cisco live!

Let's go

Network Best Practices for Artificial Intelligence Data Centre

Nemanja Kamenica, Technical Marketing Engineer

cisco ile

BRKDCN-2921

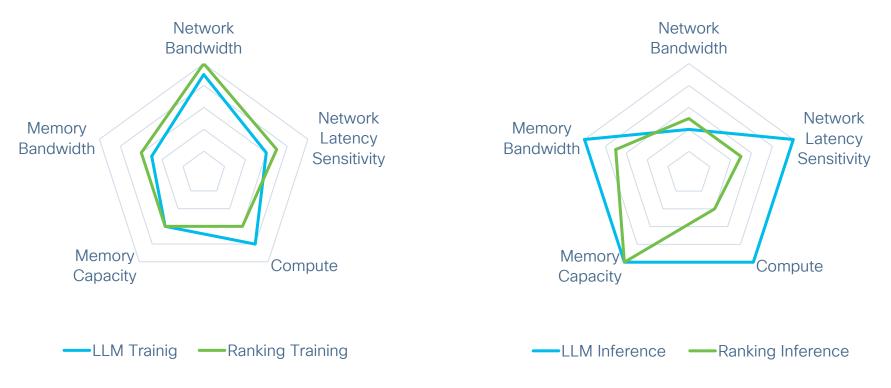
Agenda

- Why AI is important today and, in the future
- Network For AI Cluster
- Automation and Visibility
- The Blueprint For Today

Why Al is important today and, in the future

AI/ML Can Help Many Industries

Healthcare	Financial Services	Public Sector	Media and Entertainment	Manufacturing	Retail
Medical Risk Prediction	High Frequency Trading Analysis	Intelligent Public Transport	Speech Recognition	Visual Inspection	Personalized Recommendation
Early diagnostics	Quant Research	Security Log Analytics	Natural Language Processing	Anomaly Detection	Demand Forecasting
Medical Research	Fraud and Risk Analytics	Disaster Recovery Assistance	Content Classification	Asset Management	Visual Search


cisco ile

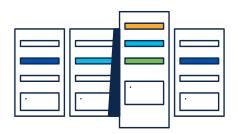
Al cluster types and interaction with network

	Distributed Training	Production Inference
Node to Node Bandwidth	High	Low
Key Metric	Training time of a model	High Availability and Latency
Operational Mode	Model training is offline	Usually online, requires real time response
Infrastructure requirement	Large network with many GPU/CPU hosts	Smaller network with mid size of CPU/GPU hosts

cisco ile!

Training vs Inference

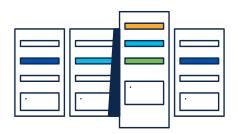
cisco live!


Large Scale Distributed Training

- Key Challenge of Training Cluster
 - Model Doubles every 2 mounts
 - Bigger model, higher accuracy
 - Most common single training runs on 512 GPUs

cisco live!

- Cluster Key Components
 - Compute Nodes
 - Network
 - Distributed File System/Storage
 - Job Scheduling and Orchestration
 - Software Framework for AI model

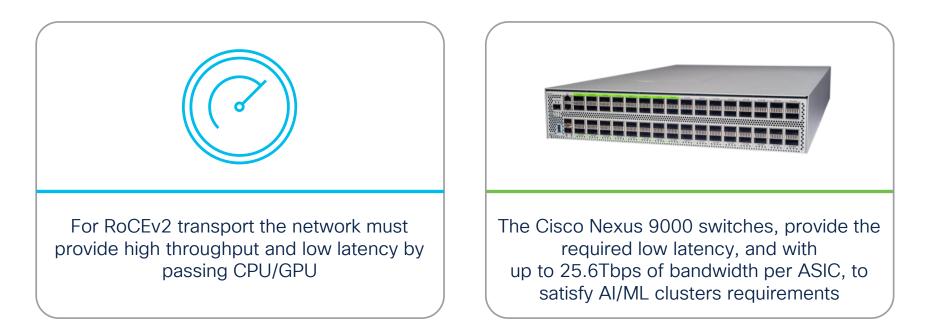


Large Scale Distributed Training

- Key Challenge of Training Cluster
 - Model Doubles every 2 mounts
 - Bigger model, higher accuracy
 - Most common single training runs on 512 GPUs

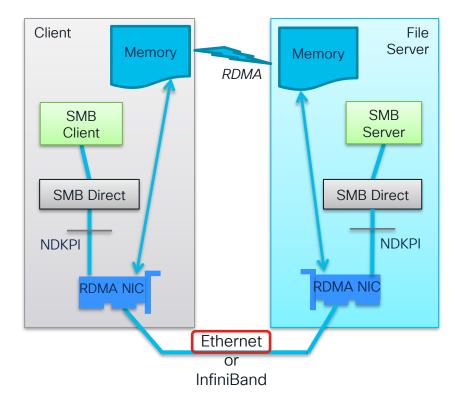


- Cluster Key Components
 - Compute Nodes
 - Network
 - Distributed File System/Storage
 - Job Scheduling and Orchestration
 - Software Framework for AI model



Network For AI Cluster

Al Training Network



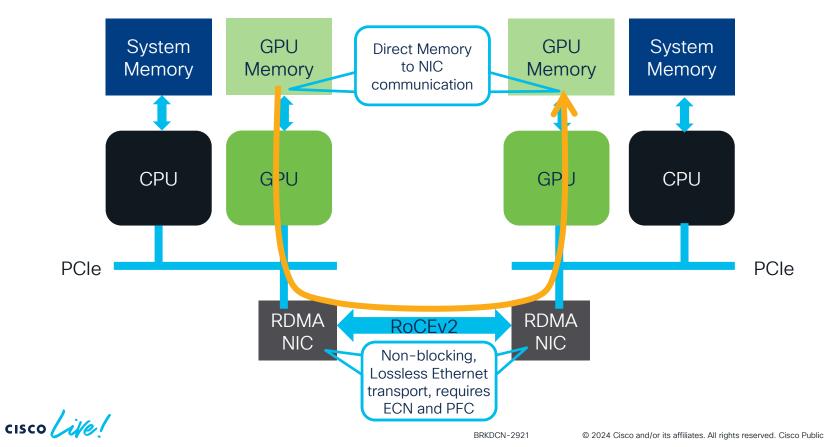
Shipping feature set with many customers in production

RDMA – Remote Data Memory Access

- Allows application software to communicate directly with the hardware (RDMA NIC)
- Bypasses OS stack
- RDMA delivers, low latency, high throughput, zero copy capabilities
- RDMA Hardware Technologies
 - RoCE: RDMA over Converged
 Ethernet
 - iWARP: RDMA over TCP/IP
 - Infiniband

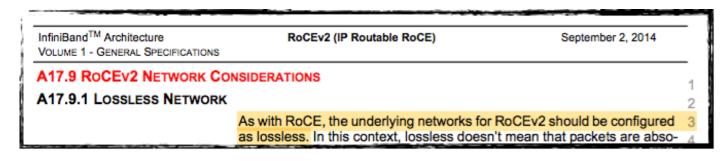
RoCEv2 - Basics

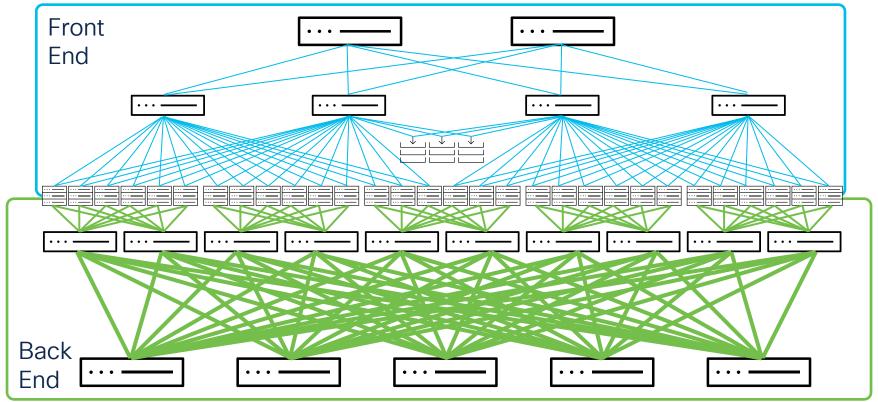
- Extension of RoCE protocol that involves a simple modification of the RoCE packet format
- Carry IP header and UDP header that serves as a stateless encapsulation layer for RDMA transport over IP


Source: https://en.wikipedia.org/wiki/RDMA_over_Converged_Ethernet

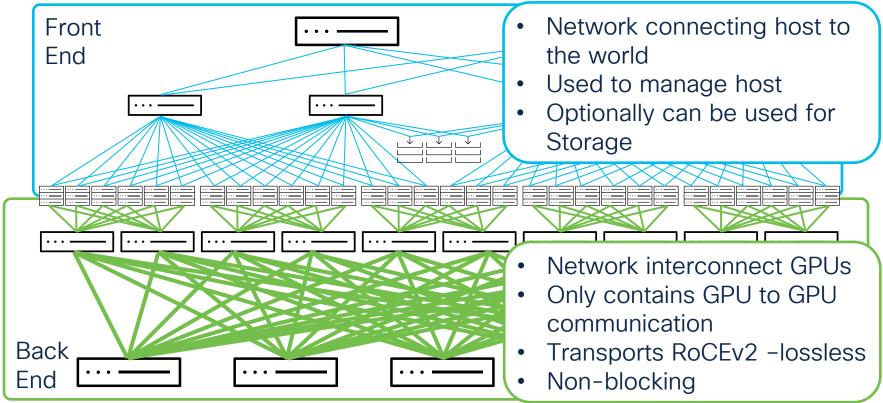
RoCEv2

- Uses well-known UDP Destination Port (dport) value 4791
- UDP Source Port (sport) serves as opaque flow identifier that can be used by networking infrastructure for packet forwarding optimizations (e.g., ECMP)
- Supports both IPv4 and IPv6
- Makes use of ECN field in IPv4/6 header for signaling of congestion

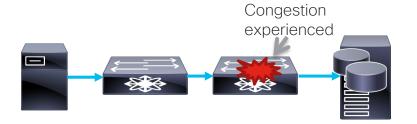

RoCEv2 – Benefits and Requirements


19

RoCEv2 End-To-End Lossless Behavior


- Requires PFC to be enabled for RoCEv2 transport
- Traffic priority to be preserved between Layer 2 and Layer 3 network
 - Packet/Flow identification follows standard practices of IP/Ethernet networks (i.e., DSCP/802.1Q)
- ECN marking (WRED or consider AFD)
- Configure ETS
 - 802.1Qaz ETS

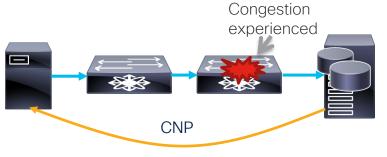
Non-blocking Network



Non-blocking Network

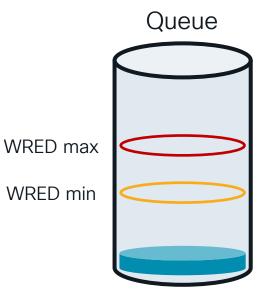
Explicit Congestion Notification (ECN)

- IP Explicit Congestion Notification (ECN) is used for congestion notification.
- ECN enables end-to-end congestion notification between two endpoints on IP network
- ECN uses 2 LSB of Type of Service field in IP header



ECN	ECN Behavior
00	Non ECN Capable
10	ECN Capable Transport (0)
01	ECN Capable Transport (1)
11	Congestion Encountered

Explicit Congestion Notification (ECN)


- IP Explicit Congestion Notification (ECN) is used for congestion notification.
- ECN enables end-to-end congestion notification between two endpoints on IP network
- ECN uses 2 LSB of Type of Service field in IP header
- In case of congestion, ECN gets transmitting device to reduce transmission rate using Congestion Notification Packet (CNP) without pausing traffic.

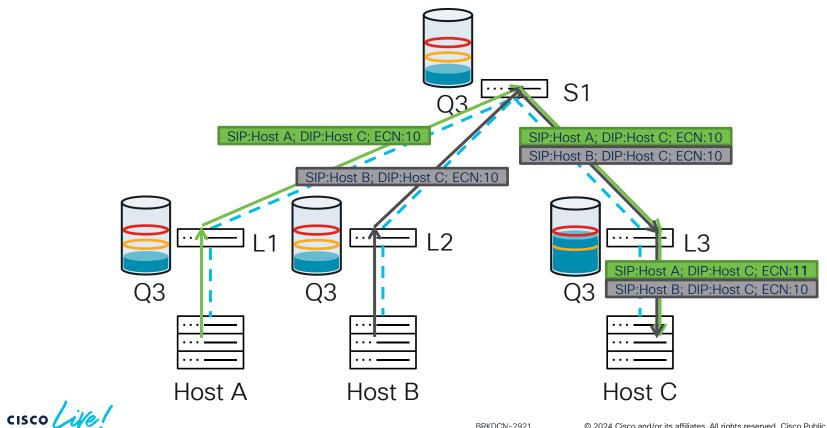
ECN	ECN Behavior
00	Non ECN Capable
10	ECN Capable Transport (0)
01	ECN Capable Transport (1)
11	Congestion Encountered

How does WRED ECN work?

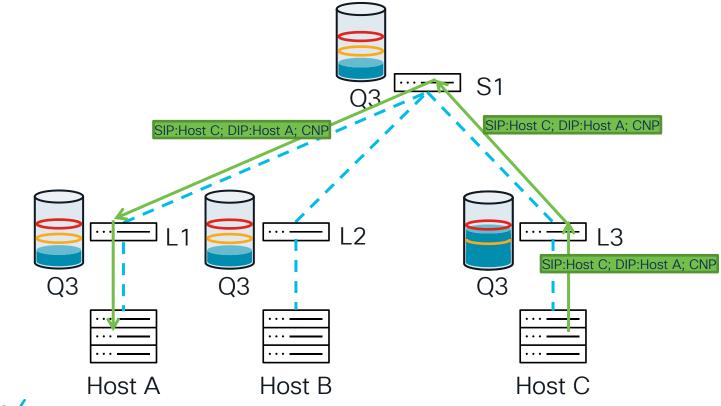
- WRED (Weighted Random Early Detection) is used to signalize severity of congestion
- ECN is not marked when buffer usage is below WRED min threshold

How does WRED ECN work?

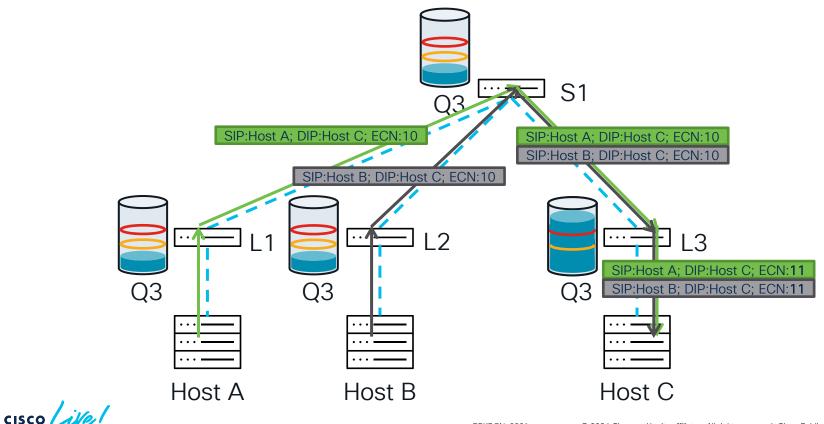
- WRED (Weighted Random Early Detection) is used to signalize severity of congestion
- ECN is not marked when buffer usage is below WRED min threshold
- When buffer usage is minimal threshold, Congestion Encountered will be marked on N number of randomly selected packets (probability parameter)

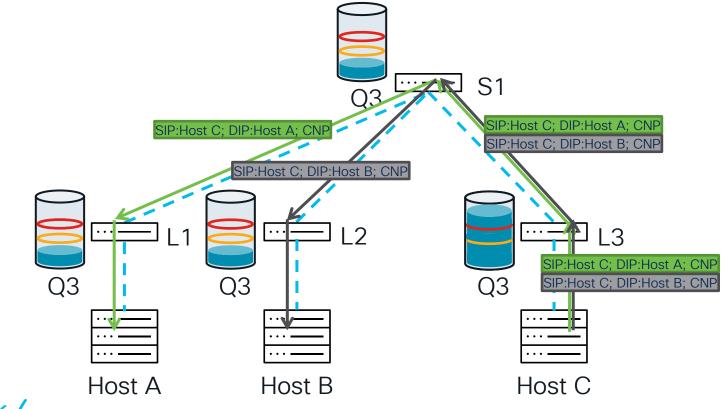

	Queue	
	\bigcirc	7
		L
WRED max		
WRED min		

How does WRED ECN work?


- WRED (Weighted Random Early Detection) is used to signalize severity of congestion
- ECN is not marked when buffer usage is below WRED min threshold
- When buffer usage is minimal threshold, Congestion Encountered will be marked on N number of randomly selected packets (probability parameter)
- After buffer usage crosses MAX threshold, every ECN capable packet will be marked with Congestion Encountered

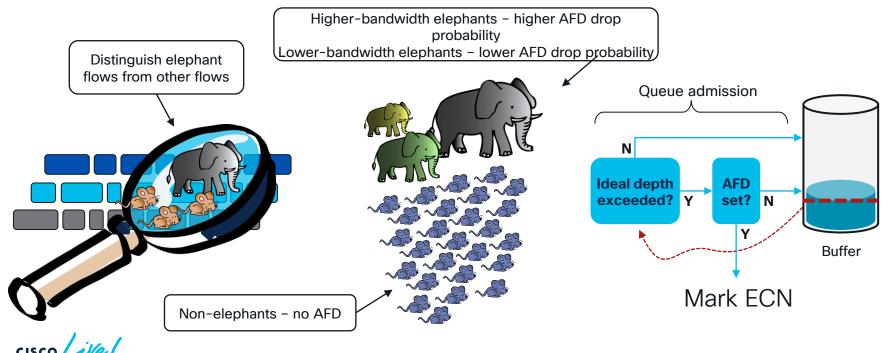
	Queue
	\bigcirc
WRED max	
WRED min	


 \cap



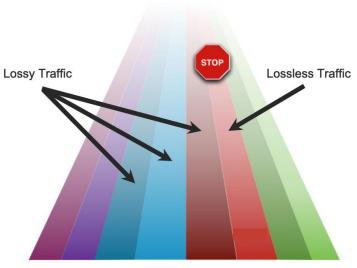
28

cisco / ile



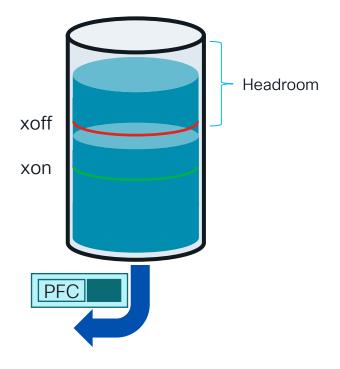
cisco live!

Approximate Fair Drop (AFD)

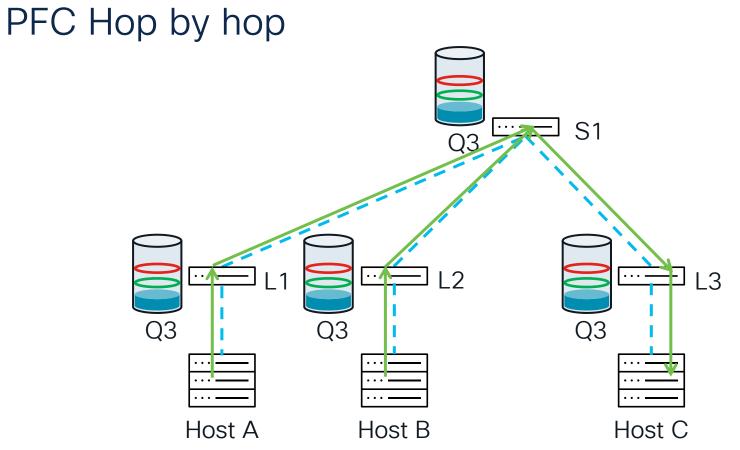

Maintain throughput while minimizing buffer consumption by elephant flows – keep buffer state as close to the ideal as possible

Priority Flow Control

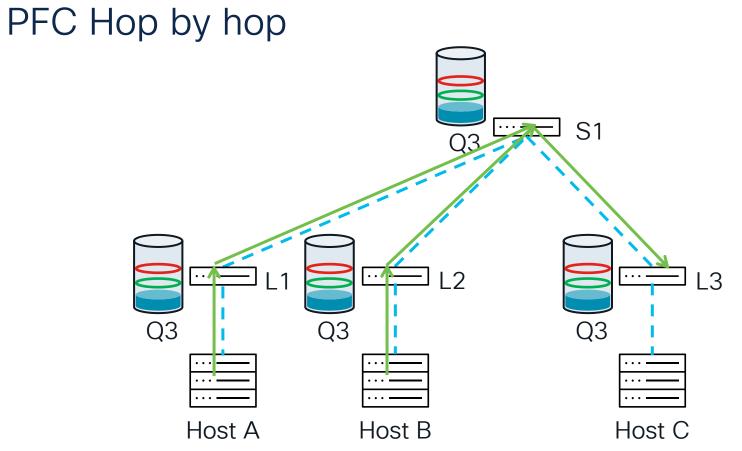
Flow Control Mechanism - 802.1Qbb


- · A.k.a "Lossless Ethernet"
- PFC enables Flow Control on a Per-Priority basis
- PFC is also called Per-Priority-Pause
- Therefore, we have the ability to have lossless and lossy priorities at the same time on the same wire
- Allows traffic to operate over a lossless priority independent of other priorities
- Other traffic assigned to other priority will continue to transmit and rely on upper layer protocols for retransmission

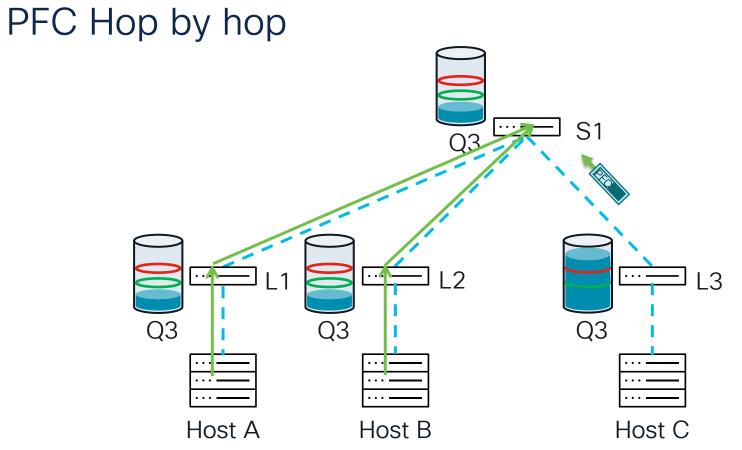
Ethernet Wire

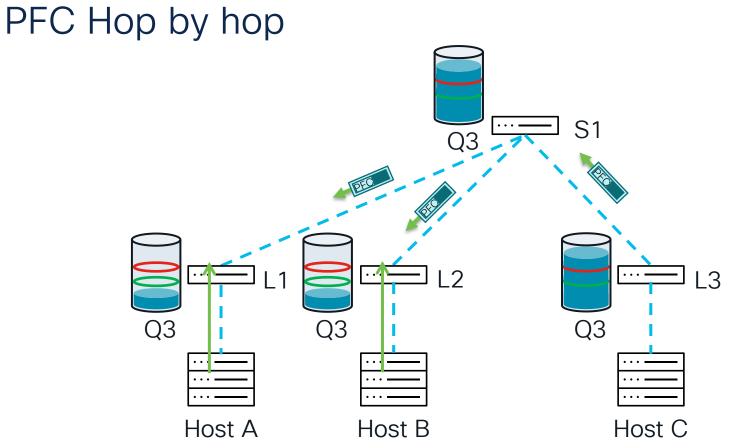

PFC – How pause frames are sent

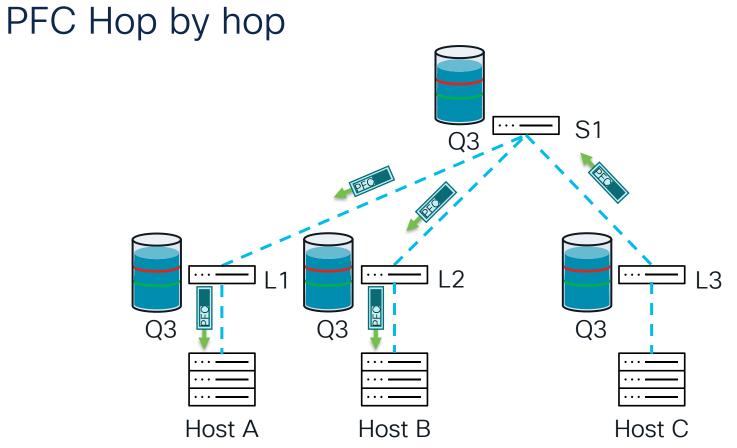
- PFC sets thresholds in no-drop queue
- Headroom is present to accommodate "in flight" packets
- Under congestion, traffic is buffered in non-drop queue
- PFC frames are sent toward sender after queue utilization exceeds *xoff* threshold
- While draining the queue, and utilization is below *xon* threshold system will stop sending PFC frames

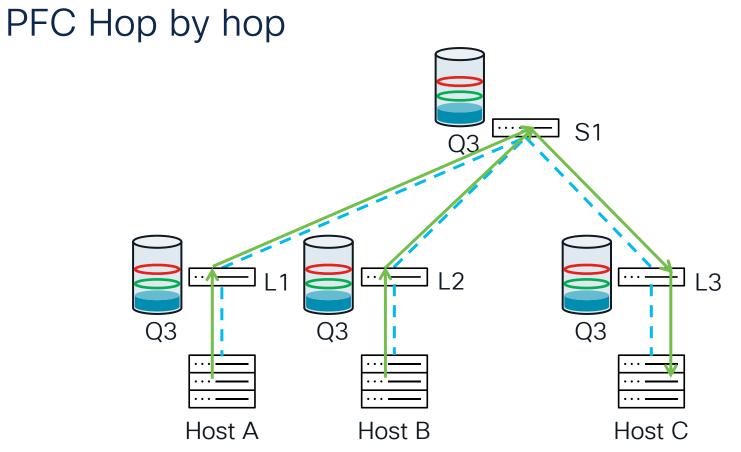


34

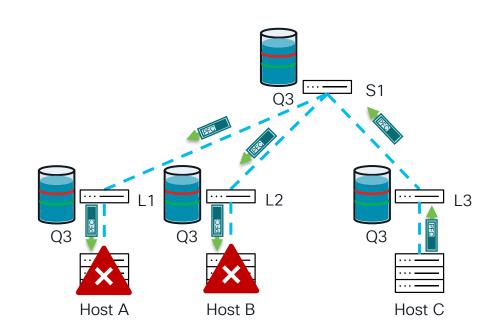



cisco live!


cisco live!


cisco live!

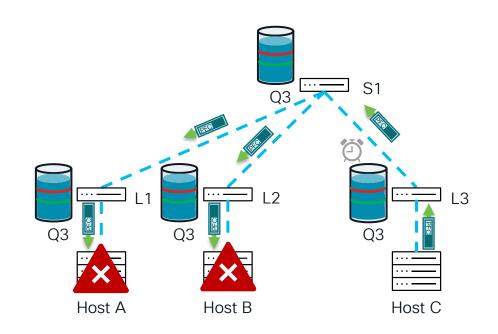
cisco live!


cisco live!

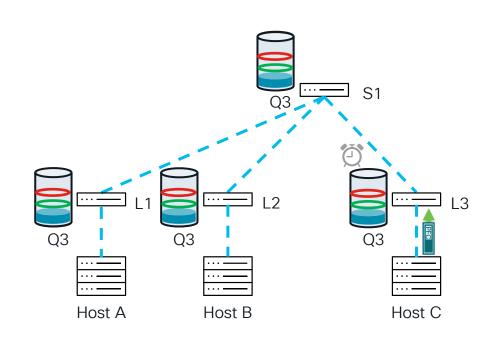
cisco live!

NIC PFC Storm

- In occasion of NIC malfunction, PFC storm can be triggered to send continues PFC frames in the network
- Network will propagate those frame to all senders
- PFC storm will stop traffic coming from sender
- PFC watchdog can drain the queue



https://www.microsoft.com/en-us/research/wp-content/uploads/2016/11/rdma_sigcomm2016.pdf


PFC Watchdog

- PFC watchdog sets a timeout, if a packet exceeds time out, all packets from a queue will be cleared
- The watchdog prevents PFC frames propagating to sender and blocking it
- PFC Watchdog is supported on Cisco Nexus 9000 switches

PFC Watchdog

- PFC watchdog sets a timeout, if a packet exceeds time out, all packets from a queue will be cleared
- The watchdog prevents PFC frames propagating to sender and blocking it
- PFC Watchdog is supported on Cisco Nexus 9000 switches

RoCEv2: PFC and ECN together

How does it work?

- WRED threshold are set low in no-drop queue
 - Signalize early for congestion, give enough time for end points to react
- PFC threshold are set higher than ECN
 - In case oversubscription buffers can be filled quickly without giving time to ECN to react
 - PFC will react and mitigate congestion

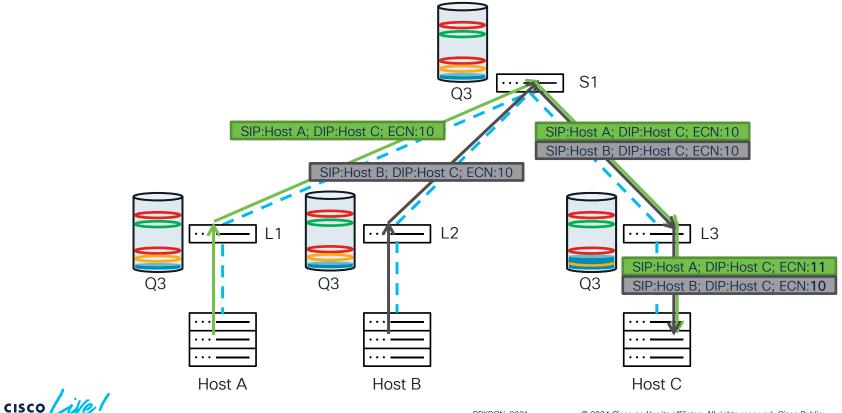
	No-Drop
	Queue
_	\frown
Headroom – PFC xoff	
PFC xon	\bigcirc
WRED max WRED min	

RoCEv2: PFC and ECN together

How does it work?

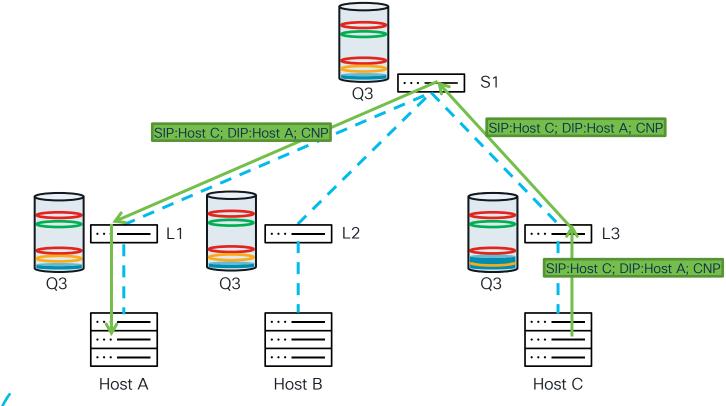
- WRED threshold are set low in no-drop queue
 - Signalize early for congestion, give enough time for end points to react
- PFC threshold are set higher than ECN
 - In case oversubscription buffers can be filled quickly without giving time to ECN to react
 - PFC will react and mitigate congestion

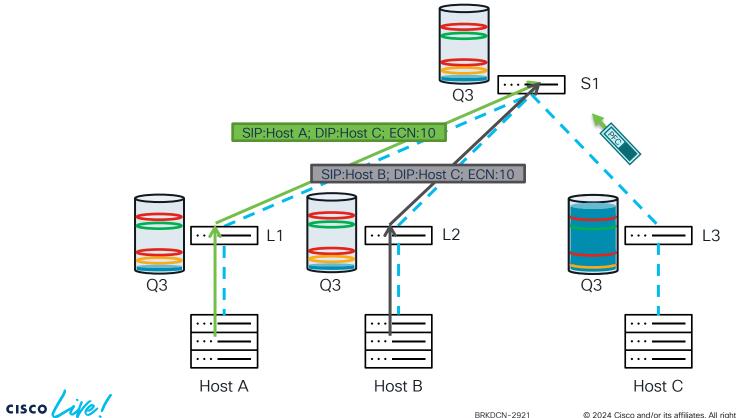
	No-Drop
	Queue
ſ	
Headroom –	
PFC xoff PFC xon	
WRED max WRED min	


RoCEv2: PFC and ECN together

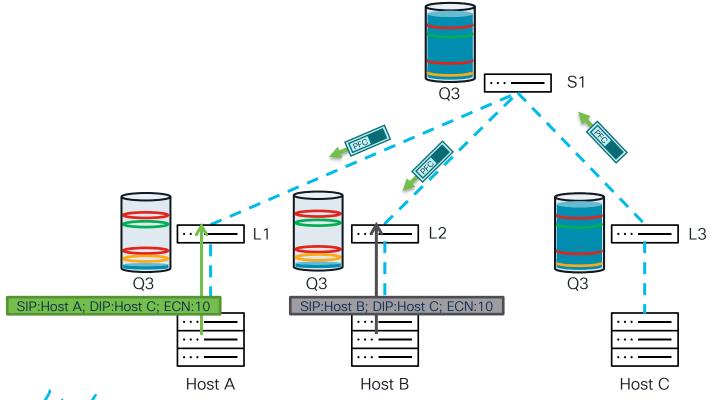
How does it work?

- WRED threshold are set low in no-drop queue
 - Signalize early for congestion, give enough time for end points to react
- PFC threshold are set higher than ECN
 - In case oversubscription buffers can be filled quickly without giving time to ECN to react
 - PFC will react and mitigate congestion

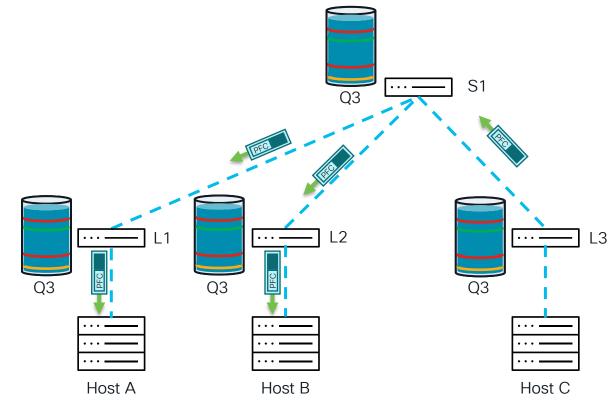

	No-Drop
	Queue
Γ	
Headroom –	
PFC xoff PFC xon	
WRED max WRED min	



BRKDCN-2921 © 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

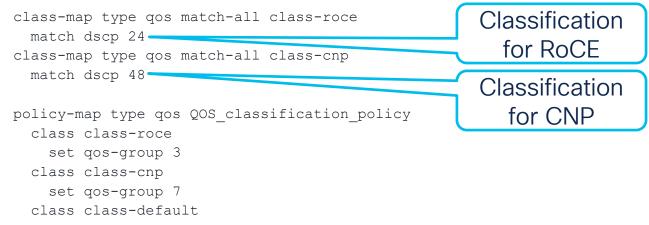

47

cisco live!



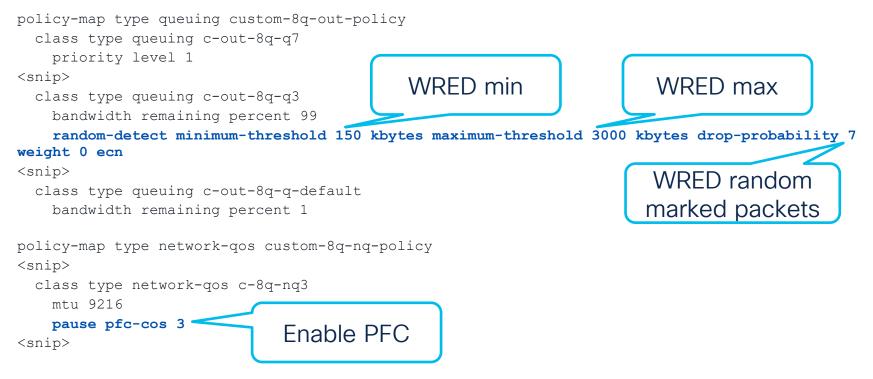
© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public 49

cisco ive!

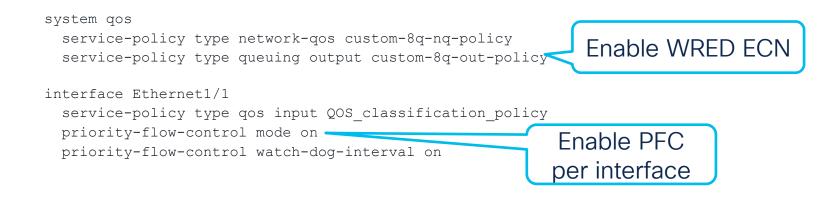

cisco ive

Quality of Service

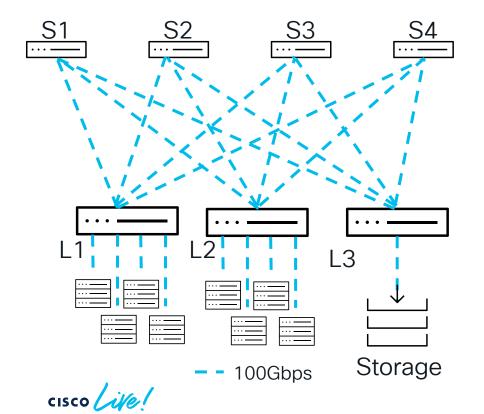
- Required separate queue for RoCEv2 traffic
 - Distinguished from other traffic in the port
 - Provide dedicated scheduling resources, to reduce latency
 - No contention for buffer resources with other traffic
 - RoCEv2 is not be part of strict priority queue, high volume of it might affect control plane
- RoCEv2 traffic requires ECN, PFC on the queue, while other traffic does not
- CNP traffic is part of strict priority queue, to deliver congestion signaling in time



Quality of Service- Configuration



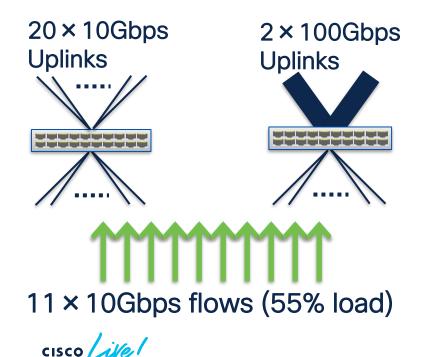
set qos-group 0

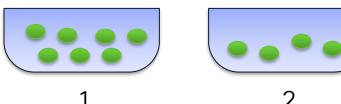

Quality of Service- Configuration

Quality of Service- Configuration

Non-blocking Network

- Non-Blocking Network, allow host to talk to other hosts at full bandwidth
- Leaf: Same bandwidth to the host as to the spine
- Reduces need for congestion management to increase performance


Traffic Load-balancing


Hashing – Where traffic goes?

• Avoid oversubscribing link, allow multiple paths to ECMP

Prob of 100% throughput = 3.27%

Prob of 100% throughput = 99.95%

Default ECMP algorithm

- By default, ECMP looks at source and destination IP and Layer 4 ports
- Hosts in AI fabric may belong to uniform subnets
- Layer 4 ports, destination port is 4791 for RoCEv2
- Entropy comes from Layer 4 Source Port

```
N9K-switch# show ip load-sharing
IPv4/IPv6 ECMP load sharing:
Universal-id (Random Seed): 2467474893
Load-share mode : address source-destination port source-destination
Rotate: 32
```

User Defined Field (UDF) ECMP algorithm

- UDF ECMP looks at source and destination IP and User Defined Field in a packet
- User can choose what field to look at to enhance entropy
- Every RoCE conversation is identified by Destinate Queue Pair, in IB header
- Destination Queue Pair is 3-byte field

```
N9K-switch# show ip load-sharing
IPv4/IPv6 ECMP load sharing:
Universal-id (Random Seed): 908907021
Load-share mode : address source-destination udf offset 33 length 24
Rotate: 32
```

User Defined Field (UDF) – Destination Q Pair


- UDF offset of Nexus 9000 switches starts from first byte of IP header
- Destination Q Pair is 33 bytes from beginning of IP field (IP (20B) + UDP (8B) + IB (5B)) or 6th byte in InfiniBand header

lo.		Time	Source	Destination	Protocol	Length	Info									
	1	0.000000000	172.16.103.11	172.16.101.11	RRoCE	1086	RC	RDMA	Read	Respons	e Mi	dle	QP=0>	000a1	.9	
	2	0.000020260	172.16.103.11	172.16.101.11	RRoCE	1086	RC	RDMA	Read	Respons	e Mi	dle	QP=0>	000a1	.9	
	5	0.116549167	172.16.103.11	172.16.104.11	RRoCE	78	RC	RDMA	Read	Request	QP=	0×00	0a00			
	6	0.116561041	172.16.103.11	172.16.104.11	RRoCE	78	RC	RDMA	Read	Request	QP=	0×00	00a0			
_	7	0.122176963	172.16.103.11	172.16.112.11	RRoCE	1086	RC	RDMA	Read	Respons	e Mi	dle	QP=0>	00090	13	
-	8	0.122185013	172.16.103.11	172.16.112.11	RRoCE	1086	RC	RDMA	Read	Respons	e Mi	dle	QP=0>	00090	13	
	9	0.236039751	172.16.103.11	172.16.101.11	RRoCE	78	RC	RDMA	Read	Request	QP=	0×00	0a19			
	10	0.236050373	172.16.103.11	172.16.101.11	RRoCE	78	RC	RDMA	Read	Request	0P=	0×00	0a19			
_	_															
Er		7: 1096 bytes	on wire (9699 hit	s), 1086 bytes captured			int		030	ff ff ØØ	00	20 A	00 1	4 7	2 81	f
				ab (b8:ce:f6:c4:7c:ab),						64 3d 50					3d	
					DSC: CIS	20_23:0	5:9			1b 3d fo					7 3d	
			PRI: 0, DEI: 0, I					0	060	a2 3c 41	94	47 3	d 00 2	4 f4	l 3a	bo
				.16.103.11, Dst: 172.16	.112.11			0	070	8c 3d 89	88	16 3	d 9d (:4 a() 3c	b5
			col, Src Port: 491	52, Dst Port: 4791						57 3d a3					i 3d	
 In 	fini	Band								a2 3d 43					5 3d	
\sim	Base	e Transport H	eader							0c 3b 45					2 3d	
	0	pcode: Reliab	le Connection (RC)	- RDMA READ response M	1iddle (14)				1a 3d b5					1 3c	
			licited Event: Fal							57 3d 6d					a 3a	
	-	1 = Mi								ad 3c 5c 31 3d 60					2 3c	
		.00 = Pa								31 30 66 10 3d 65					i 3d	
										81 3d 5d					2 3d	
			ader Version: 0							0f 3d 88					3c	
		artition Key:	65535							8d 3d a7					* 3c	
	R	eserved: 00								17 3d 5b					7 3a	
	D	estination Qu	eue Pair: 0x000903					0	140	a1 3d d9	f9	45 3	d eb 6	ia 10	3c	03
	0	= Ac	knowledge Request:	False				0	150	06 3d 73	c4	50 3	d b1 8	d a	3 d	56
		000 0000 = Re	served (7 bits): 0							7a 3c a0					1 3c	
	P	acket Sequenc	e Number: 1340033							28 3d eo					3 3 c	
		ariant CRC: 0								13 3d 4b					3 c	
Da										53 3a 53					L 3d	
/ Da	ta (1024 bytes)						0	1a0	91 3d f4	44	59 3	ат28	se 96) 3d	Øb

Automation and Visibility

Nexus Dashboard Fabric Controller

Create Fabric

 $? - \times$

I9K Cloud Scale Platform Queuing Policy			
Select an Option	~	Queuing Policy for all 92xx, -EX, -FX2, -FX3, -GX	
)	series switches in the fabric	
I9K R-Series Platform Queuing Policy			
Select an Option	~]	Queuing Policy for all R-Series switches in the fabric	
ther NOK Platform Quanting Policy			
ther N9K Platform Queuing Policy			
Select an Option		Queuing Policy for all other switches in the fabric	
nable AI / ML QoS and Queuing Policies			
A I / ML QoS and Queuing Policies		Configures QoS and Queuing Policies specific to N9K Cloud Scale switch fabric for AI / ML network loads	
2			
		Cloud Scale switch fabric for AI / ML network loads	
2	~	Cloud Scale switch fabric for AI / ML network loads Queuing Policy based on predominant fabric link speed:	
/ ML QoS & Queuing Policy*		Cloud Scale switch fabric for AI / ML network loads	
/ ML QoS & Queuing Policy*		Cloud Scale switch fabric for AI / ML network loads Queuing Policy based on predominant fabric link speed:	
I / ML QoS & Queuing Policy* Al_Fabric_QOS_100G	~ ~	Cloud Scale switch fabric for AI / ML network loads Queuing Policy based on predominant fabric link speed:	
AI_Fabric_QOS_400G		Cloud Scale switch fabric for AI / ML network loads Queuing Policy based on predominant fabric link speed: 400G / 100G / 25G	

cisco live!

Nexus Dashboard Fabric Controller

Edit interface(s)

 $? - \times$

	Additional CLI for the interface
Enable Interface*	
	Uncheck to disable the interface
Enable Netflow	
	Netflow is supported only if it is enabled on fabric
Netflow Monitor	
	Provide the Layer 3 Monitor Name
Netflow Sampler	
	Netflow sampler name, applicable to N7K only
Enable priority flow control	Enable priority flow control
Enable QoS Configuration	
	Enable to configure a QoS Policy for this interface. If AI/ML
	Queuing is enabled on the fabric, will use the QOS,CLASSIFICATION policy. Enter a custom policy below to
	QUS_CLASSIFICATION policy. Enter a custom policy below to override
Custom QoS Policy	
	Custom QoS Policy must be defined previously
Custom Queuing Policy	
	Queuing Policy must be defined previously

Visibility - Flow Table

- Collects full flow information plus metadata
 - 5-tuple flow info
 - Interface/queue info
 - Flow start/stop time
 - Packet disposition (drop indicators)
 - Burst measurement
- Export date to collector
- Leveraged by Nexus Dashboard Insights

Cisco Nexus Dashboard Insights

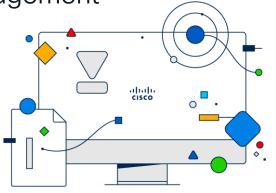
With the granular visibility provided by Cisco Nexus Dashboard Insights the network administrator can observe drops

Tune thresholds until congestion hot spots clear and packet drops stop in normal traffic conditions This is the first and most important step to ensure that the AI/ML network will cope with regular traffic congestion occurrences effectively

Nexus Dashboard Insights - Congestion Visibility

cisco Nexus Dashboard	Interface Details for eth1/3 on RoCE-3	Spine-2			★ 🕅 ×
(한: Overview (한) Operate	Overview Trends and Statistics Anomalies				
AnalyzeConfigure	Congestion				
ao Admin	ECN	→ PFC Receive 232 pkts	-	PFC Transmit 30460 pkts	→
ExploreBookmarks					
	। 37,209 pkts _70000 pkts _35000 RN& 25th 2023, 4:05 PM Nov 25th 2023, 4:45 PM Nov 25th 2023, 5:40	232 pkts - 120 pkts - 60 pkts Nov 25th 2023, 4:05 PM Nov 25th 2023, 4:45 PM	Nov 25th 2023, 5:40 PM	-30490 pkts _ 16000 pkts _ 8000 Rkts _ 8000 Rkts 25th 2023, 4:05 PM	Nov 25th 2023, 4:45 PM Nov 25th 2023, 5:40 PM
	Microbursts Microbursts by Number of Bursts				
	Queue 🔺 Start Time Nu	mber of Bursts Max Duration (ns)	Avg Duration (ns)	Max Peak	Avg Peak
	queue-3 Nov 25 2023 60 05:40:00.00000 PM	466.61 ns	185.26 ns	2,231,424	1,424,765
	10 V Rows				Page 1 of 1 << < 1-1 of 1 >>>

cisco live!

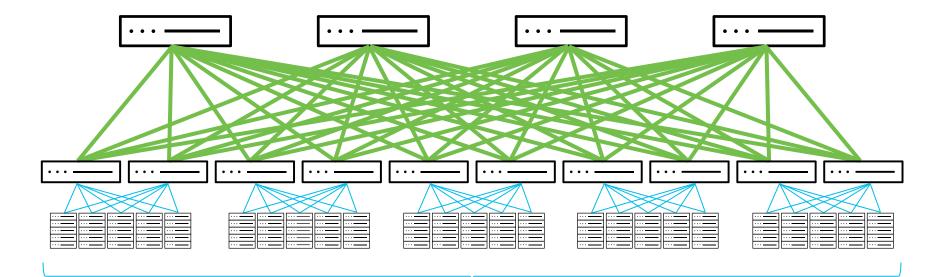

Blueprint of Today

cisco live!

Choosing the right infrastructure

- Build a Clos Fabric / Spine-Leaf
- Fixed Switches
 - Lower Latency, single AISC
 - Power Efficient
- Right Congestion management

- Routed Fabric
 - Use BGP for control plane
- Scalable design
 - Two tier design
 - Three tier design

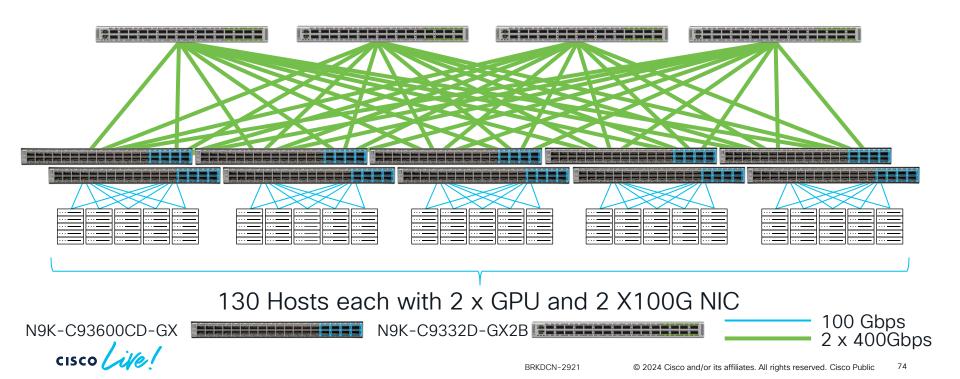

Customer Request #1

- Build Cluster of 260 GPUs, for small training model use case
 - Cluster is bult with stand alone server (e.g. Cisco UCS-C240-M7)
- Build non-blocking network, for GPU communication
- Predictable and low latency for efficient training
- Host connectivity at dual100Gbps
- Fabric at 400Gbps for efficient load-balancing

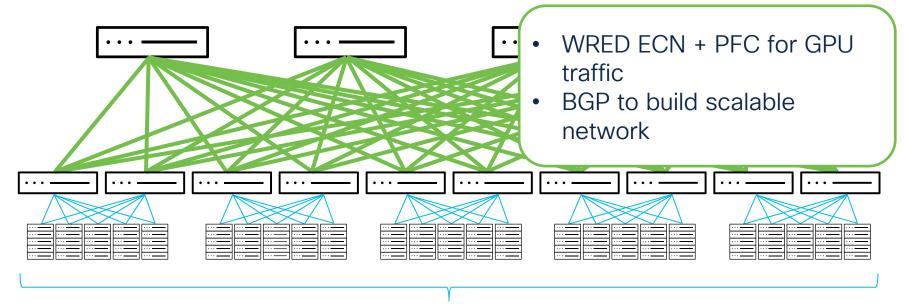
Customer Request #1 - Proposal

- Standalone server can have up to 2 GPUs
 - As required is 260 GPUs, 130 Stand alone servers are needed
 - Each standalone server is equipped with dual 100G port NIC
- 260 x 100G ports required for host connectivity in leaf layer
 - 26 x 100G host interfaces per leaf switch, for 10 leaf switches
 - For seeped up have 8 x 400G uplinks per switch for Spine connectivity
- Total of 4 spines 20 x 400G ports used per Spine
- Leave room for future expansion

Customer Request #1 - Design


130 Hosts each with 2 x GPU and 2 X100G NIC

cisco ile


100 Gbps 2 x 400Gbps

73

Customer Request #1 - Design

Customer Request #1 - Design

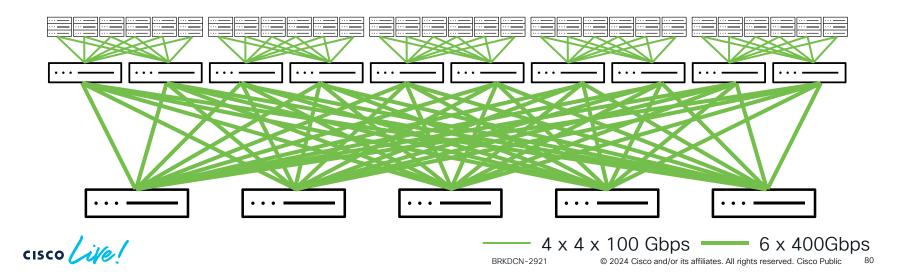
130 Hosts each with 2 x GPU and 2 X100G NIC

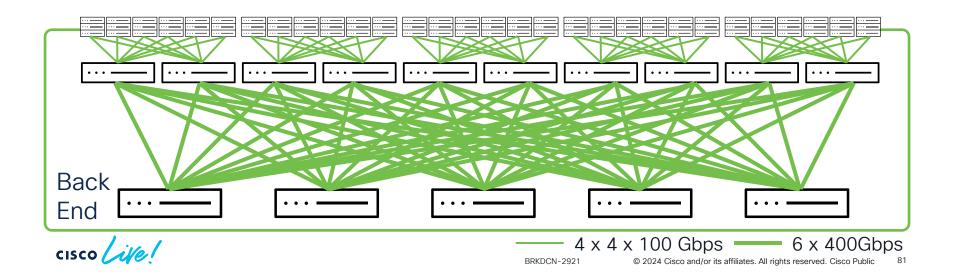
cisco ile

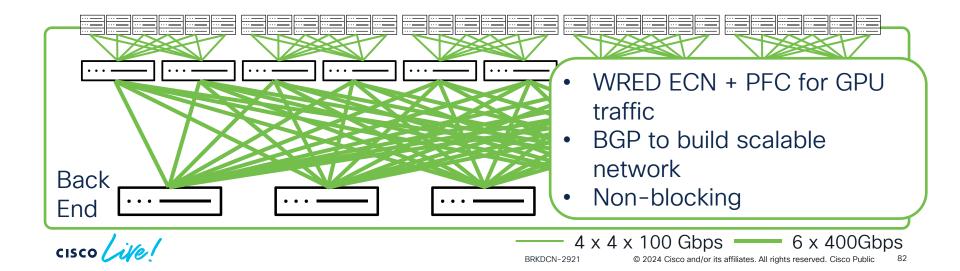
100 Gbps 2 x 400Gbps

Customer Request #2

- Build Powerful Cluster of 320 GPUs, for large training model use case
 - Cluster is bult with powerful accelerators (e.g. NVIDIA DGX, Intel Gaudi)
- Build non-blocking back-end network, for GPU communication
 - Predictable and low latency for efficient training
 - Host connectivity at 8 ports of 4 x 100Gbps (Logical 400Gbps)
 - Fabric at 400Gbps for efficient load-balancing
- Build front-end network, for server-to-server interaction, and storage connectivity
 - 2 x 100Gbps ports for connectivity, non-blocking and future expansion

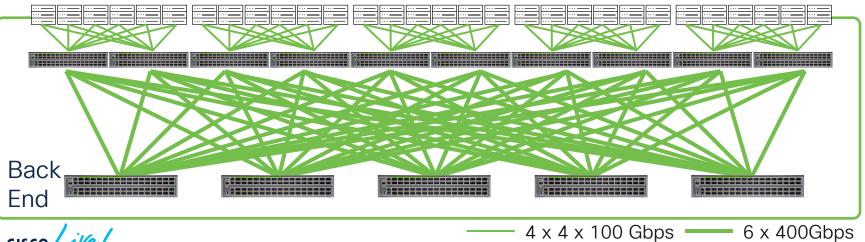

Customer Request #2 – Proposal for Back-End


- Powerful AI training accelerator, has 8 GPUs per server
 - As required is 320 GPUs, 40 host are sufficient
 - Each host is equipped with 4 NICs each with dual QSFP-DD ports
- 320 x 400G ports required for host connectivity in leaf layer
 - 32 x 400G host interfaces per leaf switch, for 10 leaf switches
 - Non-blocking network 32 x 400G uplinks per leaf for Spine connectivity
- Total of 5 spines 64 x 400G ports used per Spine

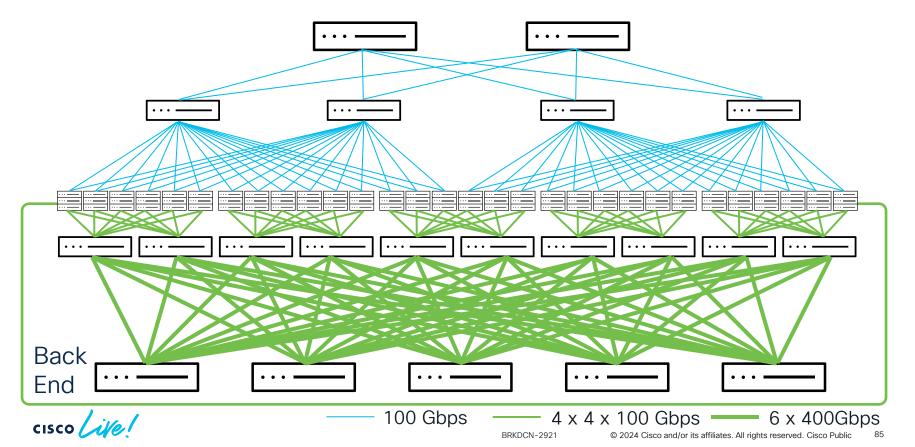


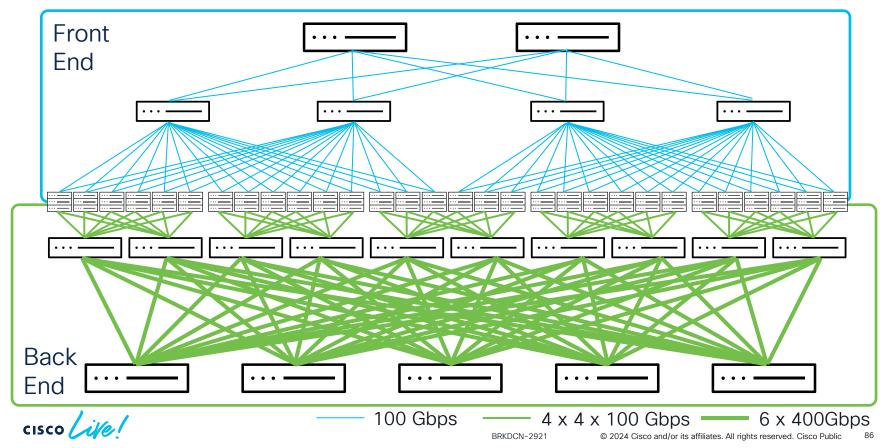
40 Hosts each with 8 x GPU

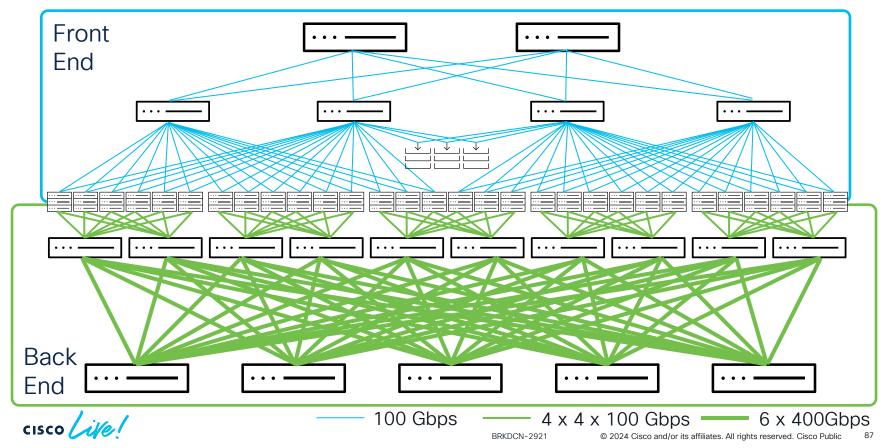
cisco ile



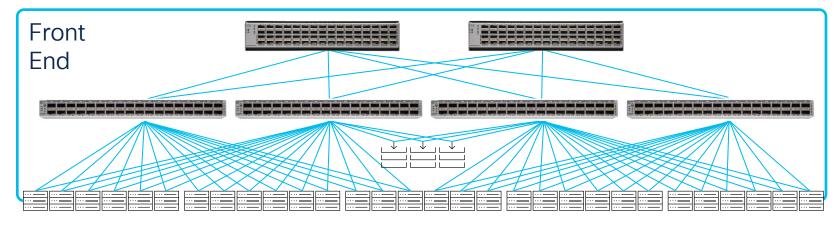
N9K-C9364D-GX2A

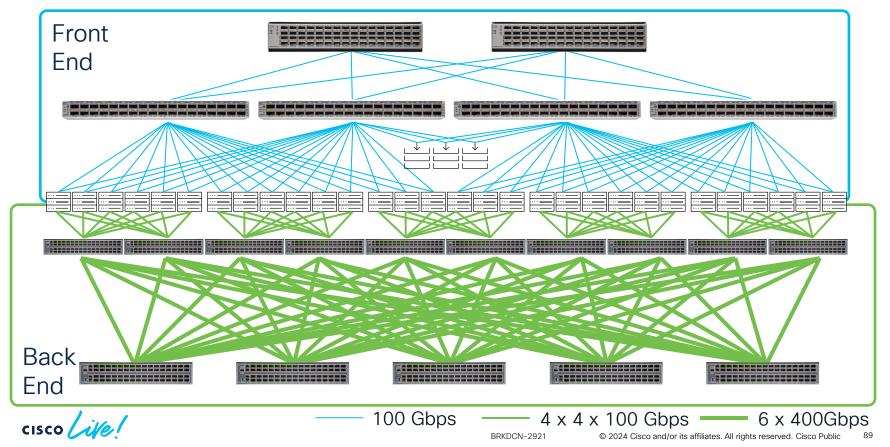

BRKDCN-2921

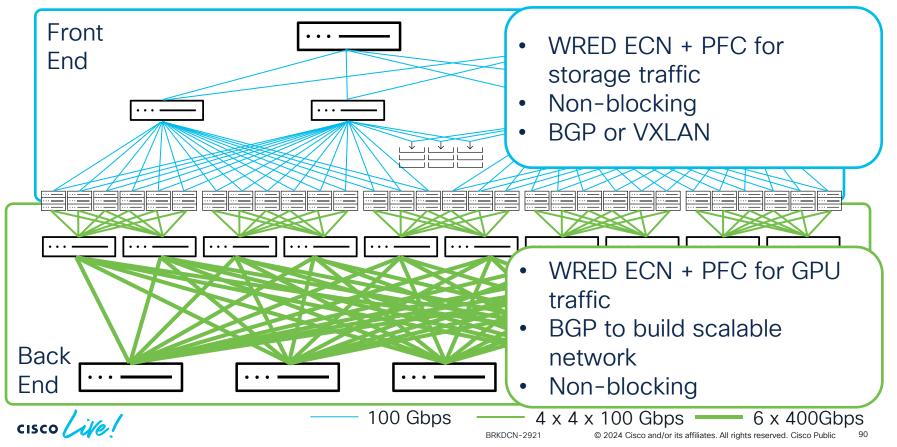

cisco live


83

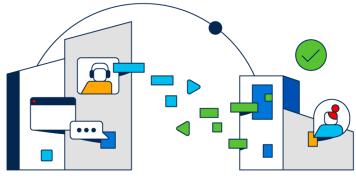
Customer Request #2 – Proposal for Front-End


- Front End network for host communication, and storage
 - Each server has 2 x 100G ports
- 80 x 100G ports required for host connectivity in leaf layer
 - 20 x 100G host interfaces per leaf switch, for 4 leaf switches
 - Non-blocking network 20 x 100G uplinks per leaf for Spine connectivity
- Total of 2 spines 64 x 100G ports used per Spine
- Storage NFS network in Front End
 - 3 Storage array connected to leaf
 - RoCEv2 for storage networks




Front-End Cluster Network

cisco live



Conclusion

Takeaways

- Robust back-end network, and flexible front-end network
- Familiar data center fabric technologies, BGP or VXLAN
- Automate network for easier bring up and operation
- Visibility in network congestion, and bottleneck to troubleshoot and optimize

The Blueprint For Today

Products and Services Solutions Support Learn Partners

Explore Cisco Search Q

Products & Services / Cloud and Systems Management / Cisco Nexus Dashboard Fabric Controller / White Papers /

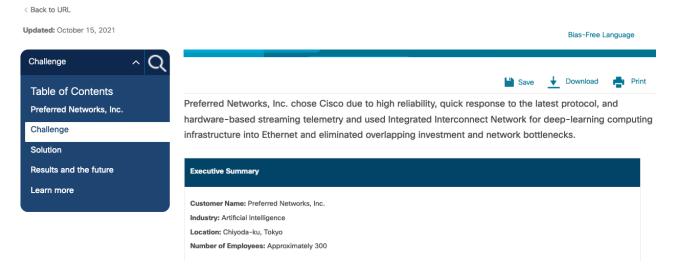
Cisco Data Center Networking Blueprint for AI/ML Applications

Updated: May 24, 2023 Bias-Free Language Contact Cisco V ~ Q Introduction Download Print Save Table of Contents Introduction Introduction RoCEv2 as Transport for AI Clu... **RoCEv2 as Transport for AI Clusters** Al Clusters Require Lossless N... + AI Clusters Require Lossless Networks How to Manage Congestion Eff... + **Explicit Congestion Notification (ECN)** How Visibility into Network Be ... + Priority Flow Control (PFC) How to Manage Congestion Efficiently in AI/ML Cluster Networks Network Design to Accommod ... + How ECN Works Conclusion How PFC Works **Related Materials** Using ECN and PFC Together to Build Lossless Ethernet Networks Using Approximate Fair Drop (AFD)

The Blueprint For Today

Product × Solutions × Open S	ource V Pricing	Search	Sign in Sign up
allenrobel / NDFC-AIML-Fabric Public			다 Notifications 약 Fork 0 ☆ Star 0 +
<> Code Ssues Sh Pull requests Actions	Projects ① Security 🗠 Insights		
🐉 main 👻 🗘 1 branch 🚫 0 tags		Go to file Code 🗸	About
allenrobel Ignore .graffle files	6101d38 47 r	ninutes ago 🕚 10 commits	Ansible playbook to create an NDFC fabric which supports Al/ML workloads
doc	Update with current 'show running-config ipqos'	1 hour ago	C Readme
inventory	Initial commit	5 days ago	☆ 0 stars ⊙ 2 watching
🗋 .gitignore	Ignore .graffle files	47 minutes ago	양 0 forks
AIML_Fabric.yml	Template name will probably change, so let's not hardcode in	2 hours ago	Report repository
AI_Cluster_QOS_template.template	Adding new QOS template	2 hours ago	
C README.md	Add topology diagram	5 days ago	Releases
ansible.cfg	Initial commit	5 days ago	No releases published
≘ README.md			Packages
NDEC-AIMI - Fabric			No packages published

A la a · · · 4


cisco

The Blueprint For Today

Products and Services Solutions Support Learn Partners

Explore Cisco Search Q

Preferred Networks, Inc. Eliminates Overlapping Investment and Network Bottlenecks

Related sessions

Session ID	Session Title	Day and Time
IBODCN-1010	An Interactive Conversation: AI/ML Networking Requirements and Blueprint	Wednesday, Feb 7, 11:30 AM Thursday, Feb 8, 5:15 PM
BRKDCN-2999	Multi-Tier Fabric-Networks Designs for the Modern Data Center	Thursday, Feb 8, 10:45 AM
BRKDCN-1619	Introduction to NDFC: Simplifying Management of Your Data Center	Tuesday, Feb 6, 3:30 PM
PSODCN-1732	Unlocking the Potential of AI/ML Workloads in Cisco Data Center Networks With Cisco Nexus 9000 Series Switches	Wednesday, Feb 7, 2:10 PM

Thank you

cisco live!

cisco live!

Let's go