

Thomas Renzy, Technical Leader CX @ThomasRenzy
Rafael Muller, Principal Engineer CX @rafaeljmuller

Introduction to Infrastructure
as Code for ACI with Ansible
and Terraform

BRKDCN-2906

Agenda

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

• What is Infrastructure as
Code?

• Infrastructure as Code with
Ansible

• Infrastructure as Code with
Terraform

• Next steps

BRKDCN-2906 3

What is
Infrastructure as
Code?

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

What is Infrastructure as Code(IaC)?

• Managing infrastructure can be tedious

• Network operators connect to devices and make
changes to the configuration.

• CLI – “finger net”

• Web browser – “point and click” aka “ClickOps”

• Most think of building/managing Cloud Infrastructure

• Define intended state of infrastructure should be.

• Automation tools reads & applies changes to devices to match
the intended state.

The management &
provisioning of
computer
infrastructure
through code and
data structures
instead of direct
device
management.

BRKDCN-2906 5

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Infrastructure as Code Tools

BRKDCN-2906 6

Infrastructure
as

Code

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

“ClickOps”– APIC GUI

BRKDCN-2906 7

Infrastructure as
Code with
Ansible

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

What is Ansible?

Automation / Configuration / Orchestration tool

Open Source

Agentless Push Model

Produces the same results no matter how many times it is executed*

No programming knowledge required

Requires only data-structure manipulation knowledge

APIC/NDO REST API interaction

*idempotent

BRKDCN-2906 9

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

What makes up Ansible?

A
n

s
ib

le
 C

o
re

P
y

th
o

n

C
o

lle
c

tio
n

s

ACI Module

MSO Module

Engine

P
la

y
b

o
o

k
s

Tasks

Inventory

Roles

Intent

WSL

Platform Target

R
E

S
T

 A
P

I

APIC

MSO

R
E

S
T

 A
P

I

BRKDCN-2906 10

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Installing Ansible

• You should (better yet, must) use a virtual
environment.

• Proper virtual environment allows for installing ansible
inside a contained area with a specific version of python.

• Makes it possible to run different python scripts that
require different versions of python and libraries of
python.

• Detailed steps beyond scope of this session.

Python Virtual Environments virtualenv

BRKDCN-2906 11

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

PyENV

• PyENV is the best mechanism to
control python virtual environments

• Allows control of python version to
execute independent of system
version

• PyENV virtualenv also needed

Virtual Environment in Python

https://github.com/pyenv/pyenv/wiki
https://github.com/pyenv/pyenv-virtualenv

Install instructions:

% pyenv install 3.9.11

install a version of python1

% pyenv virtualenv 3.9.11 ansible

create virtual-environment2

% mkdir my_ansible_dir

create directory for your ansible work3

% pyenv local ansible

tell PyENV the virtual-env to use here4

Reference Slide

BRKDCN-2906 12

https://github.com/pyenv/pyenv/wiki
https://github.com/pyenv/pyenv-virtualenv

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Ansible install

• Ansible installs only the core
components

• Collections must be installed by
you

• Smaller footprint and more control

• Assures install of latest collection
version released!

Core or Everything

• Ansible installs all
collections with the Ansible
install

• Complete package but consumes
much more disk space.

• Might not install the latest version
of the collection!

% pip install ansible% pip install ansible-core

https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html

BRKDCN-2906 13

https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html

Ansible
Collections

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

What are Ansible collections?

• Introduced in Ansible 2.9

• Collections allows vendors to de-couple their ansible capabilities
(modules) from the core Ansible release schedule

• Uses Ansible Galaxy as the delivery vehicle.

• Collection can be installed in any location with -p flag

ACI - https://galaxy.ansible.com/cisco/aci MSO - https://galaxy.ansible.com/cisco/mso

% ansible-galaxy collection install cisco.aci cisco.mso

BRKDCN-2906 15

https://galaxy.ansible.com/cisco/aci
https://galaxy.ansible.com/cisco/mso

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Installing Ansible Collections
Command Required packages

Collection can be installed in any location with -p flag

Reference Slide

BRKDCN-2906 16

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Ansible ACI/MSO

• Primary reason they are called collections
is because they are a collection of
modules

• Modules perform specific tasks like
create EPG's, Bridge domains and more

• Actively maintained with regular cadence
that increases module count and
capability

Collection Modules

https://docs.ansible.com/ansible/latest/collections/cisco/aci/index.html

BRKDCN-2906 17

https://docs.ansible.com/ansible/latest/collections/cisco/aci/index.html

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Ansible ACI/MSO
Collection Modules (CLI)

❯ ansible-doc -l | grep cisco.aci
cisco.aci.aci_aaa_ssh_auth
cisco.aci.aci_aaa_
cisco.aci.aci_aaa_user_certificate

❯ ansible-doc cisco.aci.aci_aaa_user

Manage AAA users on Cisco ACI fabrics.

OPTIONS (= is mandatory):
- aaa_password

The password of the locally-authenticated user.
default: null
type: str

- aaa_password_lifetime
The lifetime of the locally-authenticated user password.
default: null
type: int

EXAMPLES:

- name: Add a user
cisco.aci.aci_aaa_user:

host: apic
username: admin
password: SomeSecretPassword
aaa_user: dag
aaa_password: AnotherSecretPassword
expiration: never
expires: no
email: dag@wieers.com
phone: 1-234-555-678
first_name: Dag
last_name: Wieers
state: present

delegate_to: localhost

Use the CLI also to reach the
module documentation.

Use grep to filter through all the available
documentation installed.

The command: ansible-doc <module_name> will present the

CLI version of the doc. Will match what is on the web

Reference Slide

BRKDCN-2906 18

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Modules

• Always use the fully qualified name
for the module

• The modules require values
assigned to the parameters that
define how you wish to configure
ACI

• Documentation provides details as
to default values and required
values

• No programing knowledge required.
Just data structure build out.

Used by tasks

19BRKDCN-2906

- name: Create a Bridge Domain

cisco.aci.aci_bd:
host: 10.1.1.1
username: admin
password: password
tenant: prod
vrf: prod_vrf
bd_type: ethernet
bd: web_servers
arp_flooding: yes
l2_unknown_unicast: flood
validate_certs: no
state: present

delegate_to: localhost

Namespace Collection Name Module Name

Parameter Value

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Ansible Collection Naming - Modules

• Uses Fully Qualified Collection Name

• Name Space - Functional content category

• Collection Name - Characteristics of the collection content

• Module Name – Name of the module

• Best practice is to always use full qualified name, even for core modules

• Example – ACI Collection Tenant Module

Name Space Collection Name Module Name

cisco.aci.aci_bd

Reference Slide

BRKDCN-2906 20

Ansible
Concepts

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Ansible Directory Structure
Best Practice for growth!

roles playbooks group_vars files

How to do it! What to do! Data to do it!

inventory.yaml

BRKDCN-2906 22

Who to do it to!Stuff to do it!

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Ansible Data Structures (YAML)

• Human Readable Data Serialization
Language

• Used in plays, playbooks and inventory files

• Best practice is to use a software focused
text editor (e.g. Notepad++) or IDE (e.g.
VSCode) with language assistant support of
YAML data-structures.

• Indentation is very important, and the proper
editor will simplify this for you

YAML Ain’t Markup Language Microsoft VSCode

ATOM

PyCharm

Eclipse

Notepad++

BRKDCN-2906 23

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Ansible Roles

• Roles are content directories that are
structured in a conventional way to
enable simple reuse

• Roles let you automatically load related
vars, files, tasks, handlers, and other
Ansible artifacts based on a known file
structure.

• This allows for better data organization
in your repository.

• You utilize roles to combine tasks the
complete and objective.

How to do it!

% ansible-galaxy init <role-name>

In this example we are creating a role that will configure access policy
VLAN pools: ansible-galaxy init ap-vlans

BRKDCN-2906 24

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Ansible Playbooks

• Playbooks define the set of
actions that you want
Ansible to complete.

• Can contain specific tasks
or reference roles that
contain the tasks

• Best practice is to use roles!

What to do!

Example playbook with roles:

BRKDCN-2906 25

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Ansible Inventory

• Ansible inventory allows you to
build data structures that
correlate host specific variables

• Allows for grouping, variable
inheritance to organize your ACI
fabric APICs

• Two formats are common: INI
and YAML. Best practice is to
use YAML (less confusing)

Who to do it to!

Example inventory file:

BRKDCN-2906 26

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

JINJA “type” variables

• Ansible uses Jinja2 to enable
dynamic expressions and access
to variables and facts

• Defined by curly backets "{{ }}"
inside quotes.

• Similar to how JINJA2 works

Variable substitution

vars:
username: "john"
password: "doe"

- name:
ansible.builtin.copy:

username:"{{username}}"
password:"{{password}}"

BRKDCN-2906 27

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Putting it all together

playbooks

inventory

roles

BRKDCN-2906 28

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Executing Ansible

29BRKDCN-2906

ansible-playbook –i <inventory file> <playbook file>

Details for ACI

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Playbooks
Structure for ACI ---

- hosts: east-fabric
gather_facts: false
connection: local
any_errors_fatal: true
ignore_errors: false

roles:
- roles/ap-vlans
- roles/ap-domains
- roles/ap-aep

For ACI we set gather_facts to
false as we don’t need for Ansible to
connect to APIC to get any host
data. Ansible uses the REST
interface.
For ACI connection is local, as the

computer that is executing the
automation starts the connection
local to the ACI fabric.

Control if faults continue or stop

The roles that this playbook will execute

In Ansible order matters! You can't
create a physical domain that points to a
VLAN Pool without first creating the pool

BRKDCN-2906 31

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Tasks in Roles
Structure for ACI ---

tasks file for ap-vlans

- name: Create Engineering VLAN Pool

cisco.aci.aci_vlan_pool:
host: "{{ inventory_hostname }}"
username: "{{username}}"
password: "{{password}}"
pool: "eng_vlan_pool"
pool_allocation_mode: "static"
description: "(Ans) Engineering Server VLAN Pools"
state: present
validate_certs: no
use_ssl: yes

delegate_to: localhost

For each module we must pass the
host, username and password

These values define how the
VLAN Pool will be configured

State is present for creation
and absent for deletion

Set validate_certs to no, and
use_ssl to yes for self-signed

cert-based HTTPS connection
to the fabric

namespace collection name module

BRKDCN-2906 32

Task name

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Certificate BasedUsername & Password

Authentication

• Method works with both ACI and NDO

• Easiest approach after ACI 5.x HTTP
throttle changes

• Important to avoid username and
password stored inside source code
repository

• Very hard to remove once added!

• Ansible Vault is the most secure, but
you can get started easily with
environment variables.

Best Practices

• Used in releases prior to ACI 5.x due
to HTTP interface throttle

• In ACI 5.x and higher interface throttle is
configurable option in ACI

• Ansible Vault can be used to store the
key.

• Certificate based not an option for
MSO today.

• Requires a local user on APIC

• Configured with proper user role and
security domain

BRKDCN-2906 33

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Using Environment Variables

• Instead of inserting
credentials that are very
difficult to remove from an
SCM (GIT) you can use
environment variables.

• Set environment variable
before ansible-playbook
execution

Reference Slide

tasks file for ap-vlans

- name: Create Engineering VLAN Pool
cisco.aci.aci_vlan_pool:
host: "{{ inventory_hostname }}"
username: '{{ lookup("env", "APIC_USERNAME") }}'
password: '{{ lookup("env", "APIC_PASSWORD") }}'

pool: "eng_vlan_pool"
pool_allocation_mode: "static"
description: "(Ans) Engineering Server VLAN Pools"
state: present

validate_certs: no
use_ssl: yes

delegate_to: localhost

bash / zsh

% export APIC_USERNAME="admin"
% export APIC_PASSWORD="password"

BRKDCN-2906 34

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

ACI REST Fallback Module

• The module aci_rest
allows passing an ACI
structured object when
a module isn’t available.

• This makes it possible
that Ansible can
accomplish 100%
configuration of ACI

How to configure ACI when a module is missing

- name: Create Route Map for L3out (rtctrlProfile)

cisco.aci.aci_rest:
path: /api/node/mo/uni/tn-{{item.tenant}}/out-{{item.l3out}}/prof-{{item.name}}.json
method: post
content:
{
"rtctrlProfile":
{
"attributes":

{
"dn": "uni/tn-{{item.tenant}}/out-{{item.l3out}}/prof-{{item.name}}",
"name": "{{item.name}}",
"descr": "{{item.description}}",
"status": "created,modified",

},
"children": [],

},
}

delegate_to: localhost
loop: "{{all_l3out_route_maps}}"
when: all_l3out_route_maps is defined
tags:
- never
- create 35

An example

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Non-Optimal

• In the previous example we
“hard coded” some values to
create a VLAN Pool.

• This would require that we
create a new task for every
single VLAN pool to be
configured.

• Not optimal for repetition

• There is a better approach
through reference and iteration!

tasks file for ap-vlans

- name: Create Engineering VLAN Pool
cisco.aci.aci_vlan_pool:
host: "{{ inventory_hostname }}"
username: "{{username}}"
password: "{{password}}”

pool: "eng_vlan_pool"
pool_allocation_mode: "static"
description: "(Ans) Engineering Server VLAN Pools"
state: present

validate_certs: no
use_ssl: yes

delegate_to: localhost

hard coded

BRKDCN-2906 37

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Variable lists

• Lists (also known as arrays
) are a sequential set of values.

• These can contain
dictionaries (also known
as objects).

• This allows you to reference
specific items inside of the task
and iterate over these in a
repetitive way

Looping through data
vlan_pools:
- vlan_pool_name: "eng_vlan_pool"
vlan_pool_description: "(Ans)Eng VLAN Pool"
vlan_pool_mode: "static”

- vlan_pool_name: "mkt_vlan_pool"
vlan_pool_description: "(Ans)Mkt VLAN Pool"
vlan_pool_mode: "static”

- vlan_pool_name: "hr_vlan_pool"
vlan_pool_description: "(Ans)HR VLAN Pools"
vlan_pool_mode: "static”

- vlan_pool_name: "sales_vlan_pool"
vlan_pool_description: "(Ans)Sales VLAN Pools"
vlan_pool_mode: "static”

List of four objects

BRKDCN-2906 38

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Iteration explained
Looping through data

vars file for ap-vlans

vlan_pools:
- vlan_pool_name: “eng_vlan_pool"
vlan_pool_description: "(Ans)Eng VLAN Pool"
vlan_pool_mode: "static”

- vlan_pool_name: ”mkt_vlan_pool"
vlan_pool_description: "(Ans)Mkt VLAN Pool"
vlan_pool_mode: "static”

- vlan_pool_name: ”hr_vlan_pool"
vlan_pool_description: "(Ans)HR VLAN Pools"
vlan_pool_mode: "static”

- vlan_pool_name: ”sales_vlan_pool"
vlan_pool_description: "(Ans)Sales VLAN Pools"
vlan_pool_mode: "static”

tasks file for ap-vlans

- name: Create VLAN Pools
cisco.aci.aci_vlan_pool:
host: "{{ inventory_hostname }}"
username: "{{username}}"
password: "{{password}}”

pool: “{{item.vlan_pool_name}}”
pool_allocation_mode: “{{item.vlan_pool_mode}}”
description: “{{item.vlan_pool_description}}”
state: present

validate_certs: no
use_ssl: yes

delegate_to: localhost

loop: "{{vlan_pools}}"
when: vlan_pools is defined

roles/ap-vlans/tasks/main.yaml
roles/ap-vlans/vars/main.yaml

BRKDCN-2906 39

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Executing the playbook

40BRKDCN-2906

A word about
variables

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Better variables

• Including the variables with the role can result in role duplication

• A better approach is to move the variables to a location that can be
structured with the inventory for better organization

Placement matters!

BRKDCN-2906 42

roles playbooks group_vars files

How to do it! What to do! Data to do it!

inventory.yaml

Who to do it to!Stuff to do it!

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Variable Hierarchy
A clean way to organize data

group_vars

<host_name>

roles

defaults

files

handlers

meta

tasks

template

tests

vars

main.yaml

Vlan_pools.yaml

Move the variable from the
roles file structure into the
group_var structure

BRKDCN-2906 43

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

The links between locations
Managed by variable precedence

group_vars

east_fabric

Vlan_pools.yaml

west_fabric

Vlan_pools.yaml

aeps.yaml

policy_groups.yaml

aeps.yaml

policy_groups.yaml

roles

ap_vlans

ap_domains

ap_aep

playbooks

east_fabric

access_policies.yaml

1
Reads the inventory and
playbook. Finds that we are
referencing east_fabric

2
Reads the variables in all
the files under the matching
hostname directory name
east_fabric.

3
Since we are using the
same variable named
vlan_pools, the role reads
the values that are
configured in east_fabric
group_vars directory and
executes the configuration
towards ACI

var: vlan_pools

var: vlan_pools

BRKDCN-2906 44

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Ansible Variable Precedence

• Ansible provides variable
precedence, which is important
when you build your data structure.

• This allows for having some default
behaviour that is then changed by
just including in higher
precedence.

• Using the group_vars folder tied
to inventory is very useful.

Placement matters

https://docs.ansible.com/ansible/latest/playbook_guide/playbooks_variables.html

• extra vars via CLI (for example, -e "user=my_user")
• include params
• role (and include_role) params
• set_facts / registered vars
• include_vars
• task vars (only for the task)
• block vars (only for tasks in block)
• role vars (defined in role/vars/main.yml)
• play vars_files
• play vars_prompt
• play vars
• host facts / cached set_facts
• playbook host_vars/*
• inventory host_vars/*
• inventory file or script host vars
• playbook group_vars/*
• inventory group_vars/*
• inventory group_vars/all
• inventory file or script group vars
• role defaults (defined in role/defaults/main.yml)
• command line values (for example, -u my_user, these are not variables)

H
i
g
h
e
r

l
o
w
e
r

Reference Slide

BRKDCN-2906 45

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Putting it all together

playbooks

inventory

roles

group_vars

% ansible-playbook –i inventory/east_fabric playbooks/east-fabric/access-policies.yaml

BRKDCN-2906 46

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Executing the playbook

47BRKDCN-2906

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

ACI 6.x Ansible indicators

BRKDCN-2906 48

Infrastructure as
Code with
Terraform

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

What is Terraform?

Open Source

Infrastructure Provisioning

Single Binary (Windows, Mac, Linux, Solaris, FreeBSD)

Declarative and Stateful

HashiCorp Configuration Language (HCL)

APIC/NDO REST API Interaction

No programming knowledge required

BRKDCN-2906 50

Terraform Concepts

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Terraform
(version 1.7.2 - latest) https://developer.hashicorp.com/terraform/downloads

BRKDCN-2906 52

• Runs as single binary (Core)

• Command line executable

• Reading configuration files

• State Management

• Graph

• Plan execution

Installation

> terraform –-version
Terraform v1.7.2
on darwin_arm64

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco PublicBRKDCN-2906 53

Terraform Providers

• Terraform Binary doesn’t know ACI/NDO

• Relies on specific plugins
• Downloaded Dynamically via initialization (via terraform init command)

• Providers Understand API interactions

• APIC and MSO REST API calls

terraform {
required_providers {

aci = {
source = "CiscoDevNet/aci"

}
}

}

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco PublicBRKDCN-2906 54

Types of Terraform Providers

Owned & maintained
by HashiCorp

Ex. AWS, Azure, GCP

Owned & maintained
by partners.

Ex. ACI, MSO, ASA

Published by
individual groups or
maintainers in the
community

https://registry.terraform.io/providers/CiscoDevNet/aci/latest

terraform {
required_providers {

aci = {
source = "CiscoDevNet/aci”
version = “2.11.1”

}
}

}

terraform {
required_providers {

mso = {
source = "CiscoDevNet/mso"

}
}

}

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

terraform {
required_version ">= 1.5.0"
required_providers {

aci = {
source = "CiscoDevNet/aci”
version = “2.11.1”

}
}

}

provider "aci" {
cisco-aci user name
username = "tform"
cisco-aci signature based cert
private_key = "tfcert.key"
cert_name = "tfcert.crt"
cisco-aci url
url = "https://172.31.2.31/"
insecure = true

}

Terraform Provider configuration (ACI)
Terraform Block

Provider definition
Registry namespace
Provider version

Provider Block

Authentication

APIC URL

HTTP API request

BRKDCN-2906 55

Terraform version

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Terraform Resources & Data Sources

• Allow data to be fetched or computed
for use elsewhere in Terraform
configuration

• Terraform apply/destroy does not
modify data source

• Specific to a given provider (ACI/MSO)

• apply/destroy/modifies Infrastructure

• Accepts arguments

• Describes your intent for infrastructure

Resources Data Sources

BRKDCN-2906 56

resource "aci_tenant" "terraform_tenant” {
name = var.tenant_name
description = "Created with Terraform"

}

data "mso_site" "sf_site" {
name = "San Francisco"

}

data "mso_site" "ny_site" {
name = "New York"

}

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Terraform Plans/Configuration Files

• Collection of HCL instructions

• What you want to provision (intent)

• .tf extension

• Terraform scans directory

• Directory that terraform is run in

• Can be in a singular file – main.tf

• Can be broken up into smaller *.tf

prod

main.tf

variables.tf

variables.tfvars

BRKDCN-2906 57

prod

main.tf

variables.tf

tenant.tf

vrf.tf

bridge_domain.tf

epg.tf

or

variables.tfvars

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Terraform Configuration Example

Resource type
(From Provider)

Name of the resource
Must be unique

Used in state file

BRKDCN-2906 58

resource "aci_bridge_domain" "web-bd" {
tenant_dn = aci_tenant.terraform_tenant.id
relation_fv_rs_ctx = aci_vrf.terraform_vrf.id
name = "web-bd"

}

resource "aci_subnet" "web_subnet" {
parent_dn = aci_bridge_domain.web-bd.id
ip = "10.1.1.1/24"

}

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Terraform Data Source Example

BRKDCN-2906 59

Data Source type
(From Provider)

Data Source name
Must be unique

data "mso_site" "sf_site" {
name = "San Francisco"

}

data "mso_site" "ny_site" {
name = "New York"

}

Define an NDO Tenant between NY and SF
resource "mso_tenant" "tenant" {
name = var.tenant_name
display_name = var.tenant_name
description = "This tenant was created by Terraform”
site_associations { site_id = data.mso_site.sf_site.id }
site_associations { site_id = data.mso_site.ny_site.id }

}

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

When there isn’t a Resource – aci_rest_managed

• Manages Objects via REST API calls with no resource

• Can reconcile state information

• API calls captured via API Inspector/APIC GUI

• aci_rest/mso_rest

BRKDCN-2906 60

resource "aci_rest_managed" ”rest_tenant" {
dn = "uni/tn-REST"
class_name = "fvTenant"
content = {
name = ”REST"
descr = ”Tenant built with REST"

}
}

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Terraform Registry – Documentation

BRKDCN-2906 61

https://registry.terraform.io/providers/CiscoDevNet/aci/latest

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Terraform State

• Terraform is stateful
• Tracks objects it builds (terraform.tfstate)

• Source of everything it knows about

BRKDCN-2906 62

{
"version": 4,
"terraform_version": "1.7.0",
"serial": 18,
"lineage": "f7aa5662-7643-c475-830e-a76433b16ef2",
"outputs": {},
"resources": [

{
"mode": "managed",
"type": "aci_tenant",
"name": "env",
"provider": "provider[\"registry.terraform.io/ciscodevnet/aci\"]",
"instances": [

{
"schema_version": 1,
"attributes": {

"annotation": "orchestrator:terraform",
"description": "Created by Terraform",

• Stored inside working directory
• Can use backend – AWS, Terraform Cloud

• Do not modify state file directly

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Brownfield Infrastructure

• Import Infrastructure for Terraform to manage

• import CLI command

• Import blocks (Version 1.5)

BRKDCN-2906 63

Import VRF under Tenant from APIC
import {
id = "uni/tn-tf_test_import/ctx-tf_test_import_vrf"
to = aci_vrf.import_vrf_example

}

Import Tenant from APIC
import {
id = "uni/tn-tf_test_import"
to = aci_tenant.import_tenant_example

}

terraform import aci_tenant.import_tenant_example uni/tn-tf_test_import

Import Block (import.tf)

Import CLI command

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Terraform Dependency Mapping

• Uses Graphs to track of dependencies and correct order of
deployment

• Builds a graph of relationships (Directional tree without loops)
Tenant

App Profile

EPG

VRF

BD

BD Subnet

BRKDCN-2906 64

Reference Slide

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Terraform Graph (Three Tier)

Reference Slide

BRKDCN-2906 65

Terraform Variables &
Iteration

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Variables in Terraform

• CLI (-var= -var-file=)

• variables.tf

• Default config**

• terraform.tfvars

BRKDCN-2906 67

• String

• Number

• Bool

• Any (default)

• Value substitution – makes code reusable

• List

• Map

• Object

Can be defined Variable Types Complex Types

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Terraform Variables

68BRKDCN-2906

Environment VariablesVariables File Variables Assignment

Define variables with default value Overrides Variable file default Based on environment (TF_VAR)

resource aci_tenant “cl_tenant” {
name = var.tenant_name
description = ”created by Terraform”

}

resource aci_vrf “cl_vrf” {
tenant_dn = aci_tenant.cl_tenant.id
name = var.vrf_name
description = “

Created by terraform”
}

variable “tenant_name “{
default = ”Cisco"

}

variable “vrf_name“{
default = ”cisco_vrf"

}

resource aci_tenant “cl_tenant” {
name = var.tenant_name
description = ”created by Terraform”

}

resource aci_vrf “cl_vrf” {
tenant_dn = aci_tenant.cl_tenant.id
name = var.vrf_name
description = “

Created by terraform”
}

tenant_name=ciscolive
vrf_name=cl_vrf

*Overrides the variables set in variables.tf

terraform.tfvars*
variables.tf

export TF_VAR_NDO_USERNAME="admin"
export TF_VAR_NDO_PASSWORD=cisco123

$env:TF_VAR_NDO_USERNAME="admin"
$env:TF_VAR_NDO_PASSWORD="C1sco12345"

provider “mso” {
username = var.NDO_USERNAME
password = var.NDO_PASSWORD
url = https://10.2.2.2
insecure = true
platform = “nd”

}

Windows

*nix

variable “NDO_USERNAME“ {

}

variable “NDO_PASSWORD“{

}

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Terraform Variables Precedence

• Variables have precedence

• Variables can be set, but overridden

Reference Slide

• Command Line Flag run as command line switch
• Configuration file - set in your terraform.tfvars file
• Environment variable - part of your shell environment
• Default Config - default value in variables.tf
• User manual entry - if not specified, prompt the user
for entry

Higher

lower

https://developer.hashicorp.com/terraform/language/values/variables

BRKDCN-2906 69

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Iteration (loop) in Terraform

• count

• Add number of resources
based on count

BRKDCN-2906 70

• for_each

• Create objects based on a set
or map

resource "aci_bridge_domain" "count_bd" {
count = 4
tenant_dn = aci_tenant.count_tenant.id
relation_fv_rs_ctx = aci_vrf.terraform_vrf.id
description = "Created with Terraform count"
name = "bd_${count.index}"
arp_flood = "yes"

}

variable ”bds" {
default = ["prod", "dev", "test”]

}

resource "aci_bridge_domain" ”three_tier_bd" {
for_each = toset(var.bds)
tenant_dn = aci_tenant.count_tenant.id
relation_fv_rs_ctx = aci_vrf.terraform_vrf.id
description = "Created with Terraform for_each"
name = each.value

}

Deploying
Infrastructure as Code
with Terraform

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Terraform – CLI commands

BRKDCN-2906 72

• Scans the current directory for the configuration (.tf & .tfvars
extension)

• Preview your changes (can bypass with -auto-approve)
• Applies the configuration to targets (upon approval “yes”)

• Scans the state file for what to “destroy”
• Preview your deletions
• Infrastructure is destroyed
• Can be specific with “-target”

terraform plan

terraform apply

terraform destroy

terraform init

• Download and Installs plugins
for configured providers

• Must initialize before
plan/apply

• Creates a provider “lock” file

• Scans the current directory for the configuration (.tf & .tfvars extenstion)
• Determines what actions are necessary to achieve the desired state
• Preview your changes – no changes made

terraform {
required_providers {
aci = {
source = "CiscoDevNet/aci"

}
}

}

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Terraform – CLI commands

BRKDCN-2906 73

• Advanced State Management
• show <resource> – Shows a particular resource
• list – Lists all resources in current state file
• rm <instance> – Remove an instance from the state file
• mv – Move an item. Good for renaming resources

• Verifies correctness of Terraform configuration files (*.tf)

• Checks syntax
• Can be used to solve configuration of errors

terraform show

terraform state

terraform validate

terraform fmt • Formats Terraform
configuration files in directory

• Show the state file in a readable format

• Can also read a specific state file (path)

Reference Slide

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

D
e
p
lo

y
in

g
 A

C
I
In

fr
a
s
tr

u
c
tu

re
 -

T
e
rr

a
fo

rm

BRKDCN-2906 74

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Result

BRKDCN-2906 75

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Terraform Modules - Reusability

• Repeatable code that you can reuse

• Write your own or download (Terraform registry)

• Initialized via terraform init command

BRKDCN-2906 76

Prod

main.tf

variables.tf

three_tier.tf

Test

main.tf

variables.tf

three_tier.tf

Dev

main.tf

variables.tf

three_tier.tf

Three_tier

main.tf

variables.tf

outputs.tf

Modules

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Terraform Modules – Three Tier Application

BRKDCN-2906 77

resource "aci_tenant" "mod_tenant" {
name = var.tenant_name
description = "Created with Terraform Modules"

}

resource "aci_vrf" "mod_vrf" {
tenant_dn = aci_tenant.mod_tenant.id
name = var.vrf_name
description = "Created with Terraform Modules"

}

resource "aci_application_profile" "mod_ap" {
tenant_dn = aci_tenant.mod_tenant.id
name = var.ap_name
description = "Created with Terraform Modules"

}
...

Prod

three_tier

Modules

three_tier.tf three_tier.tf

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Terraform Modules – Three Tier Application

BRKDCN-2906 78

three_tierModules

resource "aci_tenant" "mod_tenant" {
name = var.tenant_name
description = "Created with Terraform Modules"

}

resource "aci_vrf" "mod_vrf" {
tenant_dn = aci_tenant.mod_tenant.id
name = var.vrf_name
description = "Created with Terraform Modules"

}

resource "aci_application_profile" "mod_ap" {
tenant_dn = aci_tenant.mod_tenant.id
name = var.ap_name
description = "Created with Terraform Modules"

}
...

three_tier.tf

variable "tenant_name" {
type = string

}

variable "ap_name" {
type = string

}

variable "vrf_name" {
type = string

}

variable "epg_name" {
type = string

}

variable "bd_name" {
type = string

}
...

versions.tf

terraform {
required_version = ">= 1.6.0"
required_providers {

aci = {
source = "CiscoDevNet/aci"
version = "2.11.1"

}
}

}

variables.tf
(match input variables)

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Terraform Modules – Three Tier Application

BRKDCN-2906 79

module ”devtenant" {
source = "../../MODULES/three_tier"
tenant_name = ”Dev"
vrf_name = ”dev_vrf"
ap_name = ”dev_app"
epg_name = ”dev_epg"
bd_name = ”dev_bd"
bd_subnet = "10.1.1.1/24"
bd_scope = ["public"]

...
}

Module Name

Path to module code

Input variables. Match the
variables in the Modules directory

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Terraform Modules – Three Tier Application

BRKDCN-2906 80

module "mytenant" {
source = "../../MODULES/three_tier"
tenant_name = "prod"
vrf_name = "prod_vrf"
ap_name = "prod_app"
epg_name = "prod_epg"
bd_name = "prod_bd"
bd_subnet = "10.1.1.1/24"
bd_scope = ["public"]

}

Prod
three_tier

Modules

three_tier.tf
resource "aci_tenant" "mod_tenant" {

name = var.tenant_name
description = "Created with Terraform Modules"

}

resource "aci_vrf" "mod_vrf" {
tenant_dn = aci_tenant.mod_tenant.id
name = var.vrf_name
description = "Created with Terraform Modules"

}

resource "aci_application_profile" "mod_ap" {
tenant_dn = aci_tenant.mod_tenant.id
name = var.ap_name
description = "Created with Terraform Modules"

}
...

three_tier.tf

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Deploying ACI Infrastructure - Terraform

BRKDCN-2906 81

Ansible and
Terraform
comparison

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Source Open Source Open Source

Cisco commitment Yes! Yes!

IaC Type Configuration Management Provisioning

Language Type Procedural Declarative

Stateful No Yes

ACI/MSO
Modules/Resources

149*/63* 230*/45*

Written in Python Go

TAC Support Yes Yes

* At the time of this presentation

Ansible/Terraform comparison

BRKDCN-2906 83

Feeling
Overwhelmed?

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

What is your path?

85BRKDCN-2906

I got this! I need help?!

Many Cisco
services

Checkout

@ World of Solutions

Services as Code

To assist you in your

automation journey

Many sessions
ciscolive.com@
with great material

DevNet
& developer.cisco.com

also

Next Steps

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Infrastructure as Code with Terraform and Ansible

• Install and test Terraform and Ansible

• Available for most platforms

• Which one works better for you?

• What are you already using?

• Think big…..start small

• Automate the simple, then build into more complex tasks

• Ease of writing Infrastructure as code with Terraform and Ansible

• No special programming skills needed

• Ansible Modules/Terraform Resources for most common tasks

• Robust APIC/MSO REST API makes automation easy and scalable

BRKDCN-2906 87

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

More information – Other sessions/labs

• LABDCN-1774 (Walk in Lab - Ansible and ACI)

• LABDCN-1776 (Walk in Lab - Intro to Terraform with ACI)

• BRKDCN-2673 - Nexus-as-Code - Kickstart your automation with
ACI

• DEVWKS-2931 - Making your ACI Automation as modular as LEGO
bricks using Terraform Modules

• DEVWKS-1098 - Infrastructure as Code on NX-OS using Terraform

• IBODCN-1003 - An Interactive Conversation on ACI Automation
through Ansible and Terraform

BRKDCN-2906 88

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

More information – Ansible/Terraform

• https://www.terraform.io/

• https://registry.terraform.io/providers/CiscoDevNet/aci/latest/docs

• https://registry.terraform.io/providers/CiscoDevNet/mso/latest

• https://developer.cisco.com/automation-terraform/

• https://docs.ansible.com/ansible/latest/scenario_guides/guide_aci.html

• https://developer.cisco.com/docs/aci/#!ansible

• https://developer.cisco.com/docs/nexus-as-code/

• https://github.com/trenzy

BRKDCN-2906 89

Thank youThank you

