webex Teams or go directly to the team space
- 4) Enter messages/questions in the team space

Agenda

- IPv6 the Protocol
- IPv6 Address Planning
- IPv6 Access Layer Design
- Conclusion

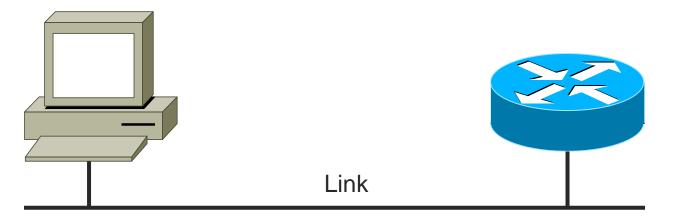
cisco ile

ıılıılıı cısco

IPv6: The Protocol

Tim Martin

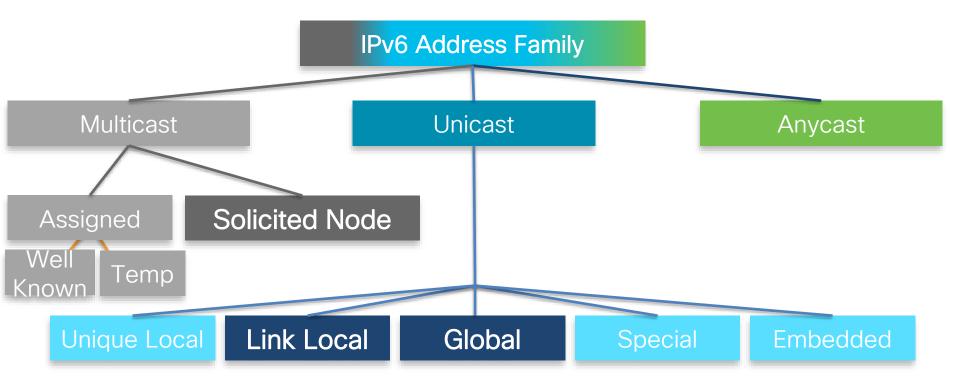
TECRST-1991



Barcelona | January 27-31, 2020

IPv6 Node Types

- Node: Any device that implements an IPv6 protocol stack
- Host: A device with one or more interfaces participating in IPv6 network
- Router: A device that forwards packets and provides provisioning services

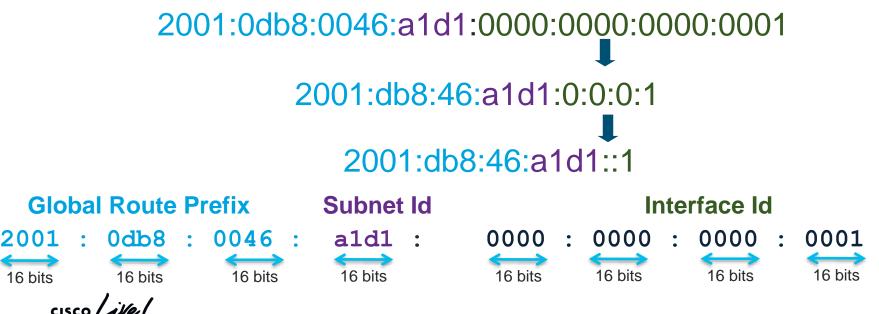


Address's & Headers

IPv6 Addressing

*IPv6 does not use broadcast addressing

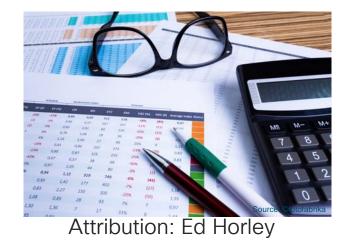
cisco ile


Hexadecimal Is Really Not That Difficult

- Widely used in computing and programming
 - Hex is a base 16 numerical system
 - Typically expressed by 0x, i.e. 0x34
- Every nibble is a Hex character
 - 4 bits have 16 combinations
 - Easier than high school algebra
- 100s | 10's | 1's 256's |16's | 1's

Binary	Hex	Decimal
0000	о	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	8
1001	9	9
1010	А	10
1011	в	11
1100	С	12
1101	D	13
1110	E	14
1111	F	15

IPv6 Address Format


- IPv6 addresses are 128 bits long (32 hex characters)
 - 8 groups (words, quads) of 16 bits separated by (:)
 - RFC5952 lower case, leading zeros, zero compression

Explaining BIG Numbers With Math

- The standard LAN size has been set at a /64
 - 18,446,744,073,709,600,000 IPv6 addresses
- Let's attempt to exhaust all of the available addresses
 - We will allocate 10,000,000 addresses per second
 - Hint: there are 31,536,000 seconds per year
 - 10,000,000 x 31,536,000 = 315,360,000,000,000

18,446,744,073,709,600,000 / 315,360,000,000,000 = 58,494 years

IPv6 Unicast Address Types

Link-Local – Non routable exists on a layer 2 domain (fe80::/10) fe80:0000:0000:0000:xxxx:xxxx:xxxx:xxxx

Unique-Local - Routable within administrative domain (fc00::/7) fc00:~~~?:~~~:****:xxxx:xxxx:xxxx:xxxx fd00:~~~?:****:xxxx:xxxx:xxxx:xxxx

Global – Routable across the Internet (2000::/3) 2000:****:****:****:xxxx:xxxx:xxxx:xxxx 3fff:****:****:****:xxxx:xxx:xxxx:xxxx

IPv6 over Ethernet

- IPv6 has a specific Ether type id
- IPv6 relies heavily on Multicast

DestinationSourceEthernetEthernetAddressAddre	et 0x0800	IPv4 Header and Payload
---	-----------	-------------------------

DestinationSourceEthernetEthernetAddressAddress	0x86DD	IPv6 Header and Payload
---	--------	-------------------------

33 33 XX XX XX XX

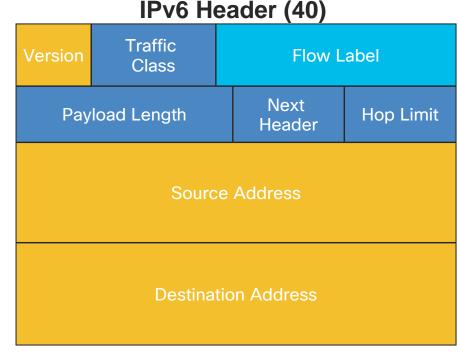
0011 00UG

0 = Universal/unique

1 = Local/not unique

cisco /

I/G bit = Multicast/Broadcast
U/L bit = Universal/Local


IPv4 and IPv6 Header Comparison

IPv4 Header (20-60)

Version	IHL	Type of Service	Total Length			
ld	entifi	cation	Flags Offset			
Time to L	₋ive	Protocol	Header Checksum			
	Source Address					
Destination Address						
		Options		Padding		

- Length was variable
- Fields in green are removed
- Options appear in extension headers
- Upper layer checksums use Pseudo Header format: SRC/DST + Next Header

cisco / ille

Extension Headers (~ Layer 3.5)

- EH are daisy chained, processed in order
- · Length is variable, end on 64-bit boundary
- EHs have a Next Header field
- All EHs must be in the initial fragment

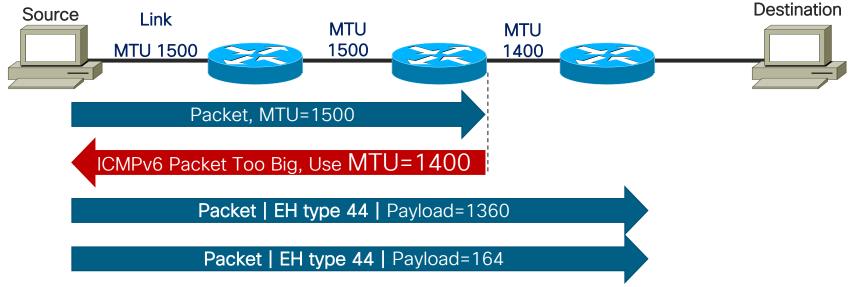
IPv6 Header	Transport Header	Data		
IPv6 Header	Extension Header	Transport Header	Data	
Пеацеі	Tleader	Tieduei		
IPv6	HBH EH	AH EH	Transport	Data
NH = 0	NH = 51	NH = 6	Header	Data

Extension Header	Туре
Hop-by-Hop Options	0
Destination Options	60
Routing Header	43
Fragment Header	44
Authentication Header	51
ESP Header	50
Destination Options	60
Mobility Header	135
Experimental	253,254
No Next Header	59

ICMPv6 Messages

- Neighbor or router discovery (133-137)
- Multicast Listener Discovery (130-132, 143)
- Diagnostics using Ping, Traceroute (128, 129)
- Destination Unreachable(1)
- Packet Too Big (2)
- Time Exceeded (3)
- Parameter Problem (4)

TypeCodeChecksumData


• Type – (0–127) = Error messages, 128–255 Informational messages

IPv6 NH = 58

- Code More granularity within the type
- Checksum Computed over the entire ICMPv6 & pseudo header
- Data Contents of "offending", filled to 1280B (error) or specific message format (info)

Path MTU Discovery

Next Header	Reserved	Fragment Offset	Res M		
Identification					

cisco ile

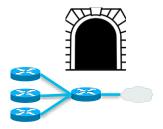
IPv6 Multicast Address (RFC 4291)

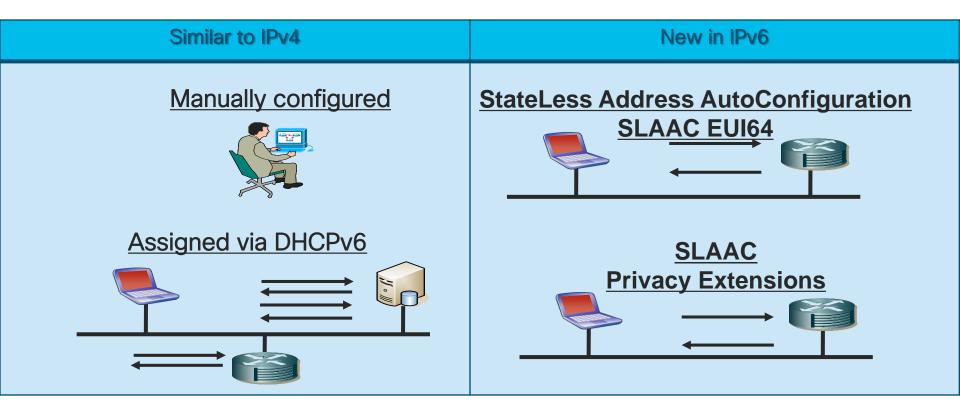
- Prefix ff00::/8
- Changes based on flag settings
 - Typically the last 32 bits of host's unicast address

8-bits		4-bits	4-bits	S	112		-bits	
1111 111	1	0 R P T	Scop	e		Variable	e format	
Flags					Scope			
Ο	Res	Reserved			1	Node	Unicast:	
R = 0	No	No embedded RP Embedded RP			2	Link	2001:0db8::426:c001	
R = 1	-				3	Realm		
P = 0	\//itk	Without Prefix			4	Admin	Multicast:	
P = 1		Address based on Prefix			5	Site	ff0e::426:c001	
T = 0	Well Known Address Temporary address				8	Organization		
T = 1					е	Global		

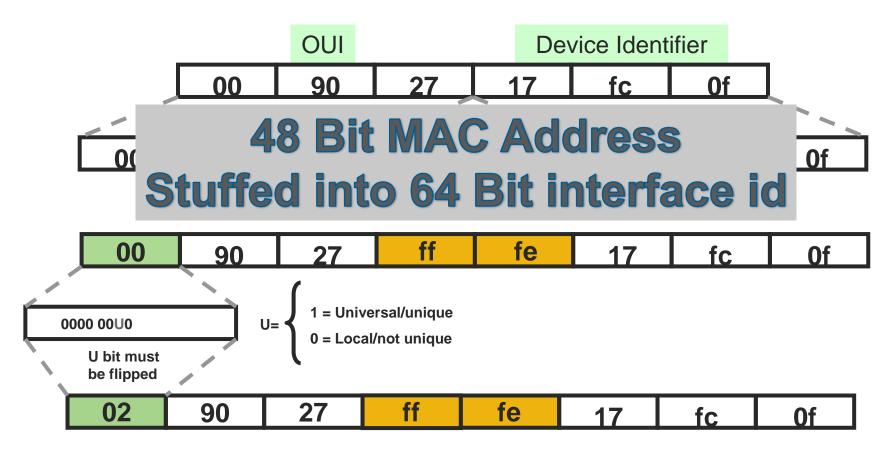
Special Use Addresses (RFC 5156)

- Localhost
 - 0:0:0:0:0:0:1=> ::1
- Unspecified address
 - 0:0:0:0:0:0:0:0=> 0::0 => :: => ::/128
- Documentation Prefix
 - 2001:0db8::/32
- Discard Prefix
 - 0100::/64
- 6to4 Automatic Tunneling
 - 2002::/16
- Default Route
 - ::/0


cisco /



Interface ID's


IPv6 Interface id Assignment

*Secure Neighbor Discovery SeND

cisco / ile/

Extended Unique Identifier (EUI64)

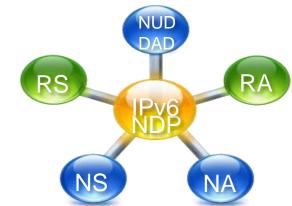
IPv6 Privacy Extensions (RFC 4941)

- Generated on unique 802 using MD5, then stored for next iteration
- Enabled by default in Windows, Android, iOS, Mac OS/X, Linux
- Temporary or Ephemeral addresses for client application (web browser)
- RFC 7217
- Generate IID's that are Stable/Constant for Each Network Interface
- IID's Change As Hosts Move From One Network to Another

	/:	32 /4	8 /6	4 Randomly generated /64
2001	db8	4646	1234	ed34:fc01:93d2:630c

DHCPv6

- Source fe80::1234, Destination ff02::1:2
- Client UDP 546, Server UDP 547
- DUID Different from v4, used to identify clients
- Original Multicast encapsulated in unicast (relay)
- *ipv6 dhcp relay destination* 2001:db8::feed:1


Link Operations

Neighbor Discovery Protocol - (NDP)

- Should use Link Local (fe80::/64) as its source
- Hop Limit must be set to 255
 - Generalized TTL Security Mechanism
- Neighbor discovery messages
 - Router solicitation (ICMPv6 type 133)
 - Router advertisement (ICMPv6 type 134)
 - Neighbor solicitation (ICMPv6 type 135)
 - Neighbor advertisement (ICMPv6 type 136)
 - Redirect (ICMPv6 type 137)

IPv4	IPv6
ARP Request	Neighbor Solicitation
ARP Reply	Neighbor Advertisement
Broadcast	Solicited Node Multicast

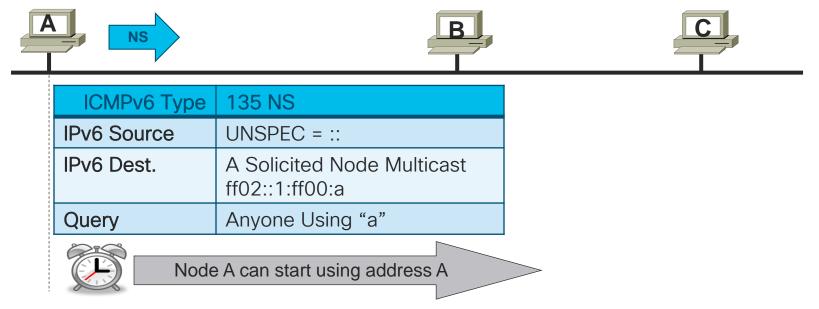
Solicited Node Multicast

- Required & special form of multicast used for neighbor resolution
- Every Unicast address must
 - Create corresponding solicited node multicast (ff02::1:ff00:0/104)
- Any Layer 3 multicast must
 - Map to corresponding Layer 2 multicast (33-33-xx-xx-xx)

IPv6 Source	fe80::04cb:57ff:fe3c:deca
IPv6 Destination	ff02::1:ff3c:deca
Ethernet Destination	33-33-FF- 3C-DE-CA
Ethernet Source	02-CB-57- 3C-DE-CA

Solicited Node Multicast Example

```
R1#sh ipv6 int e0
Ethernet0 is up, line protocol is up
  IPv6 is enabled, link-local address is FE80::200:CFF:FE3A:8B18
  Global unicast address(es):
    2001:DB8:46:1234::1 subnet is 2001:DB8:46:1234::/64
  Joined group address(es):
    FF02::1
    FF02::2
    FF02::1:FF00:1
                                      — Solicited-Node Multicast Address*
    FF02::1:FF3A:8B18 ←
 MTU is 1500 bytes
  ICMP error messages limited to one every 100 milliseconds
  TCMP redirects are enabled
  ND DAD is enabled, number of DAD attempts: 1
  ND reachable time is 30000 milliseconds
  ND router advertisements are sent every 200 seconds
*If EUI format is used then the 1rst solicited node mcast addr is used for both the LL & GU
```


Neighbor Solicitation & Advertisement

- Node A needs to resolve node B's link address, Map's L3 to L2
- Multicast for resolution (new), Unicast for reachability (cache)
- Node B will add node A to its neighbor cache during this process w/o sending NS

	A		B S
ICMPv6 Type	135 NS	ICMPv6 Type	136 NA
IPv6 Source	fe80::a	IPv6 Source	fe80::b
IPv6 Destination	ff 02::1:ff 00:b	IPv6 Destination	fe80::a
Hop Limit	255	Target Address	2001:db8:46:46::b
Target Address	2001:db8:46:46::b	Option 2 TLLA	B's Link Layer Address
Query	What is B link layer address?	*Flags	R = Router
Opt. 1 SLLA	A's Link Layer Address		S = Response to Solicitation O = Override cache information
,			

Duplicate Address Detection (DAD)

- Unspecified Source (::), No Option 1 SLLA
- Probing the Local Link to Verify Address Uniqueness
- Microsoft uses a variant known as Optimistic DAD

Router Solicitation and Advertisement

- Router solicitations (RS) are sent by nodes at boot up
- Routers forward packets as well as provide provisioning services

A	RS	RA	
RS		RA	
ICMP Type	133	ICMP Type	134
IPv6 Source	fe80::a	IPv6 Source	fe80::1
IPv6 Destination	ff02::2	IPv6 Destination	fe80::a
Opt. 1 SLLA	SRC Link Layer Address	Data	Options, subnet prefix, lifetime, autoconfig flag

Router Advertisement

- M-Flag Stateful DHCPv6 to acquire IPv6 address
- O-Flag Stateless DHCPv6 in addition to SLAAC
- Preference Bits Low, Med, High
- Router Lifetime Must be >0 for Default
- Options Prefix Information, Length, Flags
- L bit Only way a host get a On Link Prefix
- A bit Set to 0 for DHCP to work properly

Type: 134 (RA) Code: 0 Checksum: 0xff78 [correct] Cur hop limit: 64 ∞ Flags: 0x84 1.... = Managed (M flag) .0.. = Not other (O flag) ..0. = Not Home (H flag) $\dots 0 1 \dots =$ Router pref: High Router lifetime: (s)1800 Reachable time: (ms) 3600000 Retrans timer: (ms) 1000 ICMPv6 Option 3 (Prefix Info) **Prefix length: 64** ∞ Flags: 0x84 1.... = On link (L Bit) 1... = No Auto (A Bit) Prefix: 2001:0db8:4646:1234::/64

Host OS's

Router Advertisement Sent

```
Type: Router Advertisement (134)
    Code: 0
    Checksum: 0x1a4d [correct]
    Cur hop limit: 64

→ Flags: 0x00

      0... = Managed address configuration: Not set
      .0.. .... = Other configuration: Not set
      ..0. .... = Home Agent: Not set
      \dots 0 0 \dots = Prf (Default Router Preference): Medium (0)
      \dots .0.. = Proxv: Not set
      .... ..0. = Reserved: 0
    Router lifetime (s): 180
    Reachable time (ms): 0
    Retrans timer (ms): 0
  ICMPv6 Option (Recursive DNS Server 2001:558:feed::1)
  ✓ ICMPv6 Option (Prefix information :
                                        2001:db8:46:1::/64
      Type: Prefix information (3)
      Length: 4 (32 bytes)
      Prefix Length: 64
    ▷ Flag: 0xc0
      Valid Lifetime: 300
      Preferred Lifetime: 300
      Reserved
              2001:db8:46:1::
                                 (2001:db8:46:1::)
      Prefix:
  ICMPv6 Option (Source link-layer address : 00:50:f1:00:00:00)
```

OSX Host Address Acquisition

- Effect of the Router Advertisement from previous slide
 - Preferred & valid lifetimes
 - DNS server information

tmartin# ifconfig -L

en0: flags=8863<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST> mtu 1500 ether b8:e8:56:19:f3:8a inet6 fe80::bae8:5642:ce19:f38a%en0 prefixlen 64 scopeid 0x4 inet6 2001:db8:46:1:1809:5618:fa19:f38a prefixlen 64 autocont pltime 267 vltime 267 inet6 2001:db8:46:1:883e:b6a2:863:e31b prefixlen 64 autoconf temp pltime 267 vltime 267 nd6 options=201<PERFORMNUD ,DAD>

DNS Servers:	Search Domains:
75.75.75.75	hsd1.co.comcast.net
75,75 76 76	
2001:558:feed::1	100 C

Linux, Ubuntu IPv6 Basics

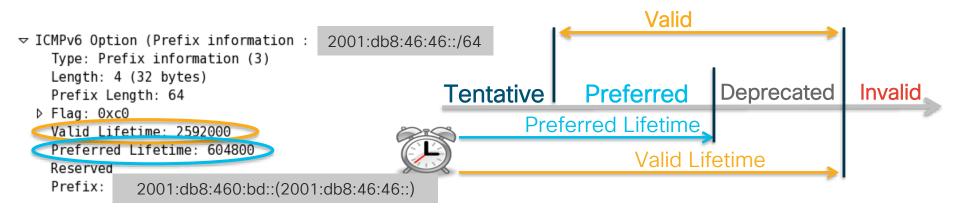
- Check an IPv6 address
 - ip -6 addr show dev eth0
- Check an IPv6 address
 - ifconfig eth0 | grep "inet6 addr:"
- Check for IPv6 neighbors
 - ip -6 neigh show
- Ping6 2001:db8:46:1::c001:d00d
 - Windows:> ping fe80::250:e1ff:fec3:1%17
 - Unix\$ ping6 fe80::250:e1ff:fec3:1%en0

E ipv6@localhost:~	
File Edit View Search Terminal Help	
<pre>[ipv6@localhost ~]\$ ip -6 addr show dev eth0 2: eth0: <broadcast,multicast,up,lower_up> mtu 1500 qlen 1000 inet6 2001:470:1f05:9a4:20c:29ff:fe75:495/64 scope global dynamic valid_lft 7194sec preferred_lft 594sec inet6 fe80::20c:29ff:fe75:495/64 scope link valid_lft forever preferred_lft forever</broadcast,multicast,up,lower_up></pre>	
[ipv6@localhost ~]\$ cat /proc/net/if_inet6 000000000000000000000000000000000000	
<pre>[ipv6@localhost ~]\$ ifconfig eth0 grep "inet6 addr:" inet6 addr: 2001:470:1100:9a4:200:2911:1e75:495/64 Scope:Glob inet6 addr: fe80::200:29ff:fe75:495/64 Scope:Link [ipv6@localhost ~]\$ ip -6 neigh show fe80::3285:a9ff:fe60:b3e0 dev eth0 lladdr 30:85:a9:60:b3:e0 router STAL [ipv6@localhost ~]\$</pre>	

Windows Host Address Acquisition

C:\Docume	C:\Documents and Settings\> netsh						
netsh>in	terface ipv	6					
netsh int	terface ipv	6> sho r	w address				
Querying	active sta	te					
Interface	e 5: Local 2	Area (Connection				
Addr Type	DAD State	e Val	lid Life	Pref. Life	Address		
Public	Preferre	d 290	d23h58m25s	6d23h58m25s	2001:db	8:4646:1:4f02:8a49:41ad:a136	
Temporary	Y Preferre	d 60	d21h48m47s	21h46m	2001:db	8:4646:1:bd86:eac2:f5f1:39c1	
Link	Preferre	d	infinite	infinite	fe80::4	f02:8a49:41ad:a136	
	terface ipv active sta		v route				
Publish	Туре	Met	Prefix		Idx	Gateway/Interface Name	
no				4646:1::/64		Local Area Connection	
no	Autoconf	256	::/0		5	fe80::20d:bdff:fe87:f6f9	

cisco ile


Timer's & Tables

Address Timers & State

- Tentative Address in verification process (DAD)
- Preferred Address can be used for communication
- Valid Address can be used, may be Preferred or Deprecated
- Deprecated Address can be used on existing connections
- Invalid Address is not available for use

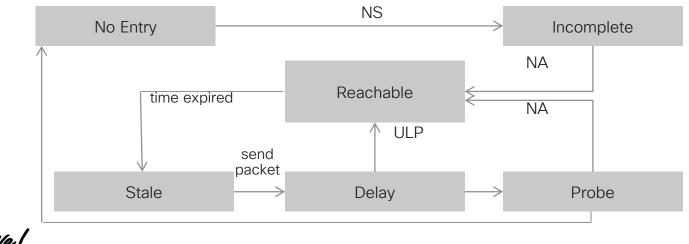
Host Cache Conceptual Data Structures

- Maintained for each interface connected on a host
- Host uses the PL & DRL to work out the destination for outbound packet
- Then it saves the result in the DC, layer 3 mapping to next hop
- Hosts use neighbor discovery to get the link address and update the NC

Host Cache Conceptual Model

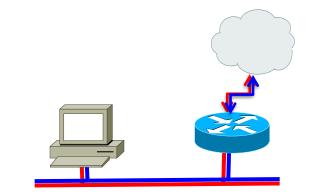
- Prefix List contains on link prefixes (L bit) and validation timers
- Default Router List must be a neighbor usable to the host (Pref bits)
- Destination Cache resolves next hop IPv6 address and MTU

Prefix List (PL)	Valid Timer	Destination Cache (DC)	Neighbor	PMTU
fe80::/10	00	fe80::34:1	fe80::34:1	1500
2001:db8:4646:34::/64	322486	2001:db8:4646:34::1	2001:db8:4646:34::1	9000
Default Router List (DRL)	Preference	2001:db8:4646:555::22	fe80::34:1	1500
fe80::34:1	Н	2001:db8:4646:717::98	fe80::34:1	1500
fe80::34:11	M	2001:db8:4646:34::3	2001:db8:4646:34::3	9000


Host Neighbor Cache

- Mapping of the neighbors IPv6 address to its link layer address
- Includes the status of the "R" flag in the returned NAs
- Must not create a new entry for "gratuitous" NA
 - Though such an NA can update an existing entry

Neighbor	Link Layer	Is Router	State
fe80::34:1	00-00-0C-83-5C-3E	1	Reachable
2001:db8:4646:34::1	00-00-0C-83-5C-3E	0	Stale
2001:db8:4646:34::3	04-48-9A-16-37-FB	0	Stale
ff02::1	33-33-00-00-00-01	0	~

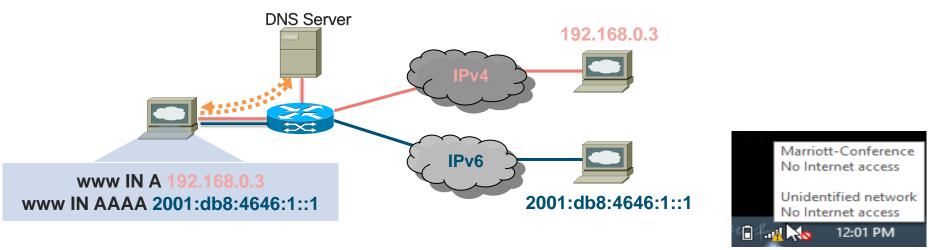

Neighbor Cache State Machine

- Incomplete Pending address resolution, NS message outstanding
- Reachable Recently used mapping, Can be refreshed by ULP
- Stale Not currently communicating, waiting for next queued packet
- Delay -Using stale binding, awaiting (ULP) return traffic
- Probe Sending Unicast NS to node (after Delay timer, 3x1 sec)

RFC 6724 – Source Address Selection

- IPv6 over IPv4, but which IPv6 first..
- Scope = Local, ULA, Global
- State = Preferred over Deprecated
- Interface = Assigned vs. another
- Type = Temporary over Public

 Public
 Preferred
 2001:db8:4646:1:4f02:8a34:bead:a136
 Idx


 Temporary
 Preferred
 2001:db8:4646:1:bd86:ea49:41f1:39c1
 Idx

 Link
 Preferred
 fe80::4f02:8a34:bead:a136
 Idx

Dual Stack OS Considerations

- In a dual stack case, an application can:
 - Query DNS for IPv4 and/or IPv6 records
 - Parallel or serial connection request
 - Set resolution delay to 50ms

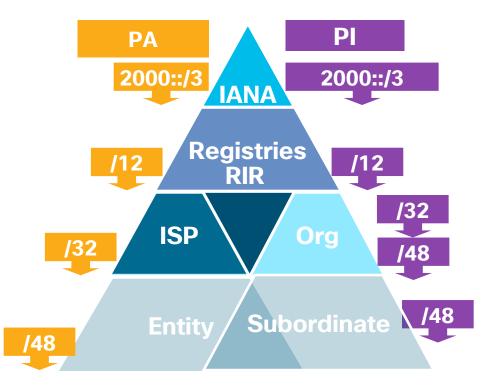
IPv6

Address planning & some thoughts

Nicole Wajer Chief Stroopwafel Officer

TECRST-1991

Barcelona | January 27-31, 2020

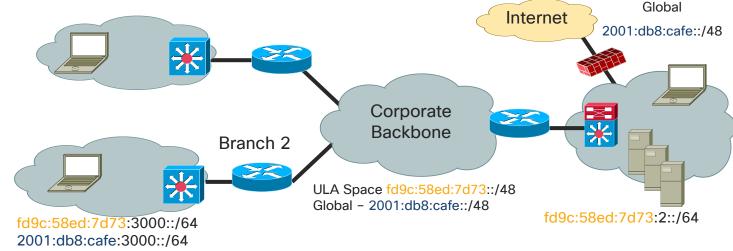


Cisco Live DISTINGUISHED Speaker

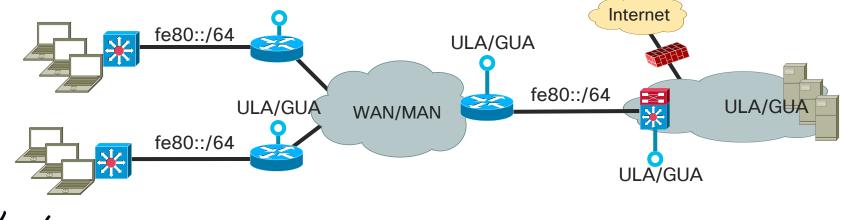
Global Address Assignment

- Provider Allocated (PA)
 - From your ISP, single homed
 - /48 /60
- Provider Independent (PI)
 - Multi home, Multi provider
 - /32 /48
- Local Internet Registry (LIR)
 - Regional registry member
 - Acquire & manage space
 - /29 /48

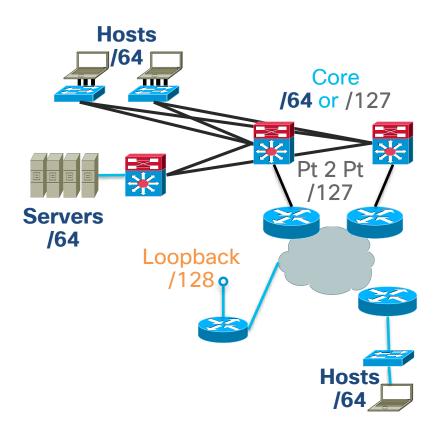
Multi-national Model


- PA or PI from each region you operate in
- Coordination of advertised space within each RIR, policy will vary
- Most run PI from primary region

cisco ile


Unique Local Address (ULA)

- Prefix Generation (RFC 4193) non sequential /48, M&A challenges
- To be avoided in most cases, v6ops-ula-usage-recommendations
- Caution with older OS's (RFC 3484) using ULA & IPv4
- Multiple policies to maintain (ACL, QoS, Routing, etc..)


Infrastructure using Link Local Addressing

- Topology hiding, Interfaces cannot be seen by off link devices
- Reduces routing table prefix count, less configuration
- Need to use ULA or GUA for generating ICMPv6 messages
- What about DNS?, Traceroute, WAN Connections, etc..
- RFC7404 Details pros and cons

Prefix Length Considerations

- Anywhere a host exists /64
 - RFC 7421, rational for /64
- Point to Point /127
 - · Should not use all 0's or 1's interface
 - Nodes 1 & 2, not in the same subnet
 - Reserve the /64, configure /127 with :a & :b
 - RFC 6164: /127 cache exhaust
 - Reserve a /64, configure a /127
- Loopback or Anycast /128

Why is IPv6 Addressing Plan Important?

- Helps you to get your head around IPv6 deployment
 - Structure Services
 - Hierarchy Security
- Puts structure in place
 - Like belts and braces
- · First real "toe in the cold water"
 - In terms of deployment
 - Makes the "jump" easier
- Well thought-through addressing plan
 - Think network operations and troubleshooting

Let it Go!

WRITE IT DOWN LET IT GO

cisco live!

IPv6 provides more options than IPv4

• Links can have multiple prefixes:

- Every link (point-to-point, VLAN) has link-local addresses
- Links can have global addresses
- Links can have ULA addresses
- Multiple global and ULA prefixes per link is possible
 - · Can be useful for renumbering to have multiple prefixes active at the same time
 - But do you really want that during normal operation???
- Keep it simple!

IPv6 provides more options than IPv4

• Links can have multiple prefixes:

- Every link (point-to-point, VLAN) has link-local addresses
- · Links can have global addresses
- Links can have ULA addresses
- Multiple global and ULA prefixes per link is possible
 - · Can be useful for renumbering to have multiple prefixes active at the same time
 - But do you really want that during normal operation???
- Keep it simple!

en0: flags=8863<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST> mtu 1500 inet6 fe80::224:36ff:feef:1d89%en0 prefixlen 64 scopeid 0x4 inet6 2a02:a213:a300:9300:224:36ff:feef:1d89 prefixlen 64 autoconf inet6 2a02:a213:a300:9300:1015:5159:6b61:8f5f prefixlen 64 autoconf inet6 2001:9e0:803:aa2:224:36ff:feef:1d89 prefixlen 64 autoconf inet 192.168.178.10 netmask 0xffffff00 broadcast 192.168.178.255

IPv4 Address Assessment

- Assess how the existing IPv4 address space is used
- Useful information for
 - IPv6 integration
 - IPv4 address consolidation
 - Reclaiming unused address space
- Use existing tools
 - IPAM
 - ARP tables
 - DHCP logs

Better visibility into how the existing Address space is used

Can better answer when IPv6 is critical

*Local	Area Connection 3 [Wireshark 1.12.4 (v1.12.4-0-gb4861da	from master-1.12)]				
File Edit View Go Capture Analyze Statistics Telephony Tools Internals Help							
•	. 🔳 🏩 📄 🗎 🗎	x 😂 🔍 👳 👳 🕁 🐺 🚣 🔳 🔲	s q q q 🗉 😹 🗹 🥵 🐝 📜				
er:		Express	sion Clear Apply Save				
	Time	Source	Destination	Protocol	Length Info		
	1 0.00000000	Cisco_3c:7a:00	LLDP_Multicast	LLDP	159 TTL = 20 System Name = JIMBAILE-FLVGK System Descriptio		
	2 0.514650000	Cisco_3c:7a:00	Broadcast	ARP	42 Who has 10.82.211.147? Tell 10.82.211.146		
	3 0.514905000	Cimsys_33:44:55	Cisco_3c:7a:00	ARP	42 10.82.211.147 is at 00:11:22:33:44:55		
	4 0.549209000	10.82.211.146	64.102.6.247	DNS	76 Standard query 0x4488 A www.facebook.com		
	5 0.637099000 6 0.638315000	64.102.6.247 10.82.211.146	10.82.211.146 64.102.6.247	DNS	282 Standard query response 0x4488 CNAME star-mini.cl0r.fa 76 Standard query 0xb36a AAAA www.facebook.com		
	7 0.692302000	64, 102, 6, 247	64.102.6.247 10.82.211.146	DNS	256 Standard query UXD36a AAAA www.tacebook.com 256 Standard query response 0xb36a CNAME star-mini.cl0r.fa		
	8 0.705232000	2001:420:c0c4:1004::247	2a03:2880:f003:c1f:face:b00c:0:25de	ICMPv6	94 Echo (ping) request id=0x0001, seg=9, hop limit=128 (re		
	9 0.730383000	2001:420:0004:1004:1247 2a03:2880:f003:c1f:face:b00		TCMPV6	94 Echo (ping) request 1d=0x0001, seq=9, hop limit=128 (re 94 Echo (ping) reply id=0x0001, seq=9, hop limit=55 (reque		
	0 0.814861000	10.82.211.146	64.102.6.247	DNS	91 Standard guery 0x6alb SRV _ldaptcp.RTPsites.cisco.		
	1 0.816167000	10.82.211.140	64.102.6.247	DNS	91 Standard query 0x0aib SRV _Idaptcp.RTPSites.cisco. 91 Standard guery 0x2087 SRV _Idaptcp.RTPsites.cisco.		
	2 0.816391000	10.82.211.146	64.102.6.247	DNS	91 Standard query 0x2007 SRV _Idap. tcp.RTP. sites.cisco.		
	3 0, 844242000	64, 102, 6, 247	10.82.211.146	DNS	521 Standard query response 0x6a1b SRV 5 100 389 ada-rtp5-		
	4 0.845025000	10.82.211.146	64.102.6.247	TCP	66 8554→53 [SYN] Seq=0 Win=8192 Len=0 MSS=1240 WS=256 SACK		
	5 0.852242000	64, 102, 6, 247	10.82.211.146	DNS	552 Standard guery response 0x2087 SRV 5 100 389 adc-rtp5-		
	6 0.852934000	10.82.211.146	64,102,6,247	TCP	66 17208+53 [SYN] Seg=0 Win=8192 Len=0 MSS=1240 WS=256 SAC		
	7 0,853469000	64.102.6.247	10.82.211.146	DNS	552 Standard guery response 0xfa73 SRV 0 100 389 adc-rtp5-		
	8 0.854094000	10,82,211,146	64.102.6.247	TCP	66 12892+53 [SYN] Seg=0 Win=8192 Len=0 MSS=1240 WS=256 SAC		
	9 0.875126000	64,102,6,247	10.82.211.146	TCP	66 53→8554 [SYN, ACK] Seq=0 Ack=1 Win=14600 Len=0 MSS=1240		
	0.0.875212000	10, 82, 211, 146	64, 102, 6, 247	TCP	54 8554-53 [ACK] Seg=1 Ack=1 Win=17152 Len=0		
	1 0.875291000	10,82,211,146	64, 102, 6, 247	DNS	105 Standard guery 0x6a1b SRV _ldaptcp.RTPsites.cisco.		
	2 0,910422000	64,102,6,247	10.82.211.146	TCP	66 53-12892 [SYN, ACK] Seg=0 Ack=1 Win=14600 Len=0 MSS=124		
	3 0, 910425000	64.102.6.247	10.82.211.146	TCP	66 53-17208 [SYN, ACK] Seg=0 Ack=1 Win=14600 Len=0 MSS=124		
	4 0, 910592000	10,82,211,146	64, 102, 6, 247	TCP	54 12892-53 [ACK] Seg=1 Ack=1 Win=17152 Len=0		
2	5 0,910720000	10.82.211.146	64,102,6,247	DNS	105 Standard guery 0xfa73 SRV _ldaptcp.RTPsites.cisco.		
2	6 0,910782000	10.82.211.146	64,102,6,247	DNS	105 Standard query 0x2087 SRV _ldaptcp.RTPsites.cisco.		
2	7 0.923165000	64,102,6,247	10.82.211.146	TCP	54 53-8554 [ACK] Seg=1 Ack=52 Win=14720 Len=0		
2	8 0.923167000	64.102.6.247	10.82.211.146	TCP	1294 [TCP segment of a reassembled PDU]		
	9 0.927593000	64.102.6.247	10.82.211.146	TCP	1294 [TCP segment of a reassembled PDU]		
2	0.0.007505000	C4 100 C 047	10 00 011 140		ADDA Free		
	1. 150 histor a	n wine (1272 bits) 150 but	es captured (1272 bits) on interface 0				
		Device\NPF_{4D4E6FEC-0572-41					
	psulation type		A0-8383-F0008830098F33				
		25, 2016 22:15:44.568880000	Eastern Davlight Time				
		is packet: 0.000000000 secon					
		8944, 568880000 seconds	0.0 J				
			0000000 seconds]				
[Time delta from previous captured frame: 0.00000000 seconds] [Time delta from previous displayed frame: 0.000000000 seconds]							
Time derica from previous displayed frame: 0.00000000 seconds]							
Frame Number: 1							
Fanna Lanakha 150 kukan (1979 kuka)							
00 0	1 80 c2 00 00 0)e 00 05 9a 3c 7a 00 88 cc					
10	4 00 05 9a 3c 7	a 00 04 09 07 70 6f 72 74	2d 30 <zport-0< td=""><td></td><td></td></zport-0<>				
		14 0a 0e 4a 49 4d 42 41 49 16 0c 28 4c 45 4e 4f 56 4f					
	0 45 47 53 30 4	11 45 30 30 2c 54 68 69 6e	6b 50 0EGS0AE0 0.ThinkP				
- n - M	<u></u>				(* * * * * *		
	e (frame), 159 bytes	Packets: 135 ' Displayed: 135 (10			Profile: Default		

Addressing Plan Requirements and Considerations

Requirements

- · Length of prefix and bits to work with
 - Enterprises usually multiple /48
 - Highly dependent on RIR policy
 - · SPs should get /29 (≥ 35 bits)
- Avoid breaking the nibble boundary
- Think of # of prefixes at each level
- · Templates will be your friends
- IP Address Management Tools

Considerations

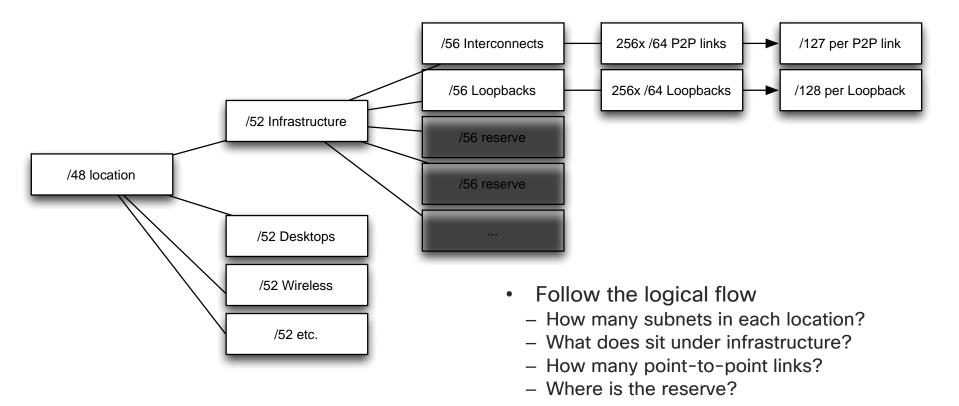
- Clear addressing for different parts of the network
 - WAN/Core, Campus, branch, DC, Internet Edge etc.
- Different Locations/Services
- Encoding of information
- Ease of aggregation
- Leaving space for growth

Numbering your infrastructure

- Use only Link-Local on links between routers?
 - Easy to configure, smaller attack surface, harder to debug
- Use global addresses for systems and ULA for infrastructure?
 - Smaller attack surface, complex addressing, confusing to ops, ICMP problems
- Use both global addresses and ULA side-by-side for everything?
 - Complex to configure and maintain, unpredictable behaviour, (almost) no benefits
- Use global addresses everywhere?
 - Use IPv6 as designed: This is the best choice in most cases!

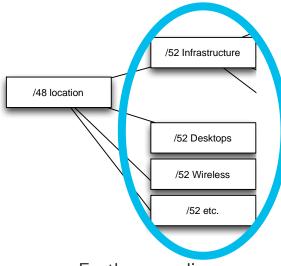
Host Address Assignment

- Depends on the existing processes and the adaptability of that process
- Methods are not mutually exclusive all three can be used
- Must control the stateless address assignment of addresses


	Manual	Stateless	Stateful DHCPv6	
Pros	Address is stable Controlled assignment Well understood process	Scales well Time to deploy Widely implemented	Well understood process Controlled assignment Time to deploy	
Cons	Does not scale Time to deploy	No control on assignment process Not well understood Lack of management Unpredictable (privacy extensions)	Implementation in OS Must design for HA	

Methodology – Avoid Zero Compression

- Operations may not understand what you do
- Avoid the zero compression "gotcha"
 - 2001:db8::/32
 - 2001:db8:0000::/48
 - 2001:db8:0000::/52
 - 2001:db8::
- Same goes for host based subnets
 - 2001:db8:1020:0000::/64 could look like 2001:db8:1020::



Example - How Many Subnets in a Location?

cisco / ille

Ideas for grouping prefixes

- Always make one group for infrastructure
 - Easier to protect and monitor
 - Using group number 0 gives shorter addresses
- Other grouping ideas:
 - Organizational division
 - (group by responsibility)

• Type of use

(group by expected traffic)

- Security boundary (group by firewall policy)
- Whatever makes sense in your network!

- Further reading
 - https://www.ripe.net/support/training/material/IPv6-for-LIRs-Training-Course/ Preparing-an-IPv6-Addressing-Plan.pdf

4 Rules

2001:db8:1234:0100:/56 2001:db8:1234:0200:/56 2001:db8:1234:0300:/56 2001:db8:1234:0400:/56 2001:db8:1234:0500:/56 ...

1. Keep it SIMPLE

You don't want to spend weeks explaining it!

- 2. Embed information to help operations To help troubleshooting and operation of the network Examples: location, country, firewall zone, VLAN, IPv4 addresses (be careful)
- Plan for expansion (build in reserve)
 Cater for future growth, mergers & acquisitions, new locations
 Reserved vs. assigned
- 4. Exploit hierarchy / aggregation

Good aggregation is essential, just one address block (per location) Ensures scalability and stability

Address Planning Exercise

Idea Enterprise

- Furniture Company
- Has presence throughout Europe
 - Currently set up in w/ 19 regional offices
 - Plans are to expand to 37 regional offices
- They also have a sister company (Idea ISP) which is providing telecommunications services throughout Europe

Idea Enterprise Current State of the Network

- Idea has grown organically through a policy of acquisitions and mergers over the past few years.
- Use of private (RFC 1918) and/or illegal IPv4 address blocks, NAT is widely used. This is negatively impacting the behaviour of some enterprise applications.
- Idea has decided to strategically deploy IPv6 within the IdeA enterprise network. This will enable applications and services to be moved from IPv4 to IPv6 on a caseby-case basis
- For its WAN connectivity, Idea enterprise uses the MPLS VPN service offered by Idea ISP.

Idea Enterprise IPv6 High Level Requirements

- Idea ISP is a RIPE member and have been allocated a /19 IPv6 address block. Idea Enterprise has been provided 2001:db8::/32 from its ISP. Idea ISP will be interconnecting all the IPv6 locations of the Idea enterprise network.
- The most important requirements for the IPv6 addressing design are for it to be highly hierarchical, uniform and scalable. This will greatly simplify the design, operation and troubleshooting of the network.

Idea Enterprise Detail Requirements

- As a general rule, Idea would like to use byte (8-bit)-boundaries between the different hierarchies of the IPv6 addressing. HINT!!!
- At the first level, the addressing scheme needs to support at least 37 regional offices (HINT!!!). Also some address blocks should be reserved for future growth in the larger countries.
- At the second level (within each region), there are a number of campus locations. It is at this level that connectivity into the Idea ISP network is provided. The largest region has about 40 campus locations (HINT!!!).

Idea Enterprise Detail Requirements (Cont.)

- At the third level (within each campus location), the number of buildings within each campus (4-6 maximum). Therefore, allocating these blocks on a byte boundary is deemed as overkill. A nibble (4-bit) boundary will suffice here. HINT!!!
- A separate "virtual building" address block needs to be set aside for network infrastructure addressing within that campus location
- At the forth level (within each building), individual IPv6 subnets need to be assigned to individual VLANs
- An additional requirement is to divide up the network infrastructure block in ranges for loopback, link and network services addressing

Building An Address Plan For Idea Enterprise (Tasks)

- Design an IPv6 address plan for Idea enterprise applying with what you have learned in this session and the mentioned HINTS
- Work top-down through the address plan
- Focus first on the end-system addressing
- Think about the network infrastructure addressing
- There are **multiple acceptable solutions**, it's more important to think about the problem and apply the methodology

Idea Enterprise IPv6 Addressing Exercise Global Prefix: 2001:db8::/32

ress Scope Pr	fix Length	# of address block allocation w/in higher level	First address block allocation w/in higher level	Last address block w/in higher level
gion				
mpus Location				
ilding				
d-System				
twork Infrastructure				
opbacks				
ks				
twork Services				

cisco il

Solution

cisco Live!

Idea Enterprise IPv6 Addressing Exercise Global Prefix: 2001:db8::/32

Adress Scope	Prefix Length	# of address block allocation w/in higher level	First address block allocation w/in higher level	Last address block w/in higher level
Region	2001:db8::/40	256	2001:db8::/40	2001:db8:ff00::/40
Campus Location				
Building				
End-System				
Network Infrastructure				
Loopbacks				
Links				
Network Services				

Region 1 2001:db8:1000::/40 -> Reserved 2001:db8:1100::/40 - 2001:db8:1f00::/40 Region 2 2001:db8:2000::/40 -> Reserved 2001:db8:2100::/40 - 2001:db8:2f00::/40

Adress Scope	Prefix Length	# of address block allocation w/in higher level	First address block allocation w/in higher level	Last address block w/in higher level
Region	2001:db8::/40	256	2001:db8::/40	2001:db8:ff00::/40
Campus Location	2001:db8::/48	256	2001:db8::/48	2001:db8:ffff::/48
Building				
End-System				
Network Infrastructure				
Loopbacks				
Links				
Network Services				

Region 1 Campus 1 2001:db8:1010::/48 -> Reserved 2001:db8:1011::/48 thru 2001:db8:101f::/48

cisco

Adress Scope	Prefix Length	# of address block allocation w/in higher level	First address block allocation w/in higher level	Last address block w/in higher level
Region	2001:db8::/40	256	2001:db8::/40	2001:db8:ff00::/40
Campus Location	2001:db8::/48	256	2001:db8::/48	2001:db8:ffff::/48
Building	2001:db8::/52	16	2001:db8::/52	2001:db8:ffff:f000::/48
End-System				
Network Infrastructure				
Loopbacks				
Links				
Network Services				

Region 1 Campus 1 Building 1 2001:db8:1010:1000::/52 Region 1 Campus 1 Building 2 2001:db8:1010:2000::/52

Reserved

pus 1 Building 2 2001:db8:1010:7000::/52 - 2001:db8:1010:f000::/52 0:2000::/52

Adress Scope	Prefix Length	# of address block allocation w/in higher level	First address block allocation w/in higher level	Last address block w/in higher level
Region	2001:db8::/40	256	2001:db8::/40	2001:db8:ff00::/40
Campus Location	2001:db8::/48	256	2001:db8::/48	2001:db8:ffff::/48
Building	2001:db8::/52	16	2001:db8::/52	2001:db8:ffff:f000::/48
End-System	2001:db8::/64	4096	2001:db8::/64	2001:db8:ffff:ffff::/64
Network Infrastructure				
Loopbacks				
Links				
Network Services				

Region 1 Campus 1 Building 1 VLAN 100 2001:db8:1010:1100::/64

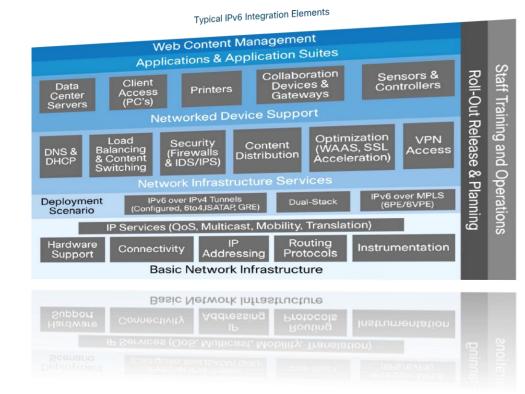
Region 1 Campus 1 Building 1 VLAN 200 2001:db8:1010:1200::/64

cisco /

Adress Scope	Prefix Length	# of address block allocation w/in higher level	First address block allocation w/in higher level	Last address block w/in higher level
Region	2001:db8::/40	256	2001:db8::/40	2001:db8:ff00::/40
Campus Location	2001:db8::/48	256	2001:db8::/48	2001:db8:ffff::/48
Building	2001:db8::/52	16	2001:db8::/52	2001:db8:ffff:f000::/48
End-System	2001:db8::/64	4096	2001:db8::/64	2001:db8:ffff:ffff::/64
Network Infrastructure				
Loopbacks	/128	2^128	Specific block chosen in the building prefix	
Links	/127	2^64	Specific block chosen in the building prefix	
Network Services	/56	256	Specific block chosen at a higher level	

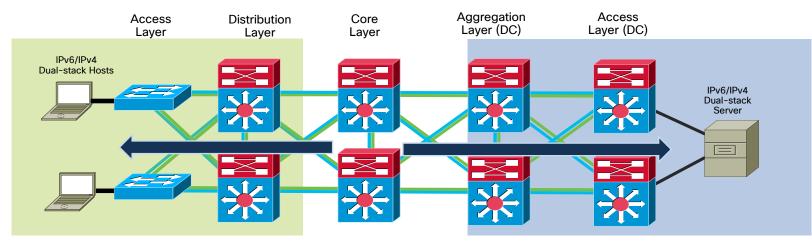
Region 1 Campus 1 Building 1 Loopbacks 2001:db8:1010:11ff::/64 Region 1 Campus 1 Building 1 Links 2001:db8:1010:11fe::/64 Network Services (DNS,DHCP) 2001:db8:ffff:ff00::/56

cisco /


Design Considerations

The Scope of IPv6 Deployment

- Planning and coordination is required
 - Network engineers & operators
 - Security engineers
 - Application developers
 - Desktop / Server engineers
 - Web hosting / content developers
 - Business development managers

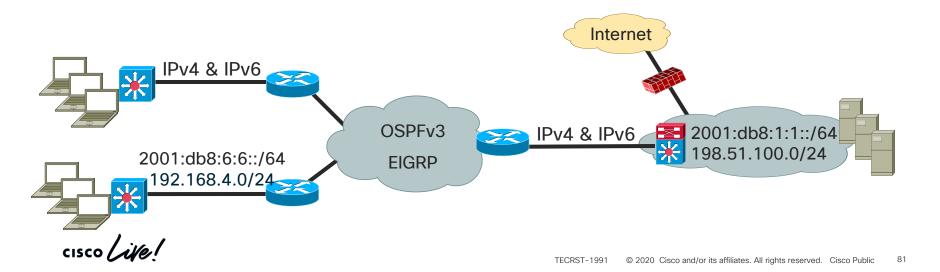


٠

. . .

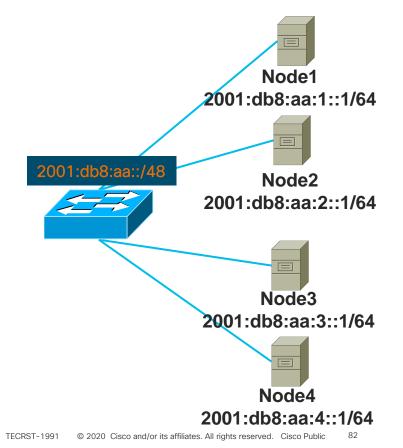
Dual Stack Mode

- Preferred Method, Versatile, Scalable and Highest Performance
- No Dependency on IPv4, runs in parallel on the same HW
- No tunnelling, MTU, NAT or performance degrading technologies
- Does require IPv6 support on all devices



cisco / il

IPv4 & IPv6 Combined



- Should we use both on the same link at Layer 3?
- Routing protocols OSPFv3, EIGRP combined or separate?
- Fate sharing between the data and control planes per protocol

IPv6 /64 Deployments

- What if you have a server that needs more than 64k connections?
 - Use multiple addresses
- What if multiple apps want the same (wellknown) port?
 - Give each application/container a separate IPv6 address, DNS name
- Possible solution: Assign a /64 to each server

Client Provisioning DHCPv6 & SLAAC

- SLAAC address tracking
 - Radius accounting, CAM table scrapes
 - Microsoft now supports RDNSS in RA's

DHCPv6 challenges

MAC address for reservations, inventory, tracking

Β

- Android does not support DHCPv6
- Understand the implications of switching methods Server

Internet

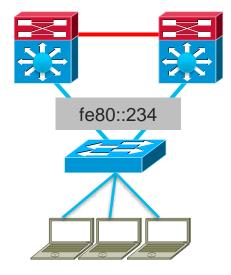
username=joe@example.org Acct-Session-Id=xyz Acct-Status-Type=Start Framed-IP-Address=192.0.2.1 Framed-IPv6-Address=fe80::d00d

username=joe@example.org Acct-Session-Id=xyz Acct-Status-Type=Alive Framed-IP-Address=192.0.2.1 Framed-IPv6-Address=fe80::d00d Framed-IPv6-Address=2001:db8::d00d Framed-IPv6-Address=2001:db8::d00d

DHCPv6

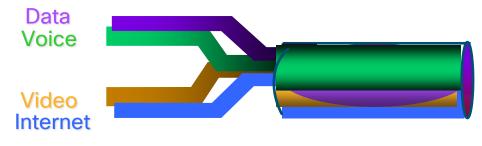
RA

Inconsistent amongst the OS's


Disabling SLAAC/Privacy Addresses

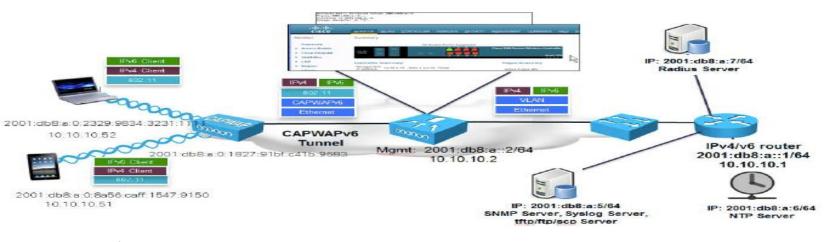
- Enable DHCPv6 via the M flag
- Disable prefix auto configuration
- Enable router preference to high
- Enable DHCPv6 relay destination

```
interface fastEthernet 0/0
ipv6 address 2001:db8:4646:acc1::1/64
ipv6 nd managed-config-flag
ipv6 nd prefix default no-autoconfig
ipv6 nd router-preference high
ipv6 dhcp relay destination 2001:db8:4646::café
```


IPv6 First Hop Redundancy Protocols

- FHRPs provide resilient default gateway
 - First hop address to end-stations
- IPv6 has a "built in" FHRP mechanism
 - Neighbor Unreachability Detection (NUD)
- HSRP, GLBP, and VRRP alternatives
 - Millisecond timers for fast convergence
- · Preempt timers need to be tuned
 - To avoid black-holed traffic

QoS CLI


- Class maps can match both IPv4 and IPv6 traffic
 - Can be broken into "ip" and "ipv6" matching
- · Design principles still the same
 - Mark at the edge
 - Trust boundaries still apply
 - Queue sizing

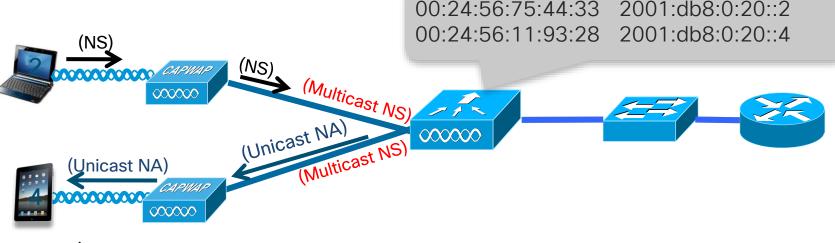
class-map match-any Critical Data match dscp af21 class-map match-any Voice match dscp ef class-map match-all Scavenger match dscp cs1 class-map match-any Bulk Data match dscp af11 policy-map DISTRIBUTION class Voice priority percent 10 class Critical Data bandwidth percent 25 random-detect dscp-based class Bulk Data bandwidth percent 4 random-detect dscp-based class Scavenger bandwidth percent 1 class class-default bandwidth percent 25 random-detect

Wireless LAN Controller BCP's

- WLC version 8.x increases support of IPv6
- CAPWAP, SNMP, NTP, Radius, Syslog, CDP, WebAuth
- Interface groups, same SSID over multiple VLAN's

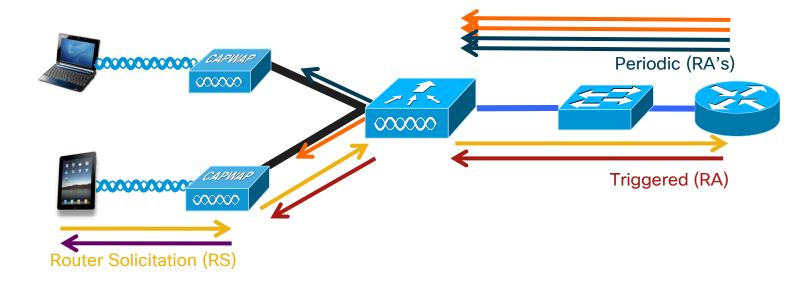
cisco / il

Wi-Fi Multicast Background

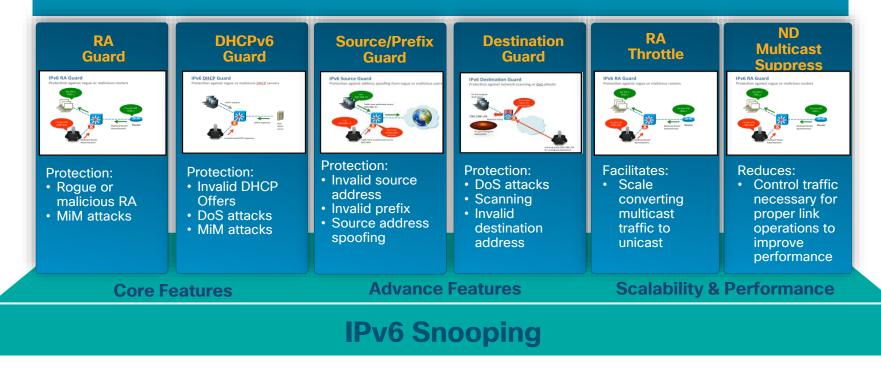

- Radio is a shared media
 - · Hosts must "awaken" to see if Multicast is for them
 - Multicast packets are not acknowledged or retransmitted
 - AP transmits bcast/mcast frames at the lowest possible rate

cisco/i

Neighbour Discovery Multicast Suppression


- Scaling 802.11 multicast reliability issues
- NDP process is multicast "chatty", Unicasting reduces the effect
- Caching allows the Controller to "proxy" the NA, based on gleaning

Router Advertisement Throttler


- Rate limit RA's from the legitimate router
- Inspect the RS, convert the responding RA to L2 Unicast

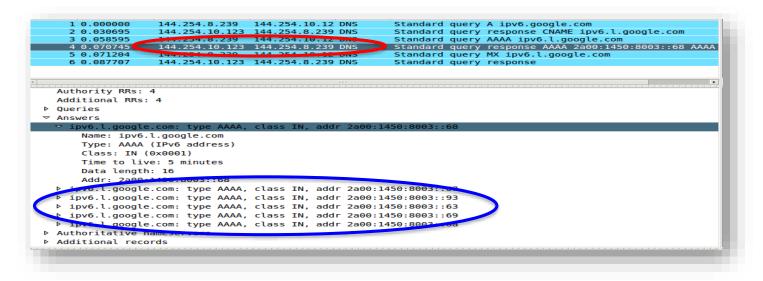
cisco /

IPv6 FHS

cisco ive!

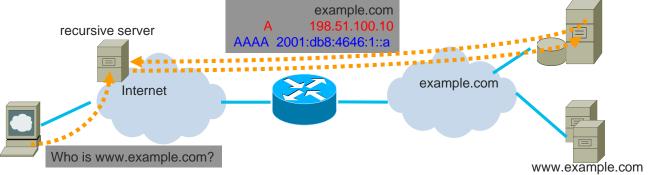
TECRST-2001

IPv6 Operational Procedures


IPv6 and DNS

- Add an IPv6 address to a host, create AAAA record in DNS zone
- Only global or unique local, do not use link local addresses
- Uses PTR records in "ip6.arpa" for reverse mapping
- External servers/services should have PTR records configured
- Clients recieve DNS info from manual configuration, DHCPv6, RAs

Function	IPv4	IPv6
Hostname to IP Address	A Record www.example.com. A 192.168.30.1	AAAA Record (Quad A) www.example.com AAAA 2001:db8:c18:1::2
IP Address To Hostname	PTR Record 1.30.168.192.in-addr.arpa. PTR www.example.com.	PTR Record 2.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.1.0.0.0.8.1.c. 0.8.b.d.0.1.0.0.2.ip6.arpa PTR www.example.com.


DNS Records Over IP

- IPv6 only networks require IPv6 DNS servers
 - Each DNS server should have its own /64 (2001:db8:4646::53)
- Dual stack networks can use either protocol as transport
 - IPv6 results can be carried over IPv4

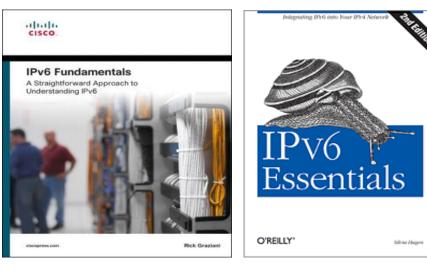
IPv6 DNS Operation

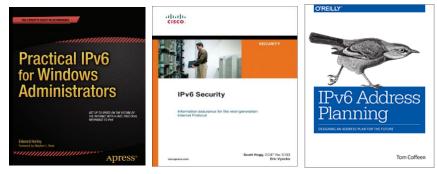
- Successful DNS lookups over IPv6 require:
 - Each zone provide at least one name server with an IPv6 address
- · Clients accessing your site often do so via recursive servers
 - · RS request your DNS info on behalf of the client
- Glue records bind the name server (NS1.example.com)
 - To the parent zone (example.com)

NS1.example.com

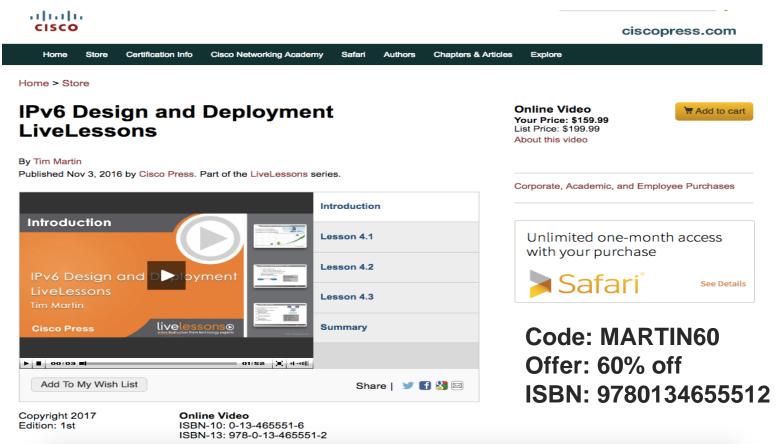
Conclusion

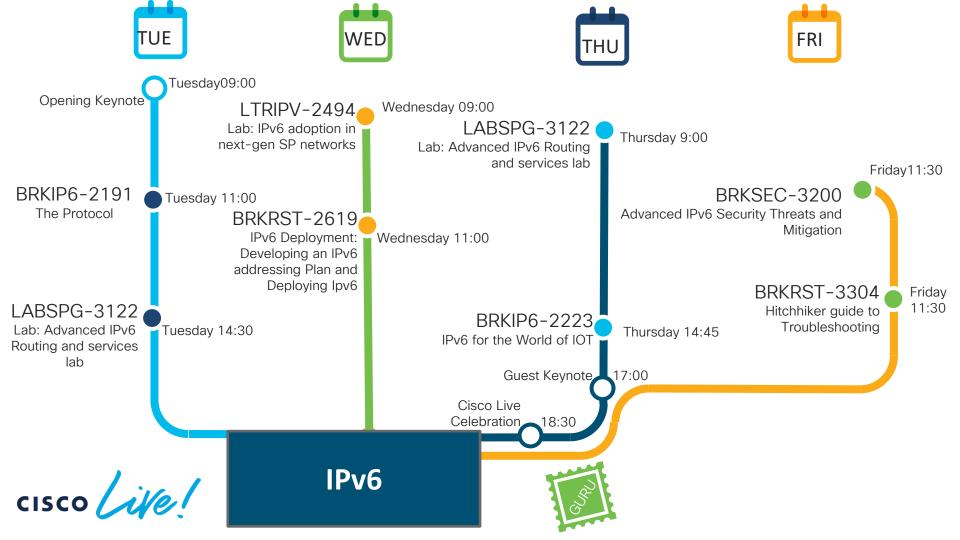
Key Take Away

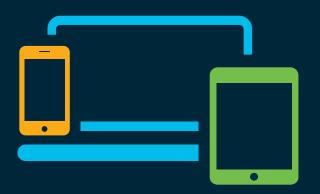

- Gain Operational Experience now
- Control IPv6 traffic as you would IPv4
- Lead your OT/LOB's into the Internet



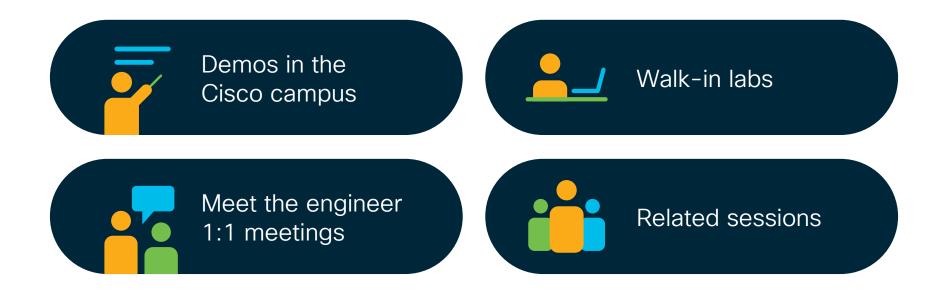
cisco ile


Recommended Reading



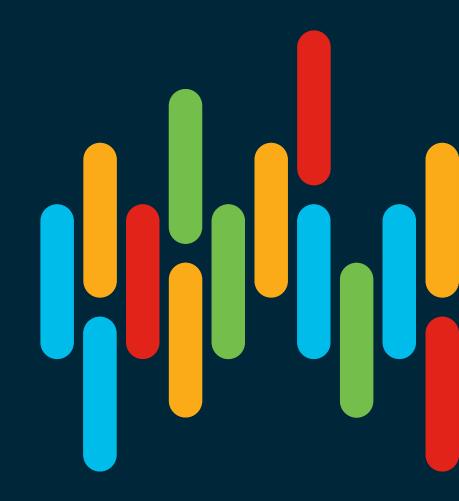

cisco ile

http://www.ciscopress.com/store/ipv6-design-and-deployment-livelessons-9780134655512


Complete your online session survey

- Please complete your session survey after each session. Your feedback is very important.
- Complete a minimum of 4 session surveys and the Overall Conference survey (starting on Thursday) to receive your Cisco Live t-shirt.
- All surveys can be taken in the Cisco Events Mobile App or by logging in to the Content Catalog on <u>ciscolive.com/emea</u>.

Cisco Live sessions will be available for viewing on demand after the event at <u>ciscolive.com</u>.


Continue your education

cisco / ile

Thank you

cisco live!

You make **possible**