

Daniel Schmidt, Principal Architect

Kickstart your automation with ACI

Nexus-as-Code

BRKDCN-2673

Agenda

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

• Infrastructure as Code

• Introduction to Nexus-as-Code

• Pre-Change Validation

• Automated Testing

• CI/CD Integration

• Services as Code

BRKDCN-2673 3

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Infrastructure as Code

4BRKDCN-2673

Infrastructure as code (IaC) is the process of managing and provisioning computer data
centers through machine-readable definition files, rather than physical hardware
configuration or interactive configuration tools.

Infrastructure as Code (IaC) is the management of infrastructure in a descriptive model,
using the same versioning as DevOps team uses for source code.

Infrastructure as Code (IaC) is the managing and provisioning of infrastructure through
code instead of through manual processes.

Practicing infrastructure as code means applying the same rigor of application code
development to infrastructure provisioning. All configurations should be defined in a
declarative way and stored in a source control system.

Infrastructure as Code is a process, not a single tool or application

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

IaC Strategy

ACI
Provider

Terraform Modules
(L3Out, Service Graph, System settings, …)

Terraform HCL

Data sources (YAML, JSON, CSV, Excel, etc.)

Ansible Roles
(L3Out, Service Graph, System settings, …)

NDO
Provider

NDFC
Provider

ACI
Collection

NDO
Collection

NDFC
Collection

Ansible YAML

All Cisco providers can be found here.

ND
Collection

BRKDCN-2673 5

Nexus-as-Code

https://registry.terraform.io/search/providers?namespace=CiscoDevNet

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Terraform Primer

6BRKDCN-2673

Terraform is an Infrastructure Resources Manager

• Compose and combine infrastructure resources
to build and maintain a desired state

• Plan and execution are distinct actions

• Manages all resources through APIs

• Terraform uses core and plugin components for
basic functions and extensibility

• One of the most used IaC (Infrastructure-as-
Code) tools to manage public Cloud and
Datacenter assets

• HCL (Terraforms underlying configuration
language) is the fastest growing language on
GitHub in 2022 *

provider "aci" {

username = "admin"

password = "Cisco123"

url = "https://10.1.1.1"

}

resource "aci_vlan_pool" "VP1" {

name = "VP1"

alloc_mode = "static"

}

resource "aci_ranges" "RANGE1" {

vlan_pool_dn = aci_vlan_pool.VP1.dn

from = 1000

to = 1099

}

* https://octoverse.github.com/2022/top-programming-languages

https://octoverse.github.com/2022/top-programming-languages

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Nexus-as-Code

7BRKDCN-2673

https://cisco.com/go/nexusascode

• Nexus-as-Code aims to reduce time to value by
lowering the barrier of entry to network
orchestration through simplification, abstraction,
and curated examples.

• It allows users to instantiate network fabrics in
minutes using an easy to use, opinionated data
model. It takes away the complexity of having to
deal with references, dependencies or loops.

• Users can focus on describing the intended
configuration while using a set of maintained and
tested Terraform Modules without the need to
understand the low-level ACI object model.

apic:

tenants:

- name: CiscoLive

vrfs:

- name: VRF1

- name: VRF2

https://cisco.com/go/nexusascode

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Comparison

8BRKDCN-2673

resource "aci_tenant" "tenant_CiscoLive" {

name = "CiscoLive"

}

variable "vrfs" {

default = {

VRF1 = {

name = "VRF1"

},

VRF2 = {

name = "VRF2"

}

}

}

resource "aci_vrf" "vrfs" {

for_each = var.vrfs

tenant_dn = aci_tenant.tenant_CiscoLive.id

name = each.value.name

}

Native Terraform

apic:

tenants:

- name: CiscoLive

vrfs:

- name: VRF1

- name: VRF2

Nexus-as-Code

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Node Policies

9BRKDCN-2673

• The data model is organized in a way that
configurations are grouped around where the
actual configuration (policy) is applied.

• All the configurations that are applied at the
node level can be found under:
apic -> node_policies -> nodes

• This includes configurations typically found in
different places in the ACI object tree, like for
example the OOB node management address,
which is configured under the mgmt tenant.

• Consolidating all node level configurations in a
single place eases maintenance, as for example
we only have to update this single section when
adding a new node.

apic:

node_policies:

nodes:

- id: 101

pod: 2

role: leaf

serial_number: FDO13026BEN

name: leaf-101

oob_address: 10.103.5.101/24

oob_gateway: 10.103.5.254

update_group: group-1

fabric_policy_group: all-leafs

access_policy_group: all-leafs

- id: 1

pod: 2

role: apic

oob_address: 10.103.5.1/24

oob_gateway: 10.103.5.254

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Access Policies

10BRKDCN-2673

• A number of profiles and selectors can be auto-
generated by providing a naming convention.

• There is no need to worry about any of the
profiles and selectors as they will be
added/deleted automatically according to the
node and interface configuration.

• As nodes are added under
apic -> node_policies -> nodes
the corresponding profiles will be created
automatically.

• Once interface configurations are added under
apic -> interface_policies -> nodes -> interfaces
the corresponding interface selectors will be
created.

apic:

auto_generate_switch_pod_profiles: true

interface_policies:

nodes:

- id: 101

interfaces:

- port: 1

description: Linux Server 1

policy_group: linux-servers

- port: 2

description: Linux Server 2

policy_group: linux-servers

- port: 47

description: N7K Core

policy_group: n7000-a

- port: 48

description: N7K Core

policy_group: n7000-b

Simple Demo
https://github.com/netascode/nac-aci-simple-example

https://github.com/netascode/nac-aci-simple-example

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Separate Data from Code

12BRKDCN-2673

In order to ease maintenance we separate data (variable definition) from logic (infrastructure
declaration), where one can be updated independently from the other.

apic:

tenants:

- name: CiscoLive

vrfs:

- name: CiscoLive

bridge_domains:

- name: vlan-100

vrf: CiscoLive

application_profiles:

- name: dev

endpoint_groups:

- name: vlan-100

bridge_domain: vlan-100

physical_domains: ["l2"]

module "aci" {

source = "netascode/nac-aci/aci"

version = "0.8.1"

yaml_directories = ["data"]

manage_access_policies = true

manage_fabric_policies = true

manage_pod_policies = true

manage_node_policies = true

manage_interface_policies = true

manage_tenants = true

}

apic.yaml main.tf

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

ACI Terraform Provider

13BRKDCN-2673

• Nexus-as-Code heavily relies on
the generic aci_rest_managed
resource of the ACI Terraform
provider.

• This fully-featured resource is able
to manage any ACI object.

• The resource is not only capable of
pushing a configuration but also
reading its state and reconcile
configuration drift.

resource "aci_rest_managed" "fvTenant" {

dn = "uni/tn-EXAMPLE_TENANT"

class_name = "fvTenant"

content = {

name = "EXAMPLE_TENANT"

descr = "Example description"

}

child {

rn = "ctx-VRF1"

class_name = "fvCtx"

content = {

name = "VRF1"

}

}

}

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

ACI Modules

14BRKDCN-2673

• Terraform Modules allow us to introduce a level of abstraction similar to functions in
programming languages

• Where a Terraform resource typically represents a single ACI object, a Terraform module can
represent a branch in the object tree

ACI Module

Tenant

Bridge
Domain

App
Profile

Subnet L3out
DHCP
Label

DHCP
Option

EPG

Domain
Static
Path

Contract

ACI Module

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

ACI Module Example

15BRKDCN-2673

• Modules allow us to break a configuration
into more manageable pieces which can
be developed and tested independently

• Modules can be versioned and released
independently

• Modules enable easier shareability and cut
down on duplicate work as they can be
shared with the wider community
(Terraform Registry)

• The Terraform Registry allows publishing a
module and an optional set of sub-
modules from a single repository

module "aci_endpoint_group" {

source = "netascode/nac-aci/aci//modules/

terraform-aci-endpoint-group"

version = "0.8.1"

tenant = "ABC"

application_profile = "AP1"

name = "EPG1"

bridge_domain = "BD1"

contract_consumers = ["CON1"]

physical_domains = ["PHY1"]

vmware_vmm_domains = [{

name = "VMW1"

}]

static_ports = [{

node_id = 101

vlan = 123

port = 10

}]

}

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Nexus-as-Code Module

16BRKDCN-2673

• Fabric Policies: Configurations applied at the fabric
level (e.g., fabric BGP route reflectors)

• Access Policies: Configurations applied to external
facing (downlink) interfaces (e.g., VLAN pools)

• Pod Policies: Configurations applied at the pod
level (e.g., TEP pool addresses)

• Node Policies: Configurations applied at the node level
(e.g., OOB node management address)

• Interface Policies: Configurations applied at the interface
level (e.g., assigning interface policy groups to ports)

• Tenants: Configurations applied at the tenant level (e.g.,
VRFs and Bridge Domains)

ACI Module

Tenant

Bridge
Domain

App
Profile

Subnet L3out
DHCP
Label

DHCP
Option

EPG

Domain
Static
Path

Contract

ACI Module

Nexus-as-Code Configuration Area

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

YAML Layout

17BRKDCN-2673

• As different teams might be responsible
for different parts of the infrastructure, it is
of paramount importance to allow enough
flexibility when defining and maintaining
the ACI configuration.

• The configuration can be split into multiple
YAML files each for example covering a
specific logical section of the
configuration.

• Nexus-as-Code does not dictate a
specific schema, but instead allows for full
flexibilty to divide the configuration as
needed.

$ tree -L 2

.

├── data

│ ├── apic.yaml

│ ├── access_policies.yaml

│ ├── fabric_policies.yaml

│ ├── node_policies.yaml

│ ├── pod_policies.yaml

│ ├── node_1001.yaml

│ ├── node_101.yaml

│ ├── node_102.yaml

│ ├── tenant_PROD.yaml

│ └── defaults.yaml

└── main.tf

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Deep Merge YAML Content

18BRKDCN-2673

apic:

tenants:

- name: PROD

vrfs:

- name: MANAGEMENT

bridge_domains:

- name: VLAN100

vrf: MANAGEMENT

apic:

tenants:

- name: PROD

vrfs:

- name: HR

bridge_domains:

- name: VLAN200

vrf: HR

Management Service

YAML files can be split at arbitrary points, meaning the Nexus-as-Code Module will combine and
deep merge the contents of YAML files, where data of two elements with the same keys will be
combined. This for example enables splitting the configuration of a single tenant in two YAML files.

HR Service

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Sensitive Information

19BRKDCN-2673

The configuration might contain sensitive information that should not be stored in cleartext in the
configuration. One common approach to handling secrets in the context of CI/CD Platforms is by
injecting sensitive values as environment variables during runtime.

apic:

access_policies:

mcp:

key: !env MCP_KEY

MCP_KEY: Cisco123Cisco123

Secrets Storage
apic:

access_policies:

mcp:

key: Cisco123Cisco123

Runtime EnvironmentCI/CD Platform

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Data Model Documentation

20BRKDCN-2673

https://cisco.com/go/nexusascode

https://cisco.com/go/nexusascode

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Visual Studio Code Integration

21BRKDCN-2673

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Default Values

22BRKDCN-2673

• Nexus-as-Code comes with pre-defined
default values based on common best
practices.

• In some cases, those default values might
not be the best choice for a particular
deployment and can be overwritten if
needed.

• Appending suffixes to object names is a
common practice that introduces room for
human errors. Using default values, such
suffixes can be defined once and then
consistently appended to all objects of a
specific type including its references.

defaults:

apic:

tenants:

bridge_domains:

name_suffix: _bd

unicast_routing: false

defaults.yaml

apic:

tenants:

- name: CiscoLive

bridge_domains:

- name: vlan_101

- name: vlan_102

- name: vlan_103

tenants.yaml

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Unmanaged Parent Objects

23BRKDCN-2673

apic:

tenants:

- name: Dev

- name: Stage

- name: Prod

apic:

tenants:

- name: Dev

managed: false

vrfs:

- name: VRF1

- name: VRF2

Infrastructure Team manages Tenants Developers manage Tenant Objects

In some cases you might only want to manage objects within a container.
The managed flag indicates if an object should be created/modified/deleted
or is assumed to exist already and just acts a container for other objects.

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

data "netbox_vlans" "nbv" {

}

locals {

model = {apic = {tenants = [{

name = "PROD"

bridge_domains = [for vlan in data.netbox_vlans.nbv.vlans : {

name = vlan.name

vrf = "PROD"

}]

}]}}

}

module "aci" {

source = "netascode/nac-aci/aci"

version = "0.8.1"

yaml_directories = ["data"]

model = local.model

…

}

Incorporate Data from Other Sources

24BRKDCN-2673

apic:

tenants:

- name: PROD

vrfs:

- name: PROD

Name ID

VLAN101 101

VLAN102 102

VLANs

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Pre-Change Validation

25BRKDCN-2673

As the complexity of the configuration and the underlying data model increases
automated validation before deploying anything in a production environment becomes
a critical aspect.

Several tools can be used to ensure that the provided input data is valid, but also that
common best practices and formatting guidelines are being followed.

Format Syntax Semantics Compliance

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Pre-Change Validation

26BRKDCN-2673

$ iac-validate -h

Usage: iac-validate [OPTIONS] [PATHS]...

A CLI tool to perform syntactic and semantic validation of YAML files.

Options:

--version Show the version and exit.

-v, --verbosity LVL Either CRITICAL, ERROR, WARNING, INFO or DEBUG

-s, --schema FILE Path to schema file. (optional, default:

'.schema.yaml', env: IAC_VALIDATE_SCHEMA)

-r, --rules DIRECTORY Path to semantic rules. (optional, default:

'.rules/', env: IAC_VALIDATE_RULES)

-o, --output FILE Write merged content from YAML files to a new YAML

file. (optional, env: IAC_VALIDATE_OUTPUT)

-h, --help Show this message and exit.

A CLI tool to perform format, syntactic, semantic and compliance validation of Nexus-as-Code
YAML files.

iac-validate

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Syntax Validation

27BRKDCN-2673

iac-validate

apic: include('apic', required=False)

apic:

tenants: list(include('tenant'), required=False)

tenant:

name: regex('^[a-zA-Z0-9_.:-]{1,64}$’)

vrfs: list(include('ten_vrf'), required=False)

ten_vrf:

name: regex('^[a-zA-Z0-9_.:-]{1,64}$’)

alias: regex('^[a-zA-Z0-9_.:-]{1,64}$', required=False)

data_plane_learning: bool(required=False)

enforcement_direction: bool(required=False)

contracts: include('ten_vrf_contracts', required=False)

• Native Terraform variable
validation rules have limitations
with complex and/or nested
structures

• Tools like Yamale can be used to
define the schema and validate
YAML files against it

• The schema specifies the
expected structure, input value
types (String, Enum, IP, etc.) and
additional constraints (eg. value
ranges, regexes, etc.)

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Semantic Validation

28BRKDCN-2673

iac-validate

Semantic validation is about verifying specific data model related constraints like referential
integrity. It can be implemented using a rule based model like commonly done with linting tools.
Examples are:

• Check uniqueness of key values (eg. Node IDs)

• Check references/relationships between objects (eg. Interface Policy Group referencing a CDP
Policy)

Rule 101: Verify unique keys ['apic.node_policies.nodes.id – 102']

Rule 201: Verify references ['apic.node_policies.nodes.update_group – GROUP1']

Rule 205: Verify Access Spine Interface Policy Group references

['apic.interface_policies.nodes.interfaces.policy_group – SERVER1']

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Compliance Validation

29BRKDCN-2673

Nexus Dashboard Insights (NDI) is continuously pulling the entire policy, every configuration, and
the network-wide state, along with the operator intent, and building from these comprehensive
and mathematically accurate models of network behavior. It combines this with codified Cisco
domain knowledge to generate “smart events” that pinpoint deviations from intent and offer
remediation recommendations.

The Pre-Change Analysis feature can be used to assess the impact of a particular change
before applying it to the infrastructure. This is done by applying the planned changes to the
model and then analysing the impact.

NDI Pre-Change Analysis

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

NDI Pre-Change Validation

30BRKDCN-2673

$ nexus-pcv -h

Usage: nexus-pcv [OPTIONS]

A CLI tool to perform a pre-change validation on Nexus Dashboard Insights or

Network Assurance Engine.

Options:

-i, --hostname-ip TEXT NAE/ND hostname or IP (required, env:

PCV_HOSTNAME_IP).

-u, --username TEXT NAE/ND username (required, env: PCV_USERNAME).

-p, --password TEXT NAE/ND password (required, env: PCV_PASSWORD).

-d, --domain TEXT NAE/ND login domain (optional, default: 'Local',

env: PCV_DOMAIN).

-g, --group TEXT NAE assurance group name or NDI insights group

name (required, env: PCV_GROUP).

-s, --site TEXT NDI site or fabric name (optional, only required

for NDI, env: PCV_SITE).

A CLI tool to perform a pre-change analysis on Nexus Dashboard Insights or Network Assurance
Engine. It can either work with provided JSON file(s) or a terraform plan output from a Nexus-as-
Code project. It waits for the analysis to complete and evaluates the results.

nexus-pcv

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Testing

31BRKDCN-2673

There are certain aspects we can only verify after deployment like for example operational state.
Various testing frameworks can be used for that, one example would be Robot Framework.
Robot’s language agnostic syntax with libraries like Requests and JSONLibrary can be used to
write tests against REST APIs.

In combination with templating languages like Jinja we can render test cases dynamically based
on the desired state.

Tests can typically be categorized in three groups:

• Configuration Tests: verify if the desired configuration is in place

• Health Tests: leverage the in-built APIC fault correlation to retrieve faults and health scores and
compare them against thresholds and/or previous state

• Operational Tests: verify operational state according to input data, eg. BGP peering state

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Testing

32BRKDCN-2673

$ iac-test -h

Usage: iac-test [OPTIONS]

A CLI tool to render and execute Robot Framework tests using Jinja

templating.

Options:

-d, --data PATH Path to data YAML files. (env: IAC_TEST_DATA)

[required]

-t, --templates DIRECTORY Path to test templates. (env: IAC_TEST_TEMPLATES)

[required]

-f, --filters DIRECTORY Path to Jinja filters. (env: IAC_TEST_FILTERS)

--tests DIRECTORY Path to Jinja tests. (env: IAC_TEST_TESTS)

-o, --output DIRECTORY Path to output directory. (env: IAC_TEST_OUTPUT)

[required]

-i, --include TEXT Selects the test cases by tag (include). (env:

IAC_TEST_INCLUDE)

-e, --exclude TEXT Selects the test cases by tag (exclude). (env:

IAC_TEST_EXCLUDE)

--render-only Only render tests without executing them. (env:

IAC_TEST_RENDER_ONLY)

A CLI tool to render and execute Robot Framework tests using Jinja templating.

iac-test

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Robot/Jinja Example

33BRKDCN-2673

*** Settings ***

Documentation Verify Tenant Health

Suite Setup Login APIC

Default Tags apic day2 health tenants non-critical

Resource ../../apic_common.resource

*** Test Cases ***

{% for tenant in apic.tenants | default([]) %}

Verify Tenant {{ tenant.name }} Faults

${r}= GET On Session apic /api/mo/uni/tn-{{ tenant.name }}/fltCnts.json

${critical}= Get Value From Json ${r.json()} $..faultCountsWithDetails.attributes.crit

Run Keyword If ${critical} > 0 Run Keyword And Continue On Failure

... Fail "{{ tenant.name }} has ${critical} critical faults"

Verify Tenant {{ tenant.name }} Health

${r}= GET On Session apic /api/mo/uni/tn-{{ tenant.name }}/health.json

${health}= Get Value From Json ${r.json()} $..healthInst.attributes.cur

Run Keyword If ${health} < 100 Run Keyword And Continue On Failure

... Fail "{{ tenant.name }} health score: ${health}"

{% endfor %}

iac-test

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

CI/CD Workflow Example

34BRKDCN-2673

Push to
feature branch

Workflow
triggered

Syntax and
Semantic Validation

NDI Pre-Change
Analysis

Webex
notification

Deployment Testing Run NDI Delta
Analysis

Webex
notification

Operator Terraform
Plan

Open GitHub
Pull Request

Webex
notification

Workflow
triggered

Merge into
main branch

Workflow
triggered

1

2

3

Dev Branch

Pull Request

Main Branch

CI/CD Demo
https://github.com/netascode/BRKDCN-2673-Demo

https://github.com/netascode/BRKDCN-2673-Demo

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

NDO Support

36BRKDCN-2673

Support for NDO (version 3.7 and 4.2) was recently added to Nexus-as-Code.

ndo:

sites:

- name: PARIS

id: 1

apic_urls: [https://10.1.1.1:443]

tenants:

- name: NET

sites:

- name: PARIS

schemas:

- name: NET

templates:

- name: SHARED

tenant: NET

vrfs:

- name: PROD

sites: [PARIS]

module "ndo" {

source = "netascode/nac-ndo/mso"

version = "0.8.1"

yaml_directories = ["data"]

manage_system = true

manage sites = true

manage_site_connectivity = true

manage_tenants = true

manage schemas = true

deploy_templates = true

}

ndo.yaml main.tf

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Scalability

37BRKDCN-2673

By adding more and more objects to your
configuration a few problems can arise:

• The Terraform state file becomes bigger and
making changes with Terraform takes much
longer.

• A single shared statefile is a risk. Making a
change in a Development tenant could have
implications to a Production tenant.

• No ability to run changes in parallel. Only one
concurrent plan may run at any given time as
the statefile is locked during the operation.

• With Nexus-as-Code, state can be split into
multiple workspaces while retaining a single set
of YAML files.

$ tree -L 2

.

├── data

│ ├── apic.yaml

│ ├── access_policies.yaml

│ ├── fabric_policies.yaml

│ ├── node_policies.yaml

│ ├── pod_policies.yaml

│ ├── node_1001.yaml

│ ├── node_101.yaml

│ ├── node_102.yaml

│ ├── tenant_PROD.yaml

│ ├── tenant_DEV.yaml

│ └── defaults.yaml

└── workspaces

├── tenant_PROD

│ └── main.tf

└── tenant_DEV

└── main.tf

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Services as Code – Cisco Lifecycle Services

38BRKDCN-2673

Services as Code is available through Cisco Lifecycle Services as an annual subscription service.

• Readiness assessment

• People, process, and solutions
enablement

• Solution set-up and continuous
integration

• Comprehensive library of validation
rules and automated test cases

• Customized development of new
features and test cases

• Quarterly Business Review reports

• Ongoing 24x7 technical support

ACI SDWAN ISE

Catalyst
Center

NDFC
VXLAN

IP
Transport

Meraki

Currently being developed

Currently available

Firewall

Shifting your infrastructure and operations strategies to focus on driving business outcomes with automation.

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

References

• Nexus-as-Code
https://cisco.com/go/nexusascode

• Demo Repository
https://github.com/netascode/BRKDCN-2673-Demo

• Cisco Lifecycle Service – Services as Code
https://www.cisco.com/site/us/en/services/lifecycle-services/index.html

• Pre-Change Validation Tool
https://github.com/netascode/iac-validate

• Test Automation Tool
https://github.com/netascode/iac-test

• SDWAN, Catalyst Center, ISE, NX-OS, IOS-XE, IOS-XR Terraform Providers
https://registry.terraform.io/search/providers?q=CiscoDevNet

39BRKDCN-2673

https://cisco.com/go/nexusascode
https://github.com/netascode/BRKDCN-2673-Demo
https://www.cisco.com/site/us/en/services/lifecycle-services/index.html
https://github.com/netascode/iac-validate
https://github.com/netascode/iac-test
https://registry.terraform.io/search/providers?q=CiscoDevNet

Thank youThank you

