

cisco *Live!*

Let's go

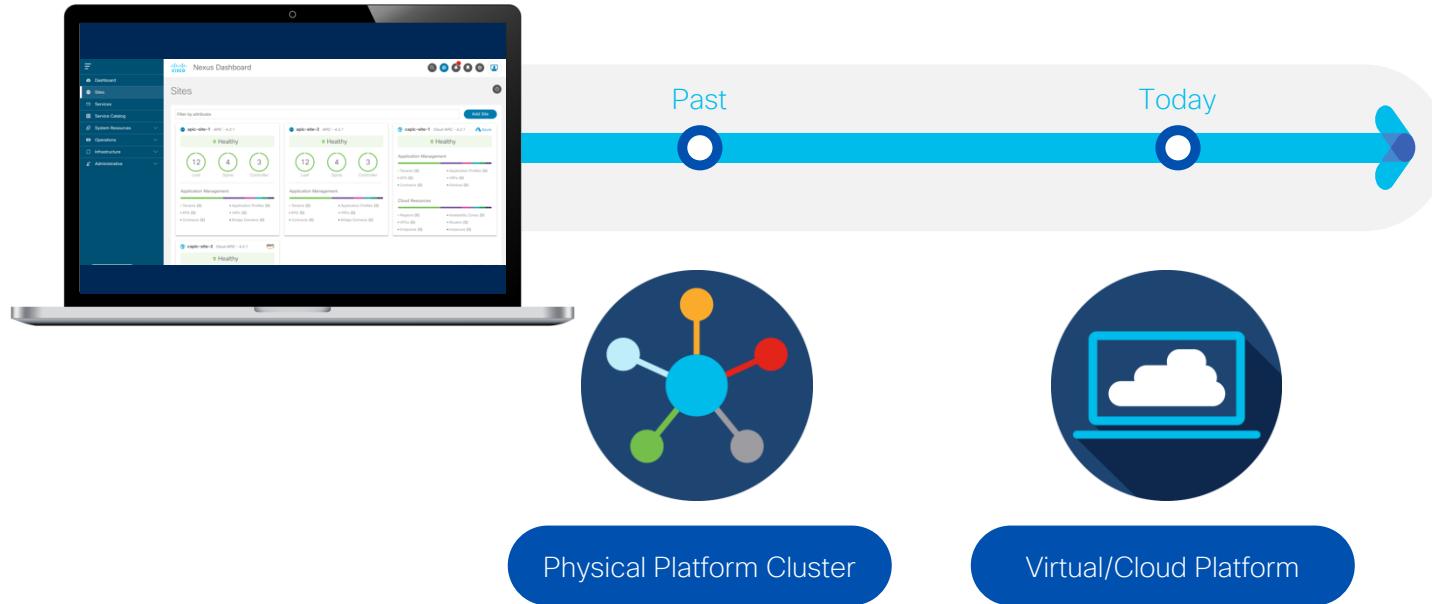
The bridge to possible

Deploying Nexus Dashboard in your Organization

Matthias Wessendorf, Principal Engineer
@matteq4er

Agenda

- Introduction
- What is Nexus Dashboard?
A view under the hood
- Deploying Nexus Dashboard
- Operating Nexus Dashboard
- Summary

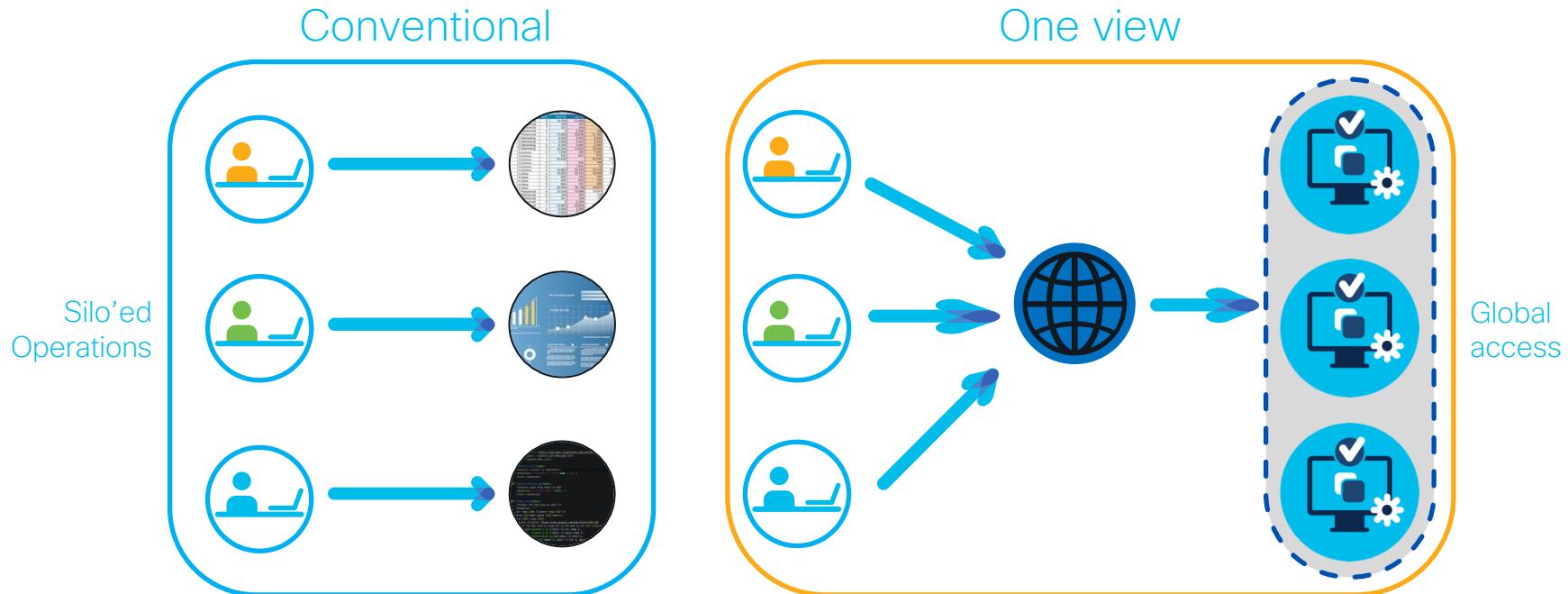

At the end of the session you will ...

- Be able to define the requirements for deploying a Nexus Dashboard in your Organisation. By describing the
 - Deployment model, centralized vs. stretched
 - Network requirements and attachment to the network
 - Sizing a Nexus Dashboard for the different services.

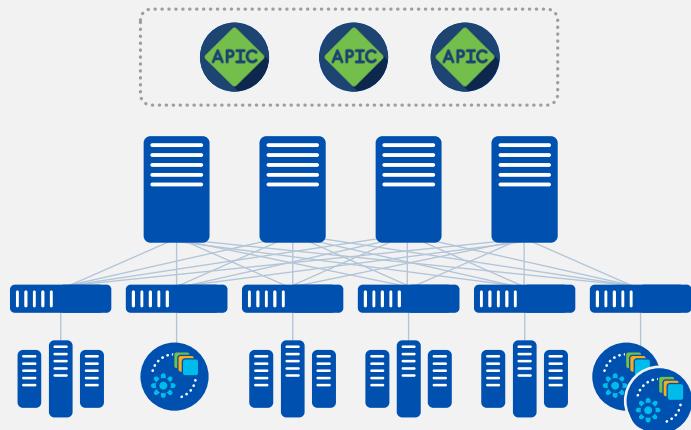
Introduction

Nexus Dashboard

Deployment evolution


Nexus Dashboard

Simple to automate, simple to consume


Consume all services in one place

Nexus Dashboard: One view

Cisco Nexus Dashboard Platform

Modern Scale-out application services stack to host data center operations applications

Nexus
Dashboard
Insights

3rd Party
apps

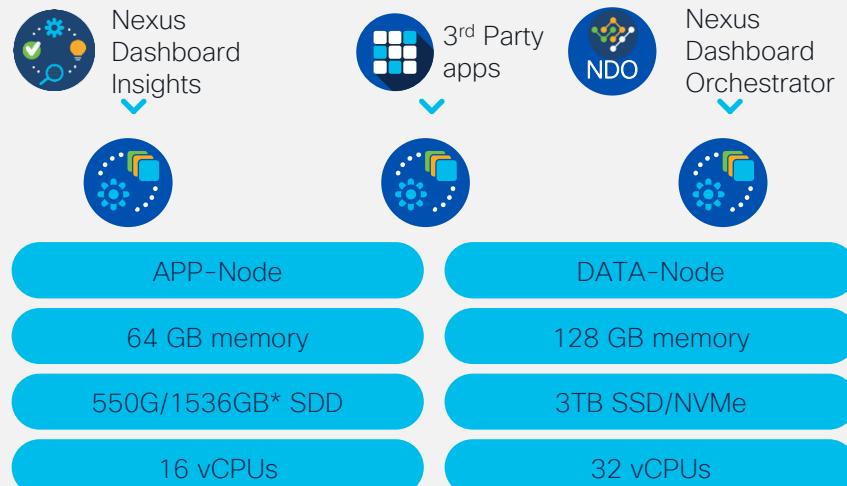
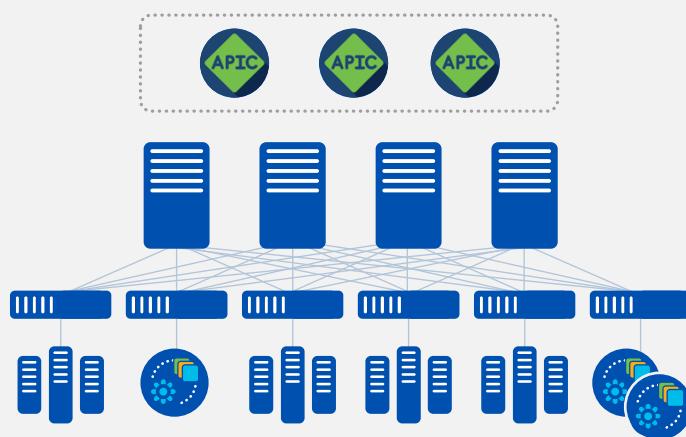
Nexus
Dashboard
Orchestrator

2.2 GHz(Node-G2) or 2.8Ghz(Node-G4) CPU x 2

256 GB memory

2.4 TB x 4 HDD

10G/25G/40G connect



Network automation

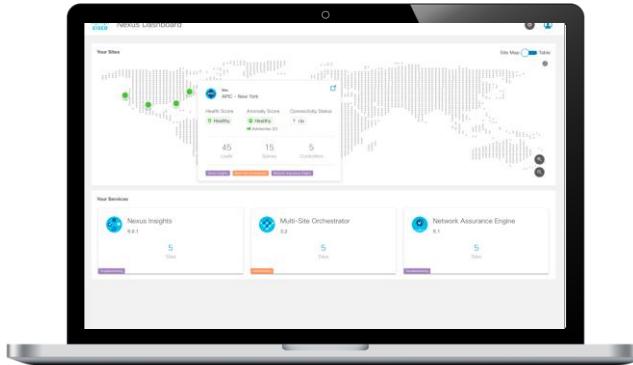
Scale-out cluster

High Availability

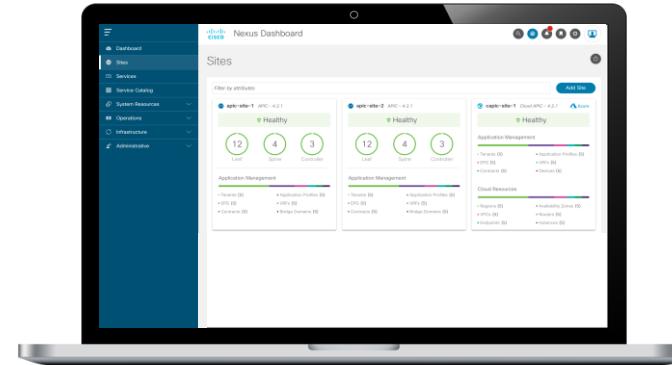
Virtual Nexus Dashboard Platform

Virtual Platform to Support NDI ,NDO and NDFC in Production

Available for


ESXi

KVM


* For 3 APP node NDI installation

Nexus Dashboard: A Unified Agile Platform

The operator view

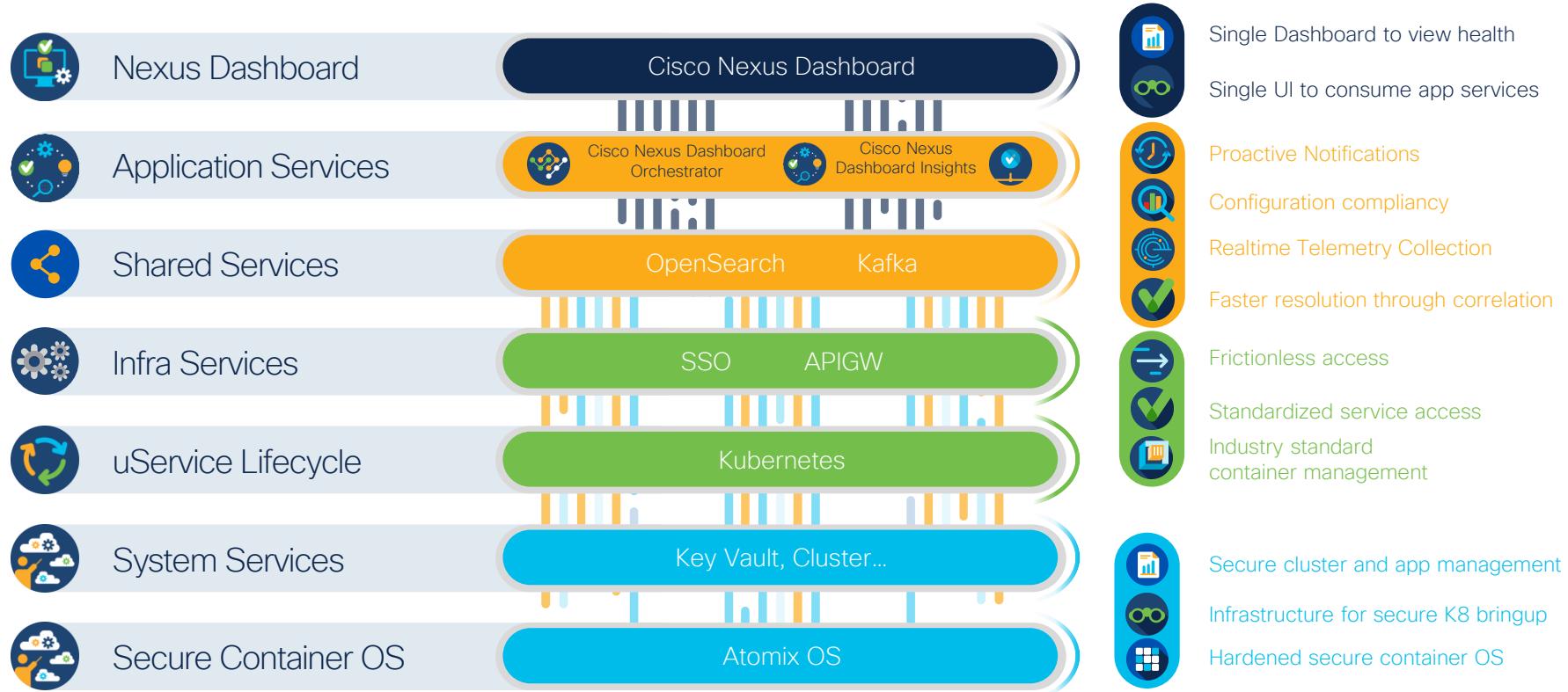
The admin view

Consume service(s) from single place

Frictionless navigation across multiple services and sites

Customize views and workflows

Single dashboard for lifecycle management of services and Ops infra

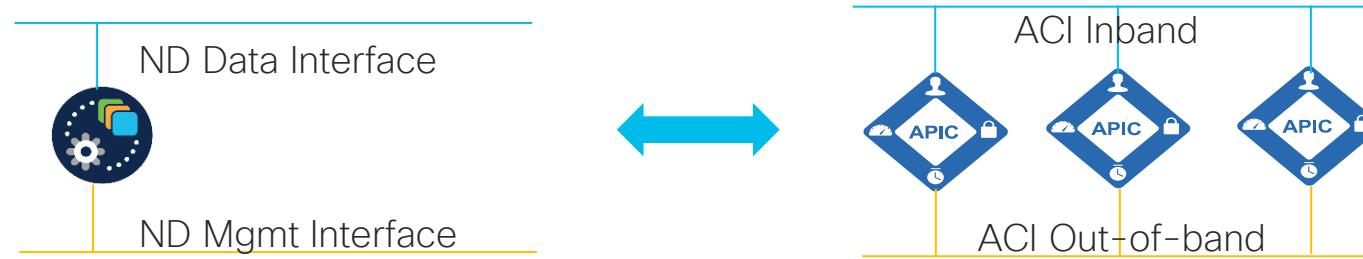

Consistent one-time onboarding of domains and services

Consistent user management and access control

What is Nexus Dashboard? - a view under the hood -

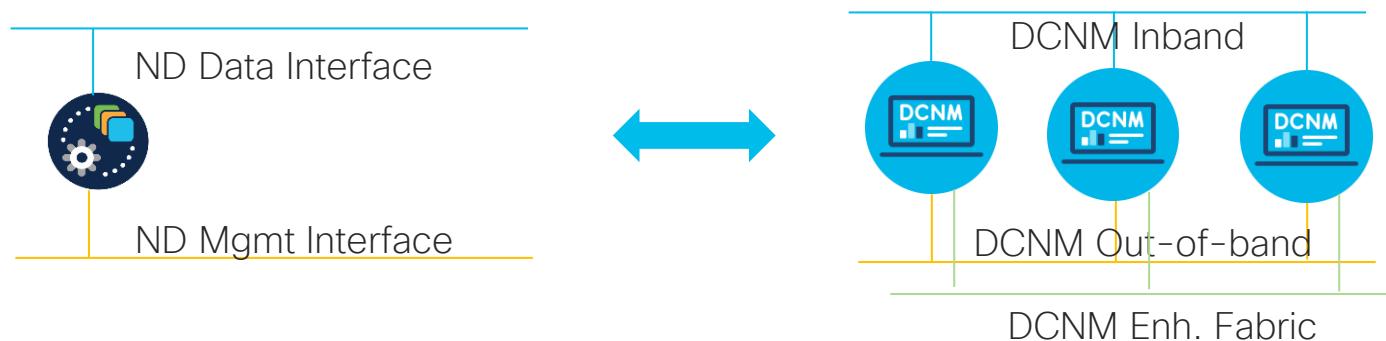
Nexus Dashboard Platform—Under the Hood

Deployment Model

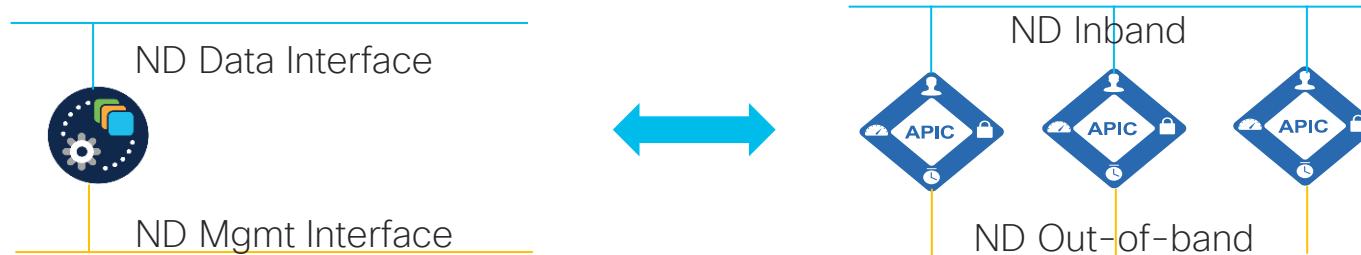

- Depending on the services (NDI/NDO) being deployed on top of vND the number of required nodes and which node type must be deployed as master is changing
- Scale numbers are documented in the ND cluster sizing tool

Deployed Services	NDI	NDO**	NDI	NDFC***
Total number of nodes needed	3	3	6	3
Type of master nodes	App	APP	DATA	APP
Total number of DATA nodes needed	0	0	3	0
Total number of APP nodes needed	3	3	3	3

** 1 APP node PoC setup for NDO with reduced scale is available


*** 1 APP node PoC setup for NDFC with reduced scale is available

ND to APIC Connectivity Considerations

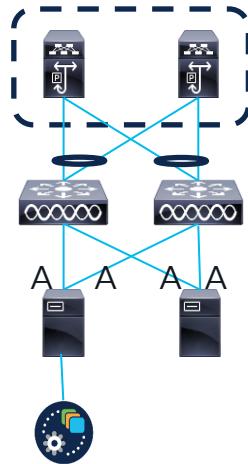

- An ACI fabric is onboarded on ND by specifying the IP address of one of the nodes of the APIC cluster
 - This can be either the APIC's IB or OOB address. In case of the usage of NDI it must be the APIC's IB address
- ND uses the Data Interface to establish the initial connection to that APIC's IP address
 - If the connection is successful, ND discovers all the OOB and IB IP addresses for the other nodes in the APIC cluster

ND to DCNM Connectivity Considerations

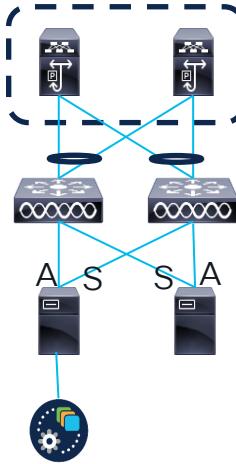
- An DCNM site is onboarded on ND by specifying the Inband IP address of the DCNM, no other IP is supported
- ND uses the Data Interface to establish the initial connection to that DCNM IP address

ND to NDFC Connectivity Considerations

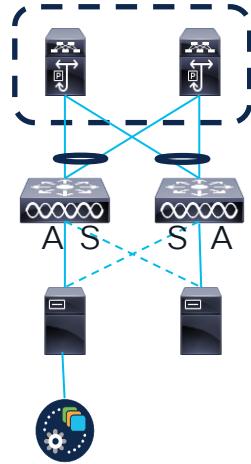
- An NDFC site is onboarded on ND by specifying the Inband IP address of the ND hosting the NDFC, no other IP is supported
- ND uses the Data Interface to establish the initial and ongoing connection to that ND Data IP address hosting NDFC

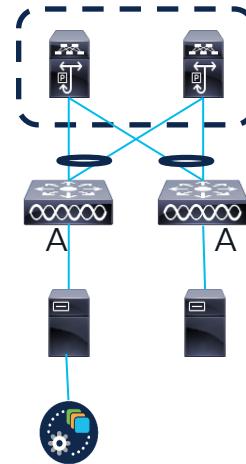

vND Considerations for ND 2.2 or earlier

Attaching vND to the Network (via UCS FI or equivalent or direct)


- If you plan to leverage Persistent IPs for NDI or NDFC
 - Port-Group and virtual Switch, where the vND is connected to has to be:
 - Connected via PC or vPC
 - Connected via a single link
 - A/A without PC or vPC is not supported
 - A/S at Hypervisor level without PC or vPC is not supported
 - Interface failover at UCS level (or equivalent) without PC or vPC is supported
 - In a nutshell the virtual switch has to have a single logical uplink.
- This is addressed in ND 2.3 and later release.

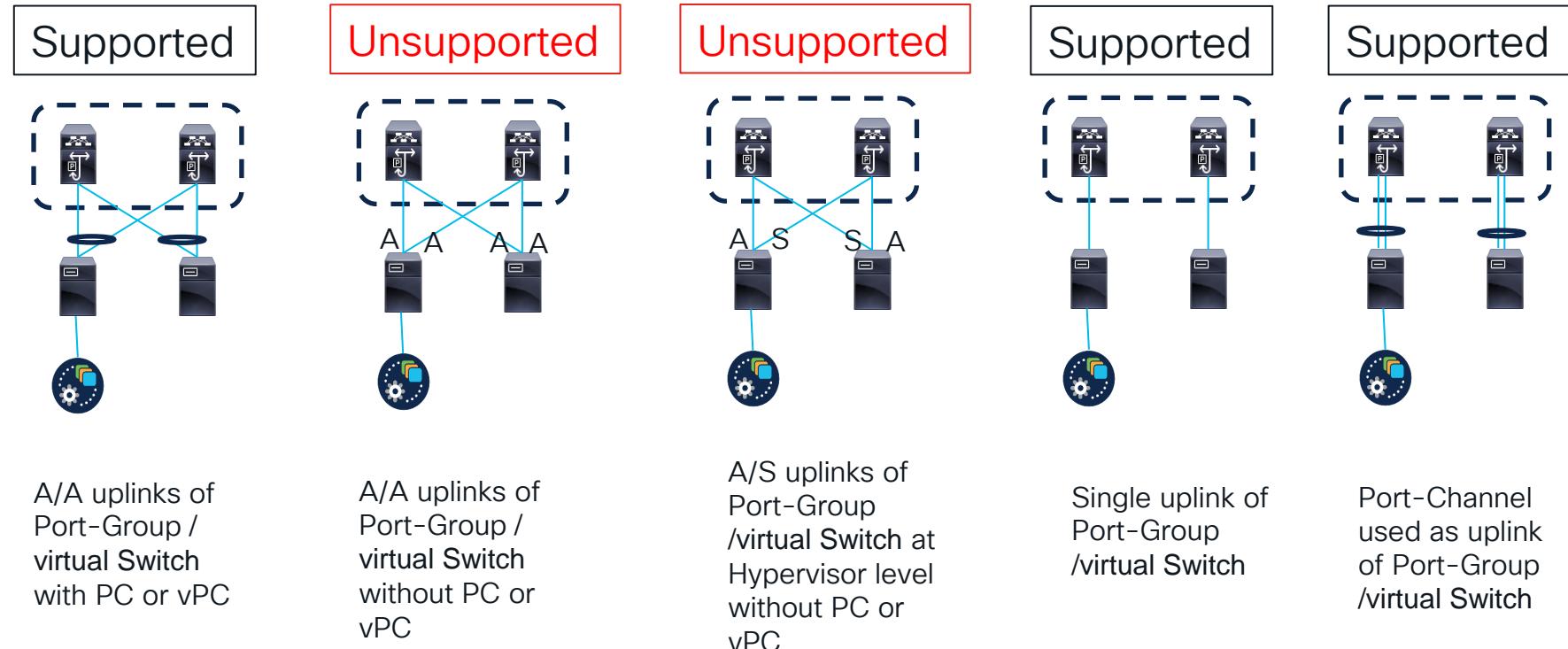
Attaching vND to Network (via UCS FI or equivalent)


Unsupported


Unsupported

Supported

Supported


A/A uplinks of
Port-
Group/virtual
Switch without
PC or vPC

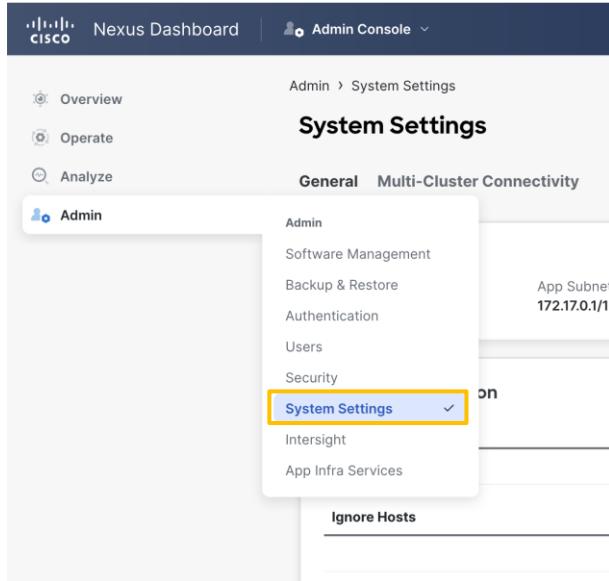
A/S uplinks of
Port-Group
/virtual Switch at
Hypervisor level
without PC or
vPC

A/S uplinks of
Port-Group
/virtual Switch at
UCS level (aka
as Fabric
Failover) without
PC or vPC

Single uplinks
of Port-Group
/virtual Switch

Attach vND to Network (directly)

Persistent IPs and their usage


Important Requirement for NDI 5.1 and later for DCNM/NDFC and for NetFlow/SFlow

- Nexus Dashboard Cluster Nodes need to be Layer-2 Adjacent on Data Interface
- IPv4 requirements:
 - You need to assign 6 IPs, out of the range of the Data Interface Subnet, Nexus Dashboard Cluster. 3 IP are needed for SW Telemetry receiver and 3 for HW Telemetry.
- IPv6 requirements:
 - You need to assign 7 IPs, out of the range of the Data Interface Subnet, Nexus Dashboard Cluster. 3 IP are needed for SW Telemetry receiver, 3 for HW Telemetry and 1 for Assurance Collector

Persistent IP Pool 1/2

- Is needed to assign persistent IPs to Services/Apps
- These IPs are staying the same even the Service/App is moved to another ND Node
- Are entered as host IP addresses under Cluster Configuration->External Service Pools
- Currently used by NDI 6.0, when monitoring DCNM based Sites or Netflow/Sflow collection used for ACI/DCNM
 - Only required for the Data Subnet of ND

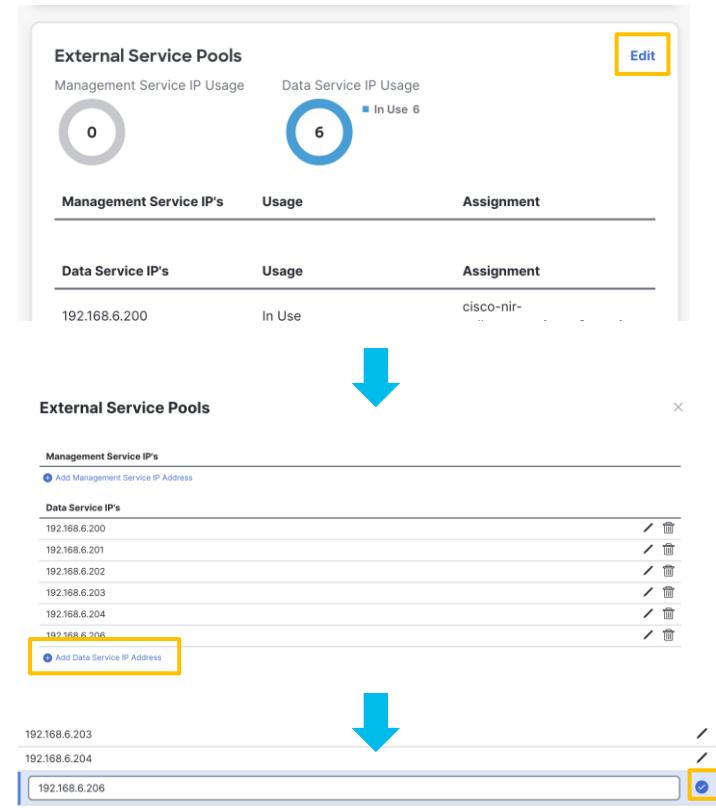
Persistent IP Pool 2/2

Nexus Dashboard | Admin Console

Overview Operate Analyze Admin

Admin > System Settings

System Settings


General Multi-Cluster Connectivity

Admin

- Software Management
- Backup & Restore
- Authentication
- Users
- Security
- System Settings** (highlighted)
- Intersight
- App Infra Services

Ignore Hosts

App Subnet: 172.17.0.1/16

External Service Pools

Management Service IP Usage: 0

Data Service IP Usage: 6 (In Use 6)

Management Service IP's	Usage	Assignment
192.168.6.200	In Use	cisco-nir-

External Service Pools

Management Service IP's

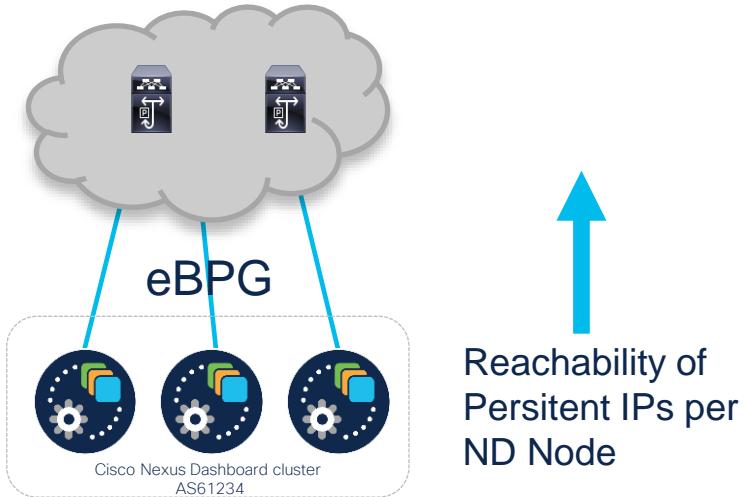
Add Management Service IP Address

Data Service IP's
192.168.6.200
192.168.6.201
192.168.6.202
192.168.6.203
192.168.6.204
192.168.6.206

Add Data Service IP Address

Data Service IP's
192.168.6.203
192.168.6.204
192.168.6.206

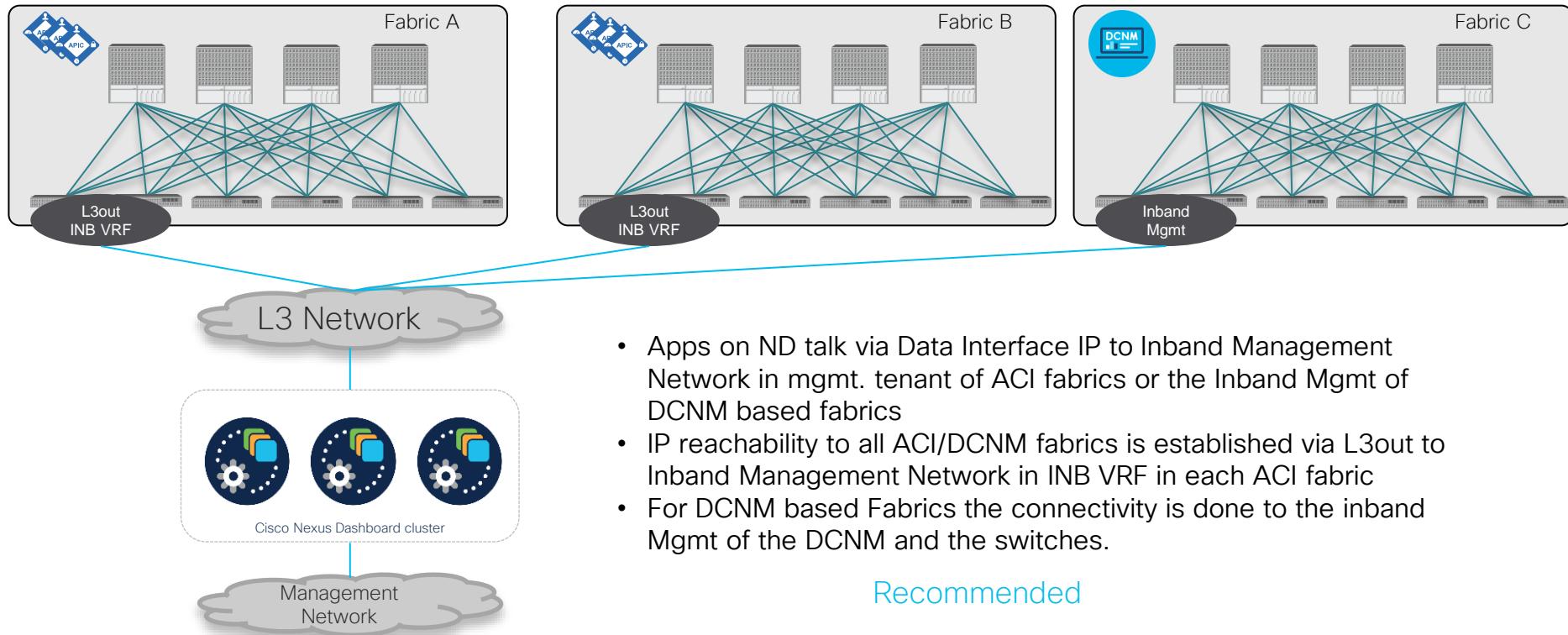
Apps	Mgmt Interface	Data Interface	Persistent IPs	Support for Data and Mgmt in the same Subnet**
NDFC	L2 adjacent	L2 adjacent / L3 adjacent with L3 HA	2 IPs in mgmt network (for default settings) or 2 IPs data network (for POAP etc. via data network) + 1 IP per fabric for EPL in data network	no
NDI for DCNM based Sites	L3 adjacent	L2 adjacent	6 IPs in data network (+1 for IPv6)	no
NDI for ACI based Sites	L3 adjacent	L3 adjacent / L2 Adjacent	-/-	yes
NDI with SFLOW/Netflow function	L3 adjacent	L2 adjacent	6 IPs in data interface network*	no
NDO	L3 adjacent	L3 adjacent	-/-	yes

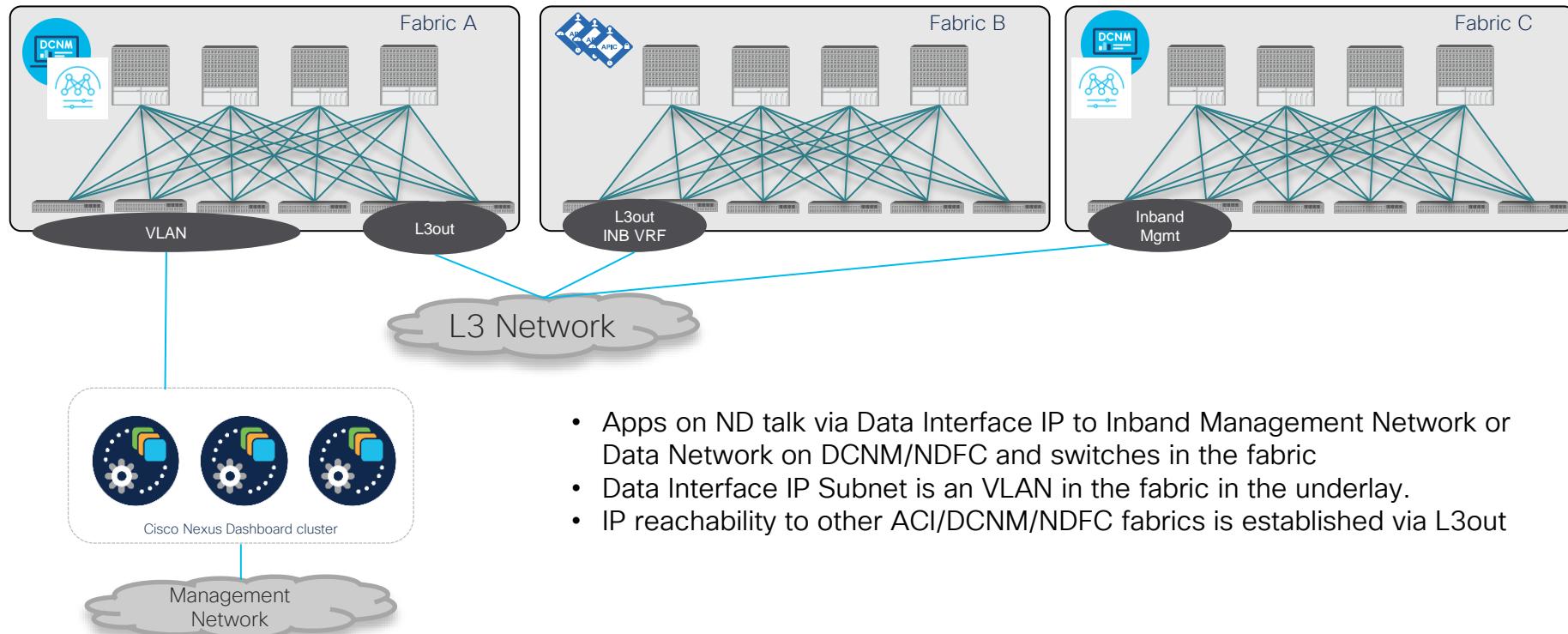

* if NDI is for DCNM no additional IPs are needed.

** supported but not recommended

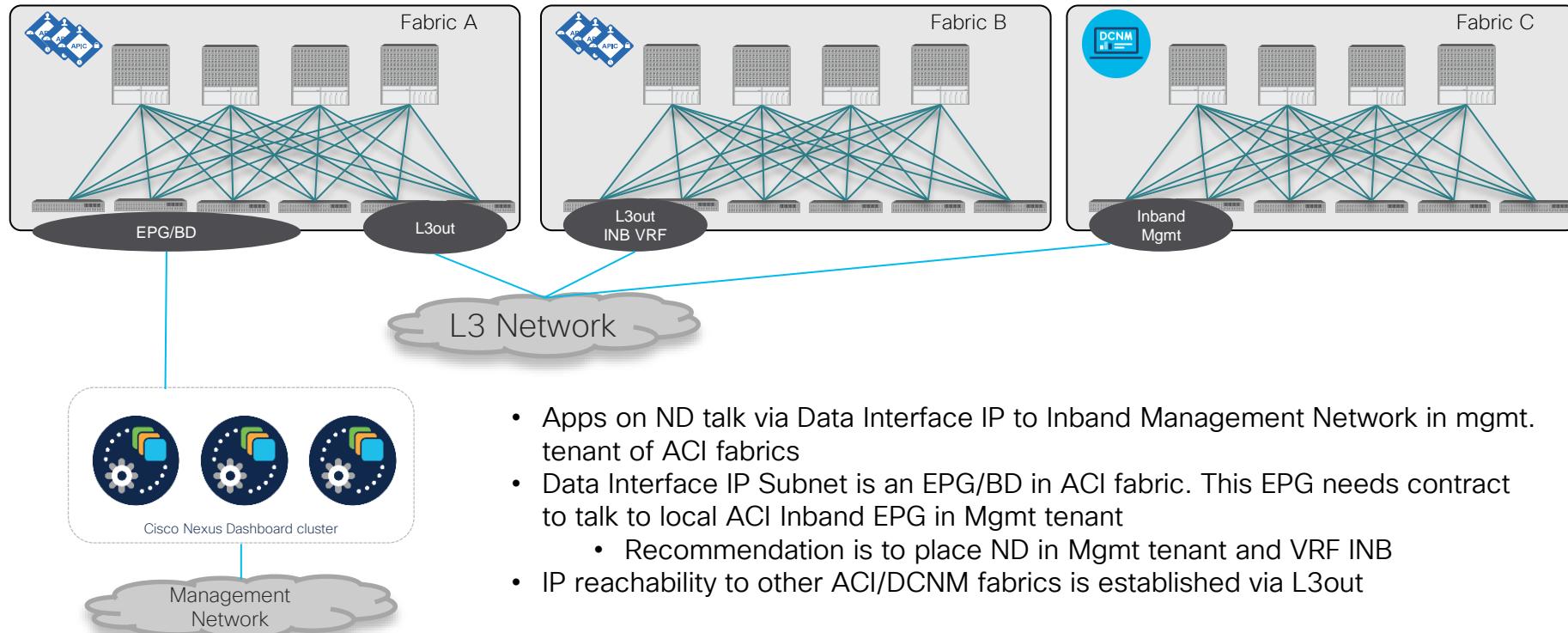
ND L3 peering / L3 HA

- For use of persistent IPs, there are now 2 choices:
 - 1. L2
 - All ND data interfaces are in the same subnet/L2 Domain and Persistent IPs are out of the same Network
 - 2. L3
 - All ND data interfaces can be in different subnets and have a BGP peering towards the network. Persistent IPs must not be out of any of these subnets.
 - ND nodes will only update the external peer with persistent IPs and not learn any prefixes. The local routing table will still be honored
 - Only supported on ND Data Interface


eBGP Peering with Network


- Each ND node can be a separate AS or all in a single AS
- Multi-hop BGP peering is not supported
- Each ND node can peer to multiple Nodes (max 2) via IPv4 or IPv6
- Can be configured during bootstrap or added later
- Persistent IPs have to be out of an IP subnet not overlapping with any ND local IP.

Attaching ND to your Network


ND Cluster attached to any Networking Infra

ND Cluster attached to DCNM/NDFC based Fabric

ND Cluster attached to ACI Fabric

Pro/Contra of connecting to an ACI/NDFC/DCNM fabric

Pro	Contra
<ul style="list-style-type: none">- Easy connection between ND and Inband Management of ACI fabric	<ul style="list-style-type: none">- ND cluster is tied to a single fabric- Reachability to other sites/fabrics has to go via L3out- ND cluster relies on single ACI fabric

Pro/Contra of connecting to any Networking Infra

Pro	Contra
<ul style="list-style-type: none">- ND Cluster is not tied to any ACI Fabric- Same communication paths between all sites.	<ul style="list-style-type: none">- All communications between ACI Apps on ND need to go via L3out

Recommendations/Best Practice

- Do not connect whenever possible to an ACI Fabric/DCNM based Fabric directly:
 - ND and Apps are relying on a functioning of the fabric, could be impacting during outages or maintenance
 - If you monitor multiple sites the ND cluster is not depend on a single site
- If a ND cluster is connected to a single fabric:
 - Fully supported/working BUT keep in mind
 - Issues in the fabric may impact the function of the ND cluster and the apps as they share fate.

Placement of Master/Standby Nodes for Distribute/Stretched ND Clusters

(recommended for NDO)

Number of Sites	1	2	3	4	5
1	M1, M2, M3				
2	M1, M2	M3, S1			
3	M1	M2	M3		
4	M1	M2	M3	S1	
5	M1	M2	M3	S1	

M1, M2, M3 : ND Master Nodes
S1 : ND Standby Node

When Centralized or Distributed/Stretched Cluster

Centralized	Distributed/Stretched
<ul style="list-style-type: none">- With NDI/NDFC deployed	<ul style="list-style-type: none">- For redundancy/DR for NDO
<ul style="list-style-type: none">- NDI do not gain any better redundancy with distribute/stretched clusters. You more likely expose the cluster to interconnection failures with a distributed/stretched cluster	
<ul style="list-style-type: none">- Synchronization traffic is kept between the ND nodes and only telemetry traffic is streamed via WAN- Same traffic path for reaching each site	<ul style="list-style-type: none">- Recommended for NDI/NDFC- Recommended for NDO

Deployment Options for ND

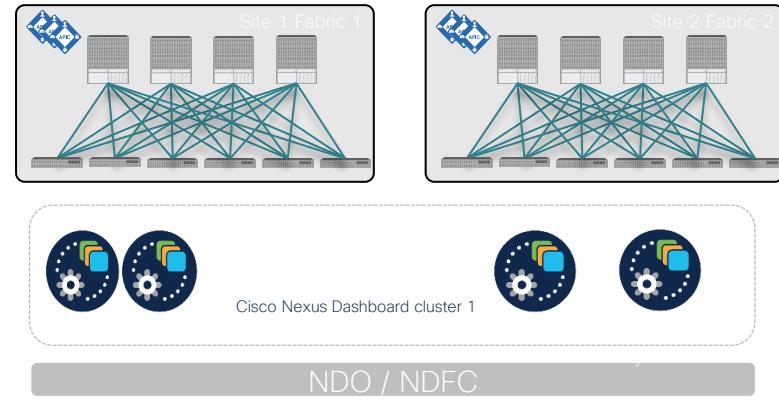
Definition Terms and Assumptions/Requirements

- Site: geographical datacenter location with 1 or more fabrics
- RTT requirements for:
 - ND: between ND nodes <50ms
 - NDO : to APIC <500ms, to DCNM <50ms, between ND/NDO nodes <50ms
 - NDI: between ND/NDI nodes <50ms, to APIC/Fabric <50ms
 - NDFC: between ND/NDFC nodes <50ms, to Fabric <50ms (<200ms if no PoAP is used)
- Always select the lowest common denominator.
 - E.g. NDI and NDO co-hosted : between ND nodes <50ms, to APIC/Fabric <50ms

Deployment Requirements

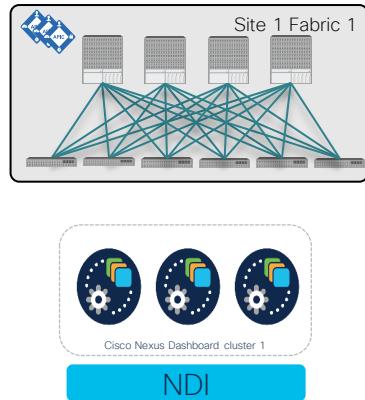
- Customer has more than 1 Site
 - Number of ND clusters is driven by number of switches and combination of apps
 - Location of the ND clusters is driven by type of the apps:
 - NDO: cluster should be distributed for HA/DR reasons
 - NDI, NAE: cluster can be distributed, but should be placed close to source of telemetry data
 - Always keep virtual ND for NDO in consideration, to satisfy the HA/DR requirement
 - Please check the sizing calculator for ND for the supported apps and scale on CCO

Some Deployment Considerations 1/2


- Try to keep the potential points of failure for reachability between the ND nodes as low as possible.
- When distributing a ND cluster
 - ND Data and Mgmt interface of ND nodes can be in different subnets. Only IP connectivity is needed. (Please allow ports listed in documentation)!
 - For NDI being hosted on ND2.1 or later for DCNM/NDFC based fabrics, you need to have the Data Interfaces of the ND nodes L2 adjacent or eBGP enabled and provide persistant IPs!
 - For NDI being hosted on ND2.1 or later leveraging Netflow/Sflow, you need to have the Data Interfaces of the ND nodes L2 adjacent and provide persistant IPs!
 - When deploying NDFC on ND2.1 or later the Management Interfaces of ND nodes have to be L2 adjacent. Also Data Interfaces of the ND nodes have to be L2 adjacent.

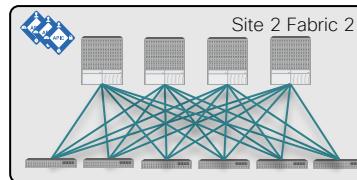
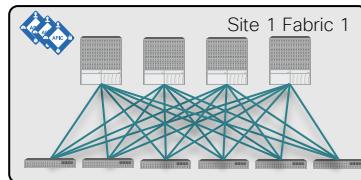
Some Deployment Considerations 2/2

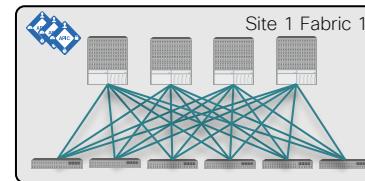
- In MPOD, ACI is taking care of the reachability, Keep in mind loosing IPN connectivity will e.g. break NDI
- In MSITE communication can not happen via ISN. It has to go via L3OUT in each site. Telemetry is sent via INB EPG in Mgmt Tenant, this is not managed by NDO!
- Data Interface IPs, have to be different from INB EPG subnet of ACI, when ND cluster is connected to ACI fabric
- All communication of Apps hosted on ND is initiated via Data Interface IPs


HA/Redundancy with Stretched ND clusters

- 2 ND master nodes are always needed to keep the ND cluster operational. If you deploy a stretched cluster across 2 sites, you **SHOULD** deploy in the site with a single ND master node, a ND standby node.
- In case of a failure of 2 ND master nodes, you have to manual promote the standby to master to replace a failed master.
 - NDO/NDFC are the only apps surviving this.
 - After the failed master comes back online, it needs to be wiped and re-added as standby node.

Option 1: 1 Site/Fabric (below 500 nodes) NDI

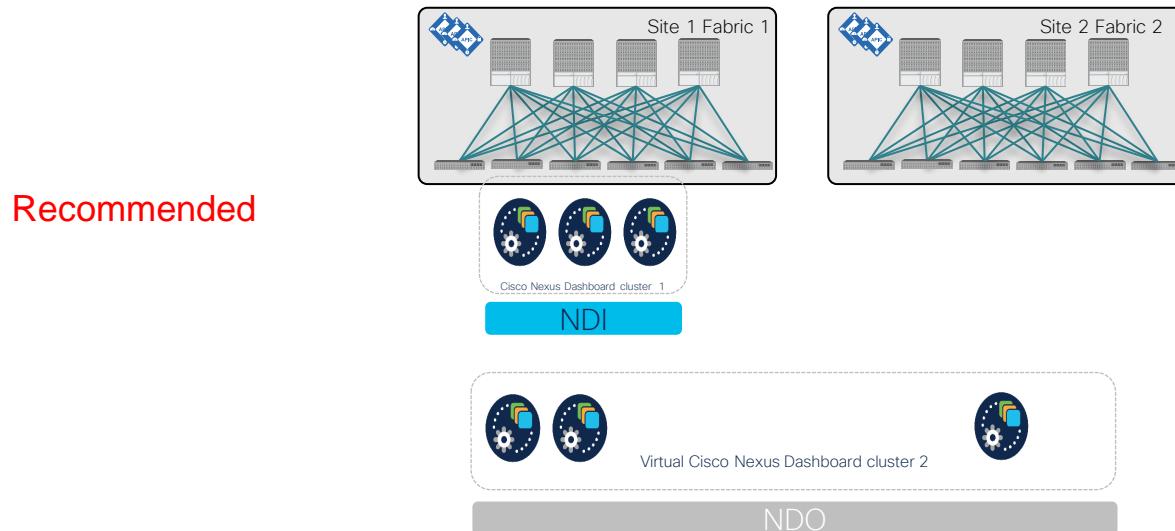


- Single cluster (x number of nodes, cluster connected to either ACI fabric or legacy infra with IP reachability)


Option 2: 1+ Site (below 500 nodes) NDI

- Single cluster (x number of nodes, cluster connected to either ACI fabric or legacy infra with IP reachability, Cluster can be stretched or local to a site)

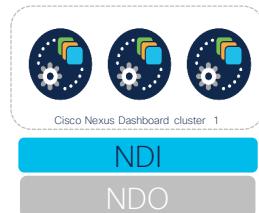
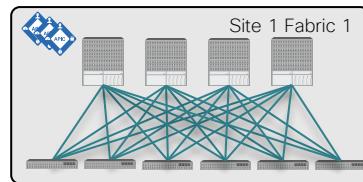
Recommended

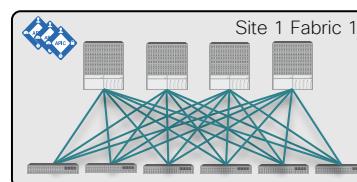
NDI


Cisco Nexus Dashboard cluster 1

NDI

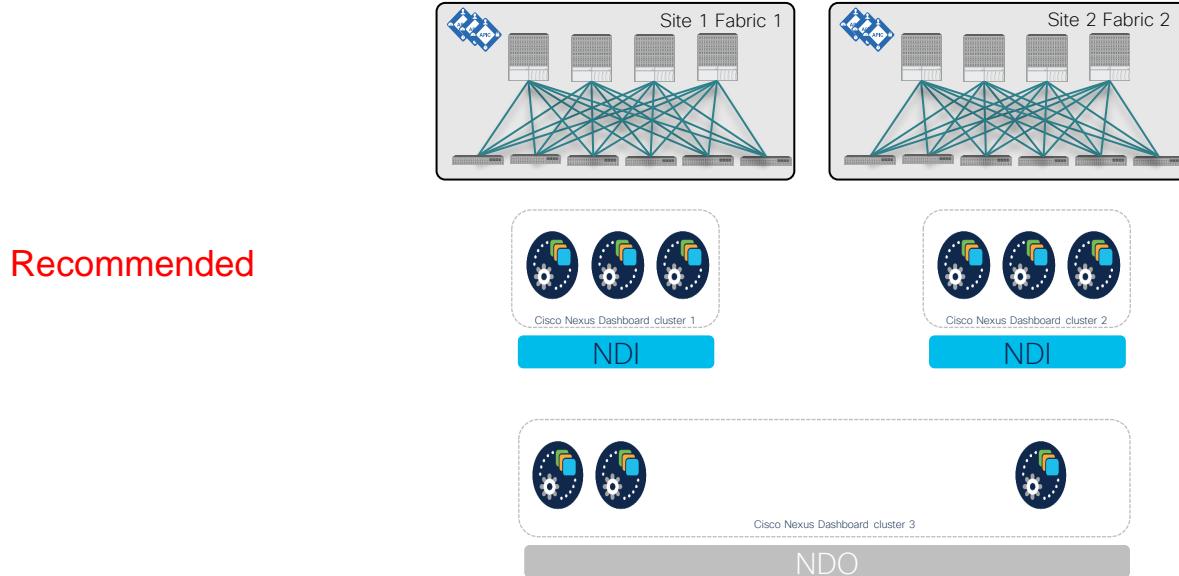
Option 3a: 1+ Site (below 500 nodes) NDI and NDO



- Single ND cluster for NDI (x number of nodes, cluster connected to either ACI fabric or legacy infra with IP reachability)
- Single additional virtual ND cluster for NDO to meet HA/DR requirements


Option 3b: 1+ Site (below 500 nodes) NDI and NDO

- Single ND cluster (x number of nodes, cluster connected to either ACI fabric or legacy infra with IP reachability)

Not recommended as NDO is not distributed

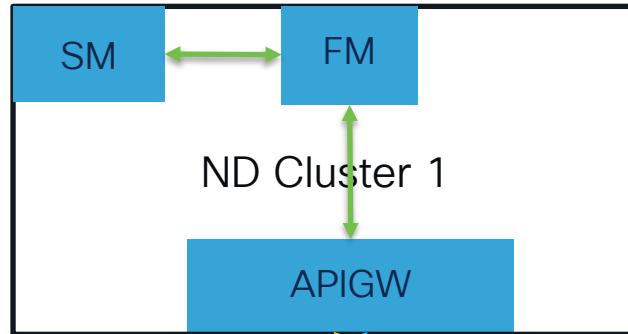


Not recommended as NDI is distributed, consider vND for NDO (Option 3a)

Option 4: 1+ Site (above 500 nodes) NDI and NDO

- Multiple ND cluster (x number of nodes, cluster connected to either ACI fabric or legacy infra with IP reachability) and ND federation

Operating Nexus Dashboard

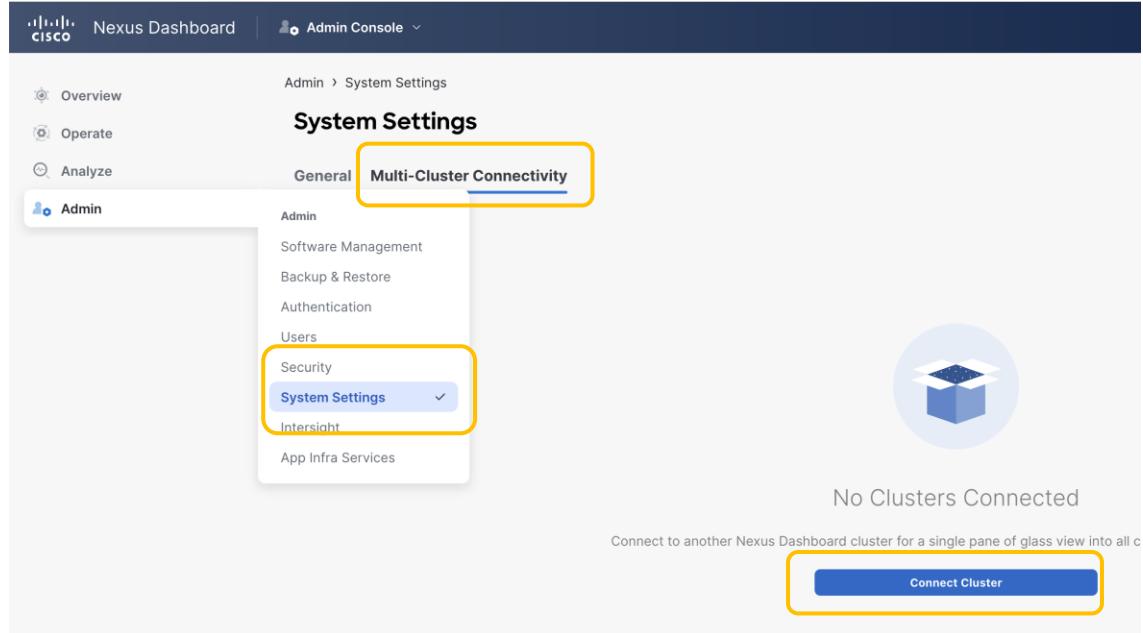

OneView aka as ND Federation

Overview


- ND Federation is an association of several ND clusters that allows working across with them as if they were a single entity and simplify the consumption of their resources
- ND clusters onboard other ND clusters creating a trusted environment which allows to learn about those clusters and to communicate and share information with each other
- Information shared between clusters is visible on each cluster being part of that federation. Also this data is accessible from each cluster.
- Apps can query for information related to other clusters in the federation for purposes such as onboarding (for eg NDI/Sites) or grouping
- [Remote User is required to setup and use ND Federation](#)

Federation Architecture

- User configures an ND cluster as Federation manager (FM) and connects it to other ND clusters
- FM manages the federation keeping track of member cluster reachability, node status, sites, etc.



- FM uses Site Managers (SM) on all ND clusters to replicate this information for local queries/display
- APIGW is used to sync keys (for accessing data) between federation members

Onboard Clusters (Federation Configuration)

- Expand the Infrastructure menu
- Select Cluster Configuration
- Go to the Multi Cluster Connectivity tab
- Click “Connect Cluster”

Nexus Dashboard Admin Console

Admin > System Settings

System Settings

General **Multi-Cluster Connectivity**

Admin

Software Management

Backup & Restore

Authentication

Users

Security

System Settings

Intersight

App Infra Services

No Clusters Connected

Connect to another Nexus Dashboard cluster for a single pane of glass view into all c

Connect Cluster

Onboard Clusters (Federation Configuration)

- Complete the target cluster information (IP of Mgmt Interface of remote cluster)
- Click save

Connect Cluster X

Hostname/IP Address *

Username *

Password *

Login Domain

Cancel Save

Viewing Connected Clusters' Information

- After connecting a cluster, it will show up on the Multi Cluster Connectivity table
- User would be able to connect more clusters or disconnect clusters from the table
- The cluster name on the header bar becomes a link to select a specific cluster
- Central Dashboard is added to the header bar
- Local cluster and FM are marked in the list

Central Dashboard

Central Dashboard X

System Overview ↻

Overview

Cluster Connectivity

8 Total
Up (6)
Down (2)

Clusters Health

8 Total
Ok (6)
Unknown (2)

Sites by Connectivity

2 Total
Up (2)

Services by Status

3 Total
running (3)

Clusters

C IFAV201-ND-CLUSTER

Connectivity	Cluster Health
Up	Ok

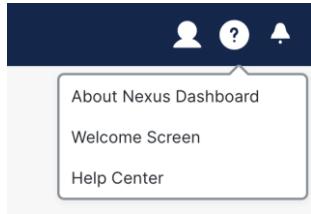
0	1
---	---

Total Service Node Storage	CPU Usage	Memory Usage
143 GB used out of 3.7 TB	20%	54%

C ND-SYD

Connectivity	Cluster Health
Up	Ok

1	1
---	---


Total Service Node Storage	CPU Usage	Memory Usage
135 GB used out of 3.6 TB	14%	30%

Public API

Overview

- API publicly available
- Swagger built-in
- Apps onboarded to ND populate their APIs there as well (e.g. NDI)

API UI

Learn, explore, and find the links to resources for Nexus Dashboard

What's New in 3.0(1j)?

[View Release Notes](#)

Deployment

Once your cluster is up and running, check out some of the resources to prepare for when it's time for the next upgrade.

[bare Setup Guide for UCS C220 M5](#)

[bare Setup Guide for UCS C225 M6](#)

Management Guide

[Compatibility Tool](#)

[Compatibility Matrix](#)

Programming

Want to standardize, streamline, and automate deployments at a large scale? The development resources will introduce you to our APIs, object model, and provide simple examples so you can write your own integrations.

[REST API](#)

[Developer Guide](#)

Nexus Dashboard

Nexus Dashboard REST API to automate platform management and monitoring

Authentication

Login

Returns an authentication token, which can be used for subsequent API calls. You can provide a username, password, and login domain to authenticate an existing Nexus Dashboard user.

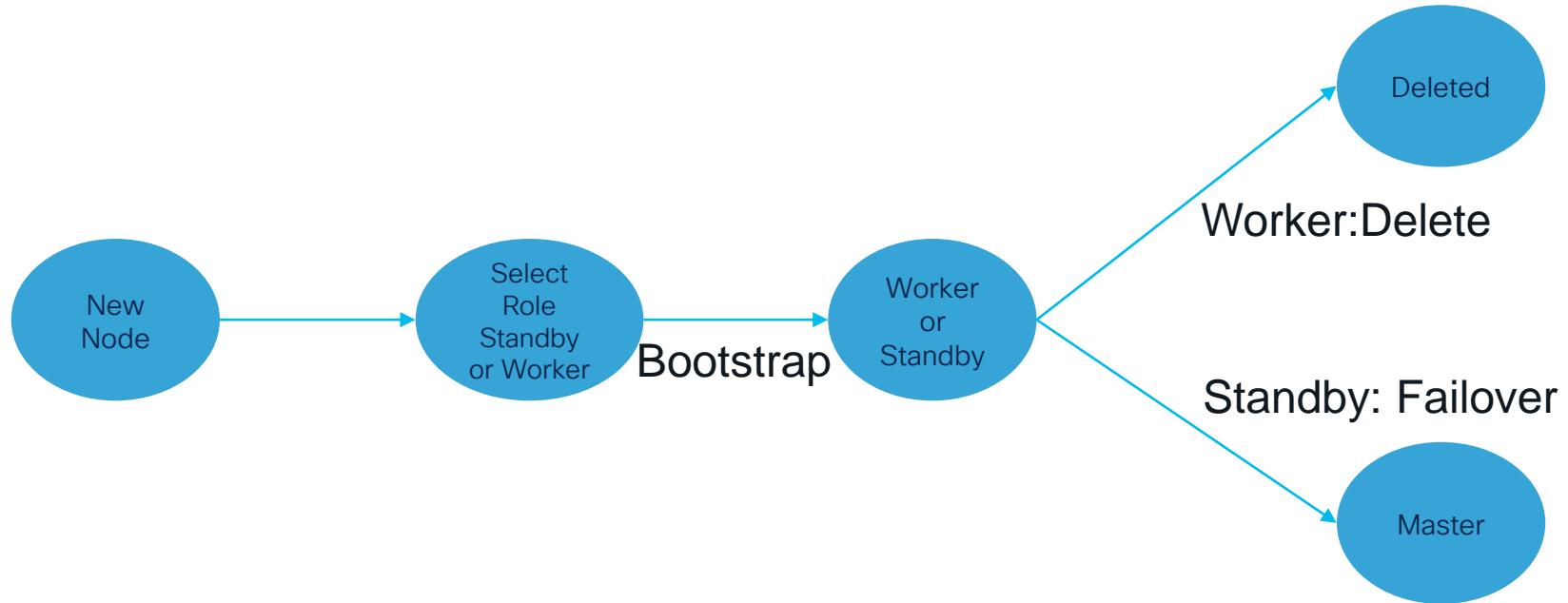
[Post](#) [Login](#)

Request Body schema: application/json

Login Request Body

```
domain * string
userNamed * string
User ID as created by Nexus Dashboard admin or remote identity provider
userPasswd * string <password>
```

Responses


200 Login Response
[View Details >](#)

Registering Nodes to existing Cluster and Standby Node

Register new Nodes and Standby Master

- New nodes are discovered via CIMC and bootstrapped
- During registration Role is selected (Worker or Standby)
- Worker Node is for horizontal Scaling
- Standby Node is increasing HA as it can replace a failed Master
- Difference between Replace and Standby is, that Replace is a RMA workflow where the new node is installed and brought up. Standby is replacing a failed master with an already bootstrapped node
- Workers can only be replaced by delete and re-add

Lifecycle of non-Master Nodes

Adding a new Node

Add Node

Deployment Details

CIMC IP Address • ⓘ

Username •

Password •

 Validate

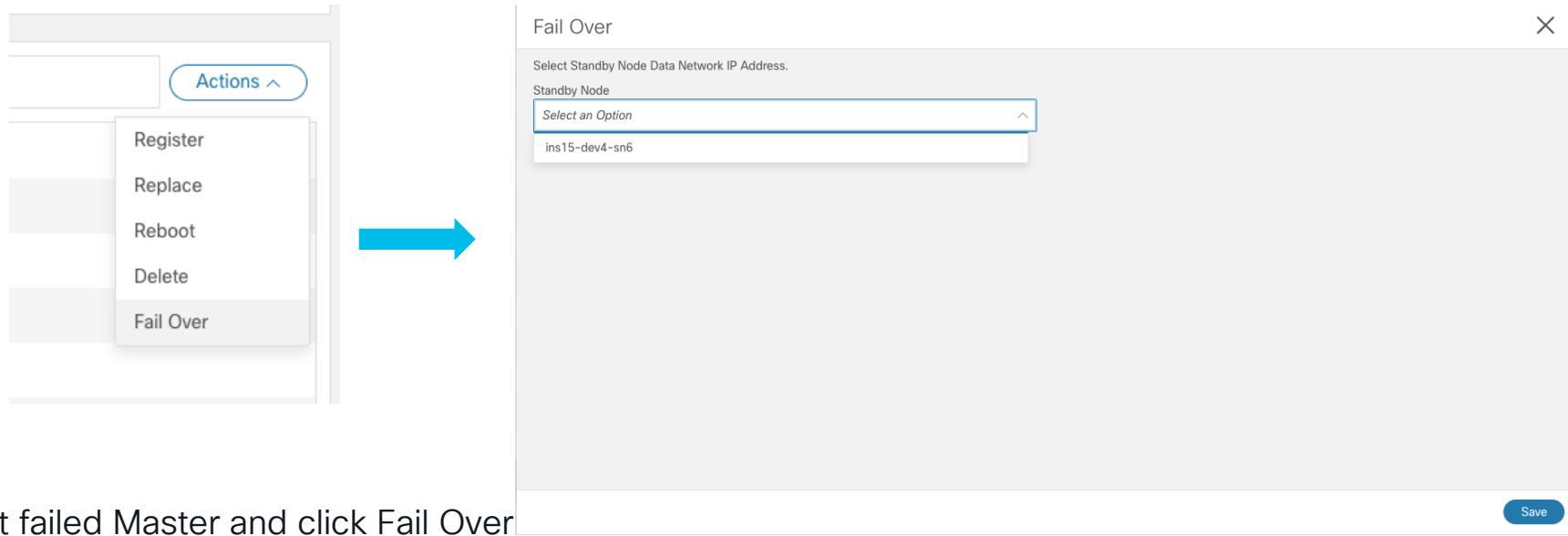
General

Name •

Serial Number •

Type

1. Provide CIMC details to discover node
2. Fill in node details
3. Node is bootstrapped and registered
4. Node status will change from “unregistered” to “discovering” to “active”


Replace a failed Master with Standby Node

Master is failed

Name	Serial	Data Network IP Address	Management Network IP Address	Status	Role
ins15-dev4-sn1	WZP215118AY	192.192.4.101/24	10.195.219.197/24	Active	Master
<input checked="" type="checkbox"/> ins15-dev4-sn2	WZP215118CZ	192.192.4.102/24	10.195.219.199/24	Inactive	Master
ins15-dev4-sn4	WZP215118EK	192.192.6.101/24	10.195.219.209/24	Active	Worker
ins15-dev4-sn5	WZP22481HAL	192.192.6.102/24	10.195.219.203/24	Register	Worker
<input type="checkbox"/> ins15-dev4-sn6	WZP21510J5C	192.192.6.103/24	10.195.219.213/24	Active	Standby

Standby Node is part of Cluster

Failover to Standby

The image shows a user interface for managing network nodes. On the left, a vertical menu is open under the 'Actions' dropdown, listing 'Register', 'Replace', 'Reboot', 'Delete', and 'Fail Over'. A blue arrow points from the 'Fail Over' option in this menu to a separate 'Fail Over' dialog box on the right. The dialog box has a title 'Fail Over' and a sub-instruction 'Select Standby Node Data Network IP Address.' Below this, a dropdown menu is titled 'Standby Node' with the placeholder 'Select an Option'. The option 'ins15-dev4-sn6' is listed and highlighted. A 'Save' button is visible in the bottom right corner of the dialog box.

Select failed Master and click Fail Over

Select Standby to replace failed Master

If you receive a replacement for the failed node, you can register it as a Standby node

Manual Recovery of 2 failed Masters

Recovery Process if 2 Masters are down 1/3

- 2 Master Nodes are failed
- 1 Standby Nodes are required to get the system back online
- Log in to the remaining master
 - Run “acs failover” command to failover one of failed master to standby

```
acs failover --failedIP <master-to-failover> \
              --failedIP <other-failed-master> \
              --standbyIP <standby-ip>
```

Note: Use inband ipaddress for above parameters

Recovery Process if 2 Masters are down 2/3

- *acs cluster masters* will show 1 Active Master and 2 Inactive Masters

ATTRIBUTES	INS15-PROD2-SN1	INS15-PROD2-SN2	INS15-PROD2-SN6
CleanReboot	true	true	true
FirmwareVersion	2.0.0.63	2.0.0.63	2.0.0.63
FirstMaster	true	false	false
ID	6954c2f3-e827-46e7-a03d-4alea8720a0f	2681befb-e7fc-45d5-8889-91193caca48b	b3d9e566-4d8a-44d2-82f2-13c74ca762b9
InbandNetwork GatewayIP	192.192.1.1	192.192.1.1	192.192.1.1
InbandNetwork Iface	bond0br4001	bond0br4001	bond0br4001
InbandNetwork IfaceIP	192.192.1.101	192.192.1.102	192.192.1.106
InbandNetwork Subnet	192.192.1.101/24	192.192.1.102/24	192.192.1.106/24
Labels			
Model	SE-NODE-G2	SE-NODE-G2	SE-NODE-G2
Name	ins15-prod2-sn1	ins15-prod2-sn2	ins15-prod2-sn6
OobNetwork GatewayIP	10.195.219.1	10.195.219.1	10.195.219.1
OobNetwork Iface	bond1br	bond1br	bond1br
OobNetwork IfaceIP	10.195.219.69	10.195.219.71	10.195.219.79
OobNetwork Subnet	10.195.219.69/24	10.195.219.71/24	10.195.219.79/24
Role	Master	Master	Master
SecondaryStatus	Alive	Failed	Failed
Self	true	false	false
SerialNumber	WZP23430G8E	WZP2341088N	WMP240800V6
Status	Active	Inactive	Inactive

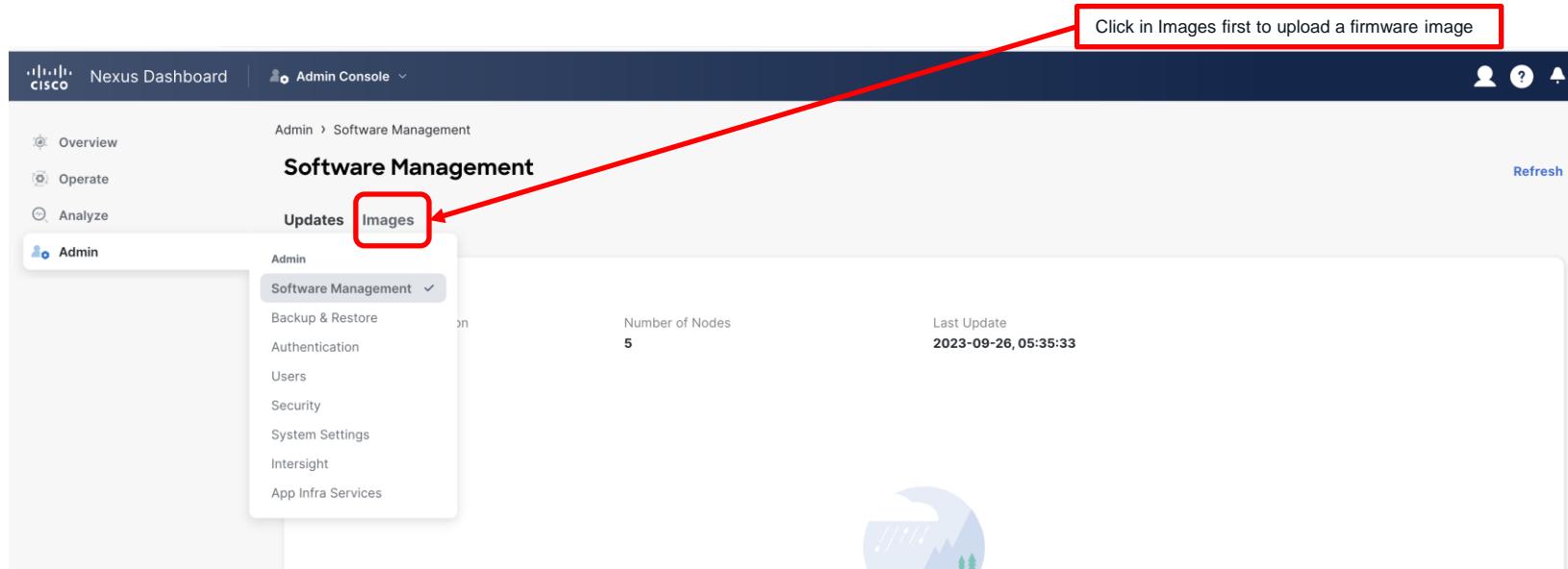
Recovery Process if 2 Masters are down 3/3

- Command (both failed Masters needs to be entered):

```
acs failover --failedIP 192.192.1.102  
          --failedIP 192.192.1.106  
          --standbyIP 192.192.1.105
```

```
[rescue-user@ndsim ~]# acs failover --failedIP 192.192.1.102 --failedIP 192.192.1.106 --standbyIP 192.192.1.105  
Warning: Failover can be a disruptive operation and should only  
be performed as last resort option to recover cluster from disasters using standby  
where two master nodes have lost their state due to hardware faults. Proceed? (y/n): y  
Connection to ins15-prod2 closed by remote host.  
Connection to ins15-prod2 closed.
```

- State will be copied from remaining Master to Standby node
- Both nodes will reboot
- Standby node will reboot and come up as Master


Recovery Process of a virtual ND

Recovery Process of a virtual ND

- Ensure that the failed node's VM is powered down.
- Ensure new VM is deployed and powered on.
- Use the Replace workflow for the inactive node.

Firmware Upgrade

Firmware Upload

Click in Images first to upload a firmware image

Nexus Dashboard | Admin Console | Refresh

Overview | Operate | Analyze | Admin

Admin > Software Management

Software Management

Updates Images

Admin

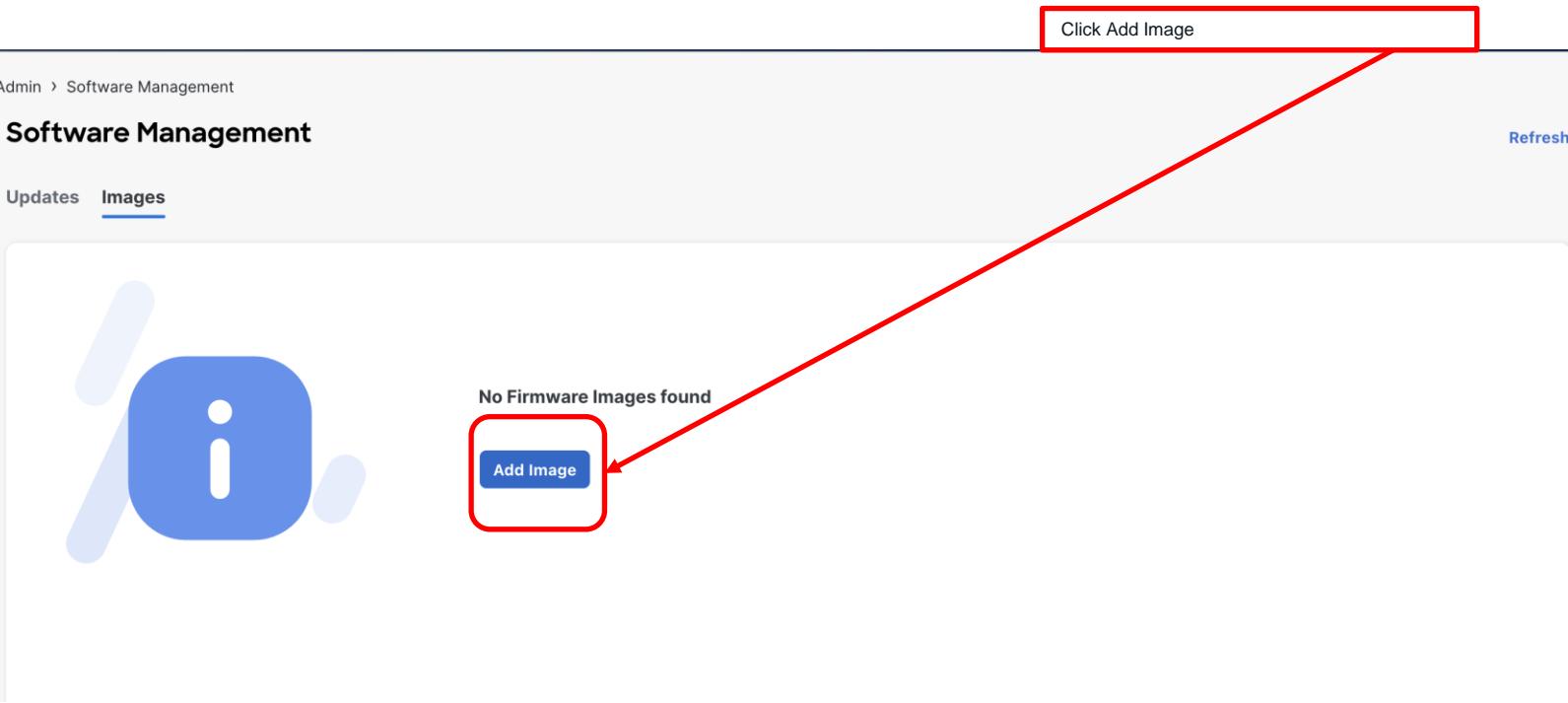
Software Management

- Backup & Restore
- Authentication
- Users
- Security
- System Settings
- Intersight
- App Infra Services

Number of Nodes: 5 | Last Update: 2023-09-26, 05:35:33

Firmware Upload

Admin > Software Management


Software Management

Updates Images

No Firmware Images found

Add Image

Click Add Image

Refresh

Firmware Upload

- 2 Options supported either via remote (WEB server) or local
- Remote upload is recommended

ADD SOFTWARE IMAGE X

Location

Remote Local

URL *

Browse... No file selected.

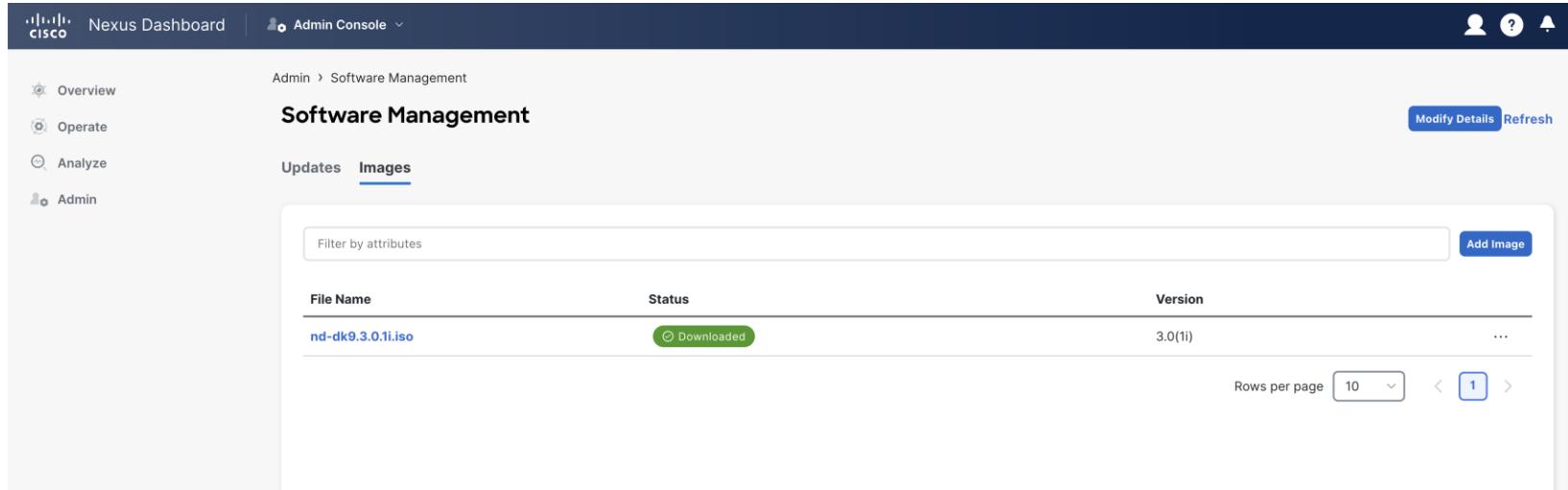
Local

Remote

ADD SOFTWARE IMAGE X

Location

Remote Local


URL *

Browse... No file selected.

Local

Remote

Firmware Upload

The screenshot shows the Cisco Nexus Dashboard Admin Console interface. The top navigation bar includes the Cisco logo, 'Nexus Dashboard', 'Admin Console' (with a dropdown arrow), and user icons for profile, help, and notifications. The main content area is titled 'Software Management' under 'Admin > Software Management'. On the left, there is a sidebar with 'Overview', 'Operate', 'Analyze', and 'Admin' buttons. The 'Images' tab is selected in the 'Updates' section. A search bar at the top of the list table says 'Filter by attributes' and a blue 'Add Image' button is on the right. The table has columns for 'File Name', 'Status', and 'Version'. One row is visible: 'nd-dk9.3.0.1i.iso' with 'Downloaded' status and '3.0(1)' version. There are also '...' and a three-dot menu icon. At the bottom, there are buttons for 'Rows per page' (set to 10), navigation arrows, and a page number '1'.

File Name	Status	Version	...
nd-dk9.3.0.1i.iso	Downloaded	3.0(1)	...

Setup Firmware Upgrade

Admin Console ▾

Admin > Software Management

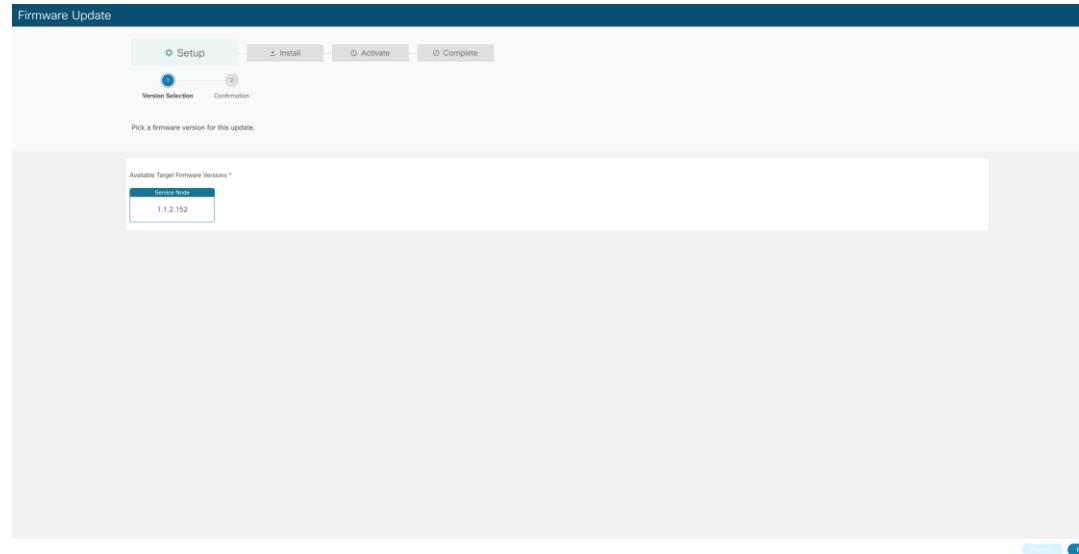
Software Management

Updates Images

Node Details

Current Firmware Version 3.0(1i)	Number of Nodes 5	Last Update 2023-09-26, 05:35:33
-------------------------------------	----------------------	-------------------------------------

Click to Setup an Upgrade



There are no Firmware Updates

Use the wizard to setup a firmware update.

Setup Update

Select Firmware

Current Cluster Setup is validated

Firmware Update

This is to validate the firmware and examine the current cluster state before installing the firmware. Once the validation passes the update will be 'Ready to Install'.

Update Details

Overall Status	Running	Current Firmware Version	2.2.2d	Target Firmware Version	2.3.0.85
Last Update 2022-09-07, 14:41:59					

Validation Progress

Image Preparation	✓	Loading target image information	▼
Cluster Networking	✓	Verifying reachability to other cluster nodes	▼
Platform Services' Health	✓	Verifying critical services' status	▼
Kubernetes Health	✓	Checking K8s cluster reachability	▼
Nodes' Health	✓	Verifying nodes' states	▼
Disk Utilization	✓	Verifying nodes' disk utilization	▼

Install Firmware to Nodes

Firmware Update X

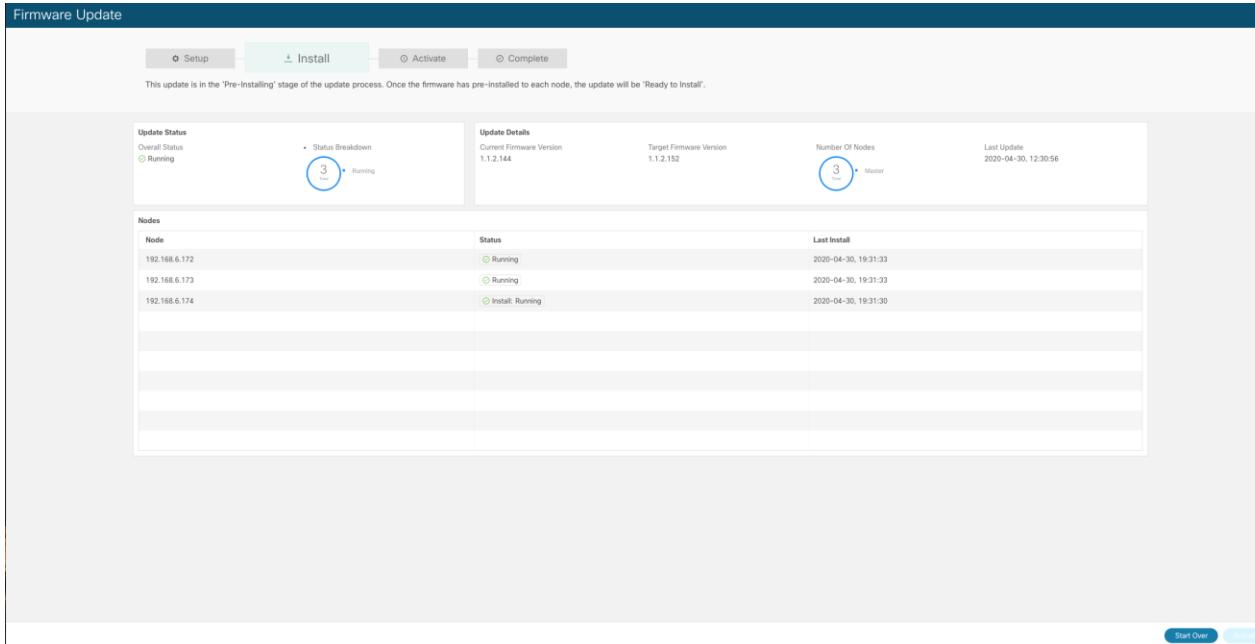
Setup Install Activate Complete

Version Selection 2 Confirmation

Please confirm the configuration information below. Once install begins, all nodes will begin to download firmware image immediately. After the installation process is complete, you can start activation of downloaded image!

Update Detail

Current Firmware Version 2.0.0.71a	Target Firmware Version 2.0.0.71b	Number Of Nodes 3	Last Update 2020-10-02, 14:40:19
---------------------------------------	--------------------------------------	----------------------	-------------------------------------


Nodes

Serial Number	Node	Type	Status	Last Update
WZP23340A7P	ND2	Master	Active	2020-10-02, 14:40:19
WZP23340A7Q	ND3	Master	Active	2020-10-02, 14:39:37
WZP23340A7X	ND1	Master	Active	2020-10-02, 14:40:20

10 Rows Page 1 of 1 1-3 of 3

Previous Begin Install Next

Installing Firmware to Nodes

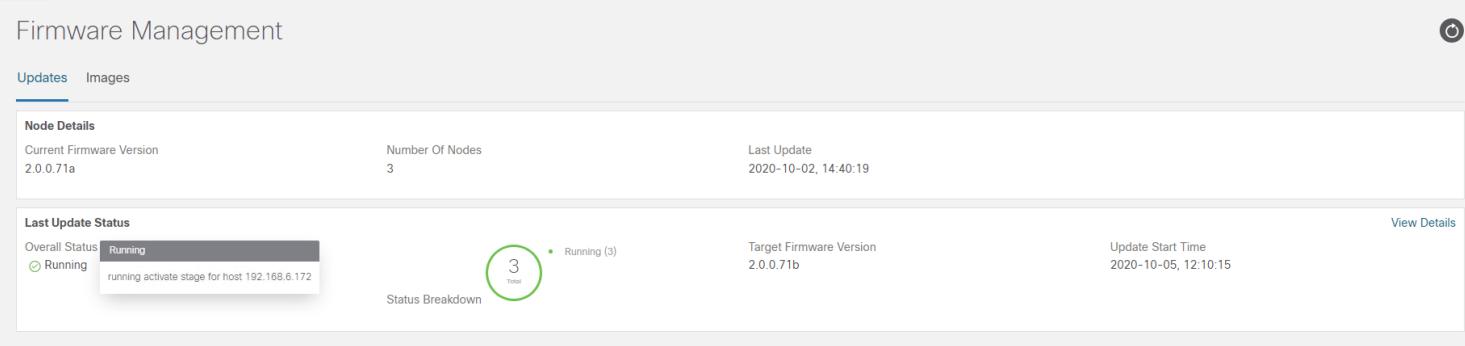
Once Install is done Click Activate

Activation Progress

Firmware Update

Setup Install **Activate** Complete

This is the final stage of the update process. Once activation has finished, the update will be complete!


Update Status		Update Details		Number Of Nodes	
Overall Status	Running	Status Breakdown	Running (1) Done (0)	Current Firmware Version	1.1.2.160
				Target Firmware Version	1.1.3c
				Number Of Nodes	3 Master (3)
				Last Update	2020-05-04, 14:15:18

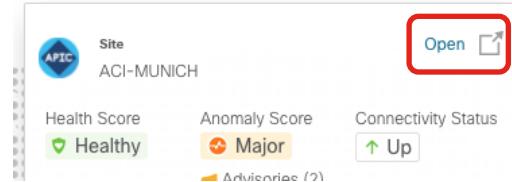
Nodes			
Node	In-Band Management IP Address	Status	Last Install
ServiceNode1	192.168.6.172	Running (75%)	2020-05-18, 18:19:57
ServiceNode2	192.168.6.173	Done (12%)	2020-05-18, 18:18:56
ServiceNode3	192.168.6.174	Done (12%)	2020-05-18, 18:18:56

Retry All **Cancel**

Monitoring Firmware Upgrade

- When the node you are connected to is activating, it will disconnect you. Please connect to another SE node. Check status via:

The screenshot shows the Firmware Management interface with the 'Updates' tab selected. It displays node details: Current Firmware Version 2.0.0.71a, Number Of Nodes 3, and Last Update 2020-10-02, 14:40:19. The 'Last Update Status' section shows an overall status of 'Running' (green) with a note 'running activate stage for host 192.168.6.172'. A 'Status Breakdown' section shows 3 nodes in 'Running' status. The 'View Details' button is located in the top right of the status breakdown area.


- Node going through an update will display:

i Current node is going through upgrade, any configuration change during upgrade will not work. [More Info](#)

Remote Authentication

Remote Authentication

- ND adds support for following authentication providers
 - LDAP
 - TACACS
 - RADIUS
- RBAC is supported via cisco-avpair
- Is used for SSO, if the remote user has access rights to APIC, the user is automatically signed into APIC UI (4.2.6, 5.1 and later) and DCNM 11.5, when cross launching the UI. This is assuming the same auth. domain is used.

Login without and with enabled Login Domain

Welcome to
Nexus Dashboard

Version 3.0(1)

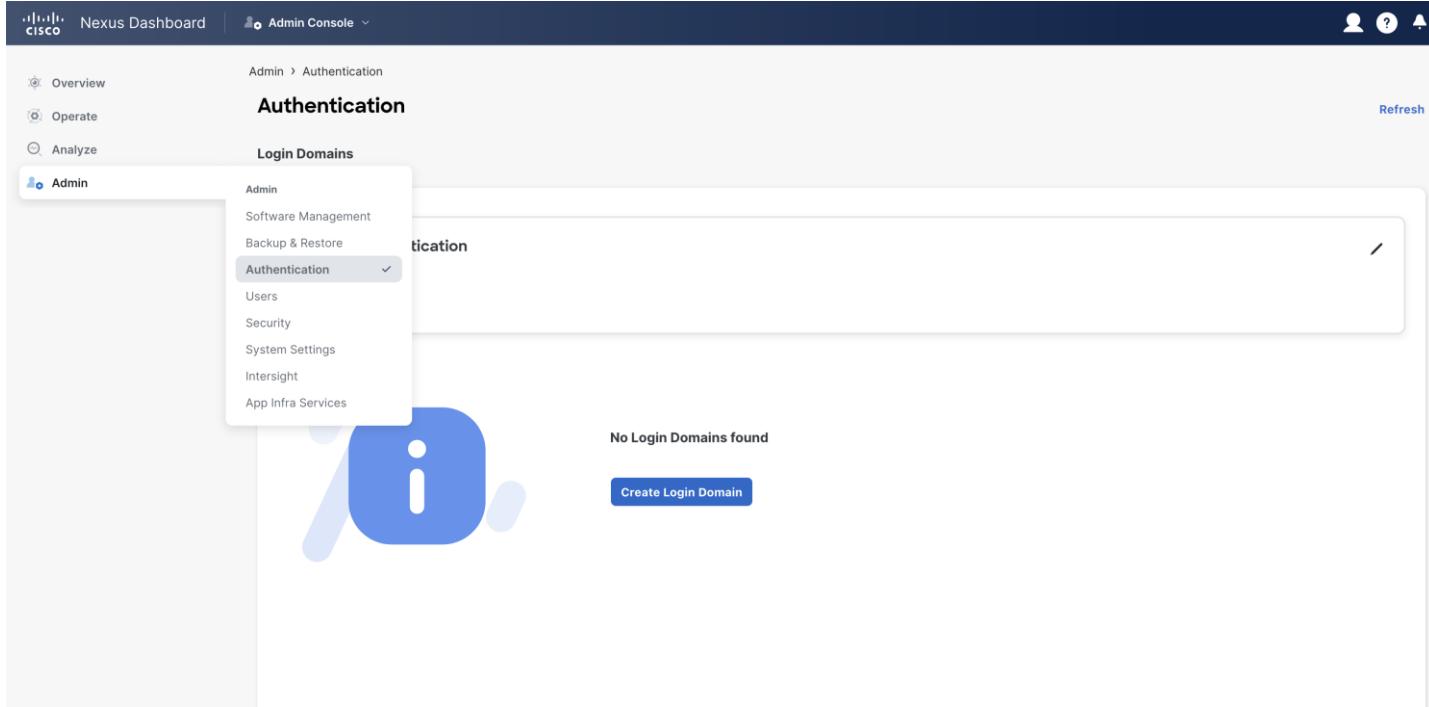
Username

Password

Help Center Terms Privacy Cookies ©2023 Cisco Systems, Inc.

Welcome to
Nexus Dashboard

Version 3.0(1)


Username

Password

Login Domain

Help Center Terms Privacy Cookies ©2023 Cisco Systems, Inc.

Create a Login Domain

The screenshot shows the Cisco Nexus Dashboard Admin Console interface. The top navigation bar includes the Cisco logo, 'Nexus Dashboard', 'Admin Console', and user icons. The left sidebar has sections for Overview, Operate, Analyze, and Admin. The Admin section is expanded, showing sub-options: Admin, Software Management, Backup & Restore, Authentication (which is selected and highlighted in blue), Users, Security, System Settings, Intersight, and App Infra Services. The main content area is titled 'Authentication' and 'Login Domains'. It displays a large blue 'i' icon and the message 'No Login Domains found'. A blue 'Create Login Domain' button is visible. The top right of the content area has a 'Refresh' button and a small gear icon.

Create a Login Domain

Create Login Domain

Name *

Description

Realm

Providers

Name	Description	Authentication Port
+ Add Provider		

ADD PROVIDER

General

Hostname/IP Address *

Description

Settings

Authorization Protocol
 PAP CHAP MS-CHAP

Port

Priority

Key *

Confirm Key *

Timeout (sec)

Retries

[Cancel](#) [Save](#)

Need to have a valid remote user to add provider – backend will query the remote auth server with provider info and user/pass before it can be added.

Change Default Authentication for Login

Admin > Authentication

Authentication

Refresh

Login Domains

Default Authentication	
Login Domain	local

/

Filter by attributes

Create Login Domain

Default Authentication

x

Login Domain

local

RADIUS

local

Login Screen with Login Domain

Welcome to Nexus Dashboard

Version 3.0(1)

Username

Password

Login Domain

 X ▼

Login

[Help Center](#) [Terms](#) [Privacy](#) [Cookies](#) ©2023 Cisco Systems, Inc.

RBAC and User Roles 1/2

- **Administrator** – allows access to all objects and configurations. (Dashboard role)
 - AV Pair Value: admin
- **User Manager** – allows access to users and authentication configurations. (Dashboard role)
 - AV Pair Value: aaa
- **Dashboard User** – allows access only to the Dashboard view and launching applications; does not allow any changes to the Nexus Dashboard configurations. (Dashboard role)
 - AV Pair Value: app-user
- **Site Administrator** – allows access to configurations related to the sites on-boarding and configuration. (Dashboard role)
 - AV Pair Value: site-admin
- **Site Manager** – allows application user to manage the sites used by that application. (NDO App role)
 - AV Pair Value: config-manager
- **Policy Manager** – allows application user to view policy objects. (NDO App role)
 - AV Pair Value: site-policy
- **Tenant Manager** – allows application user to view tenants (NDO App role)
 - AV Pair Value: tenant-policy

RBAC and User Roles 2/2

- Cisco-avpair is used for RBAC via remote Auth
- AVPAIR format
 - shell:domains=<domain>/<writerole>|<writerole2>/<readrole>|<readrole2>
 - Example
 - All admin access: shell:domains=all/admin/
 - Tenant Mgr, Site Mgr and readonly AAA: shell:domains=all/tenant-policy|site-admin/aaa
- Local Users can be assigned to User roles as well while creating the User

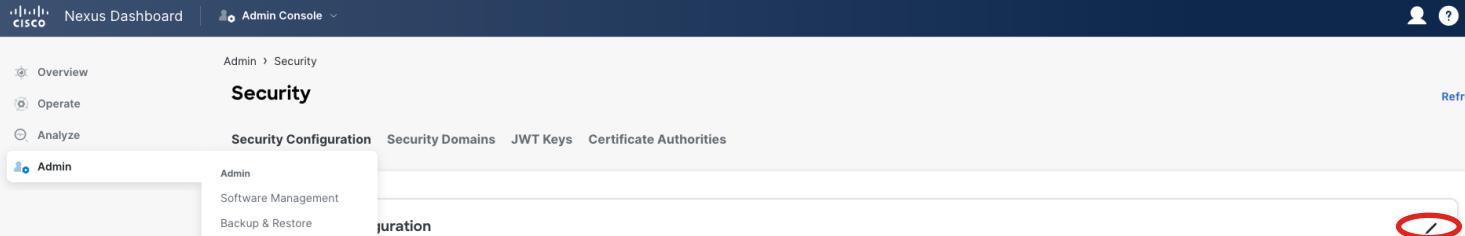
User Roles for Local Users

Add Security Domain and Roles

Domain

Select an Option

Roles


Name	Read Privilege	Write Privilege	Service	Details
Administrator	<input type="checkbox"/>	<input type="checkbox"/>	Nexus Dashboard	i
Approver	<input type="checkbox"/>	<input type="checkbox"/>	Nexus Dashboard	i
Dashboard User	<input checked="" type="checkbox"/>	<input type="checkbox"/>	Nexus Dashboard	i
Deployer	<input type="checkbox"/>	<input type="checkbox"/>	Nexus Dashboard	i
Policy Manager	<input type="checkbox"/>	<input type="checkbox"/>	Nexus Dashboard	i
Site Administrator	<input type="checkbox"/>	<input type="checkbox"/>	Nexus Dashboard	i
Site Manager	<input type="checkbox"/>	<input type="checkbox"/>	Nexus Dashboard	i
Tenant Manager	<input type="checkbox"/>	<input type="checkbox"/>	Nexus Dashboard	i
User Manager	<input type="checkbox"/>	<input type="checkbox"/>	Nexus Dashboard	i

Configurable Security Settings

Configurable Security Settings

- Idle and Session Timeout is configurable
- Custom Certificates can be used
 - User needs to provide valid cert chain – backend does the validation before applying custom certs.
- Also with ND 2.3 and later you can have ND verify the Certificates of the onboarded Site-Controller before onboarding

Configure Security Settings

Nexus Dashboard Admin Console Overview Operate Analyze Admin Security Security Configuration Security Domains JWT Keys Certificate Authorities Admin Software Management Backup & Restore Authentication Users Security System Settings Intersight App Infra Services

Duration (seconds) Idle Timeout (seconds) 3600

Domain Name *

Intermediate Certificate

Root Certificate

-----BEGIN CERTIFICATE-----

```
-----BEGIN CERTIFICATE-----  
MIIDFTCCamWgAwIBAgIzAzb/dnlMwDQYJkZI...  
BhMCVVMcCxZaJbgNVAgTAKNBMRUwEwYDQV...  
BAMTC1daUDiZmQwQd7YMB4DTlzMdkyMzE5...  
RzELMAKAGtUEhBMCVVMcCxZaJbgNVAgTAKNb...  
ZX0xFDASB9nVBAMTC1daUDiZmQwQd7YMB1...  
MILBCkgKCQAEx28KBUuJiSJSJZf0s3MplnHocso...  
yjg0T940rZn1SsJyvMgX3OptWxmmonTE0E8n...  
Me7TeCtUlaWpNy77/Dn5g3nl47sgY2BpAx  
/uCGMvIvwMrml0JlCgpOfJcHE  
ZSHIOampzJ49YXt1D0OL1WzJe6Z0BfQIZH...  
rV0/0ns5k  
/eKMu4wISLDNqQRnqJUUmBllJggqAsHqJi+94l...  
4Z6Rlfyf8BC4frEylLq4+tpsmLnT0lQwIDQAQ...  
AqQwHQYDVROIBYBwFAYIKwBBQHUWBGCCsG...  
Af8wQK0YDVR0OBCIEcYLJm7JdkdvjhJdC4Bllh6...  
fBhcaI9/WBbrpmPsgQbz9023qPv8xPb0wR6Sz...  
cDNKDCjpZmPvUj/0lQd0qeeybMv4V4v5hshdW...  
TBglo+9004AfAnYzK8W0gH3PAOifSzl+MGP...  
IW4yP3LqJh1J0pMoTe...  
//0wfPvHII7c5qh7kezHYy72BIIAR+SrLwO+Iogs  
NumULELYlu0jF146rTr1qfzDtkjQwImbsmxv...  
-----END CERTIFICATE-----
```

-----END CERTIFICATE-----

Configure Security Settings

The screenshot shows the 'Security Configuration' dialog box. Two red boxes with arrows point to specific settings:

- A red box labeled 'Session and Idle Timeout in Seconds' points to the 'Session Timeout (seconds)' field, which contains the value '1200', and the 'Idle Timeout (seconds)' field, which contains the value '3600'.
- A red box labeled 'Customer Certificate and Root Certificate, enabled SSL Ciphers etc.' points to the 'Domain Name' field containing an asterisk (*) and the 'SSL Ciphers' list, which includes three entries: 'TLS_ECDHE_RSA_WITH_AES_128_C...', 'TLS_ECDHE_RSA_WITH_AES_256_G...', and 'TLS_ECDHE_ECDSA_WITH_AES_256...'.

Security Configuration

Timers

Session Timeout (seconds)
1200

Idle Timeout (seconds)
3600

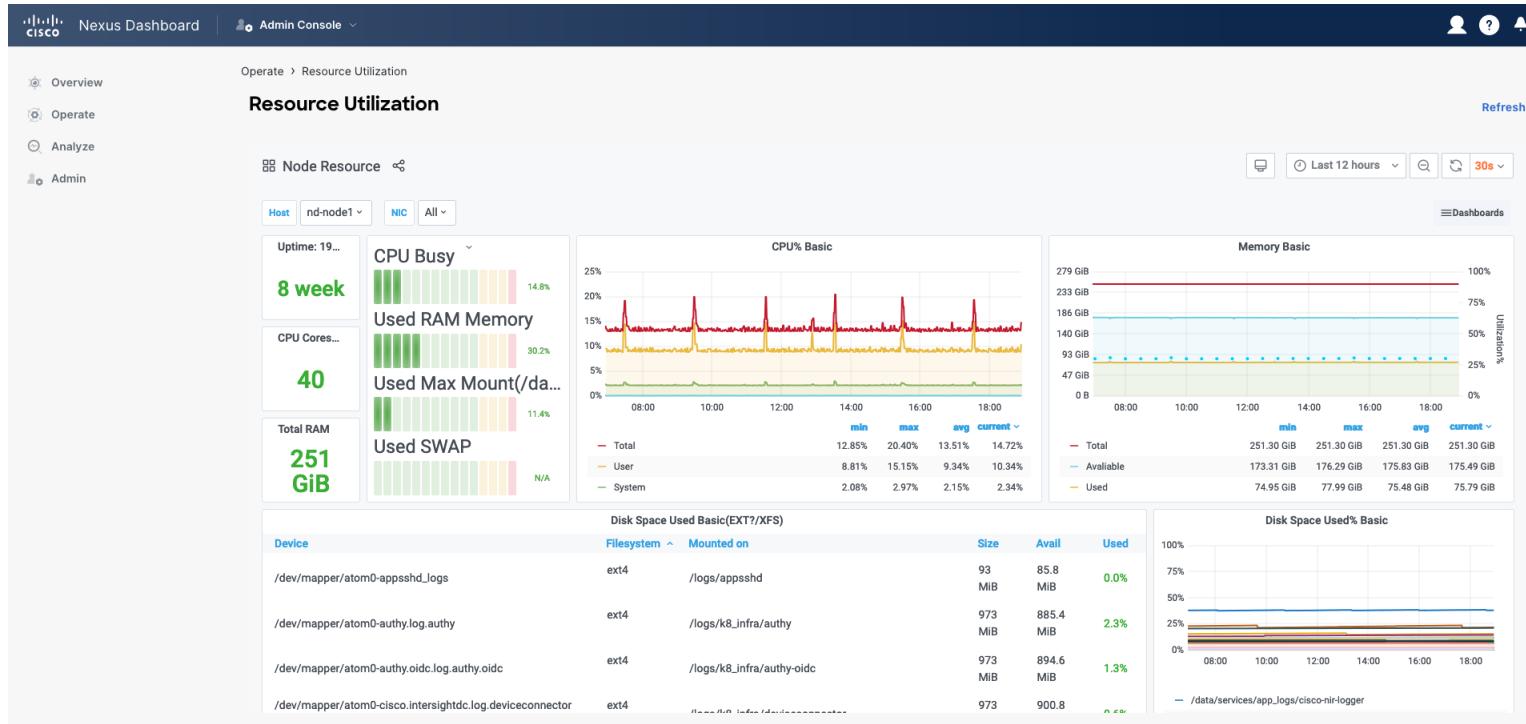
Certificate

Domain Name
*

SSL Ciphers

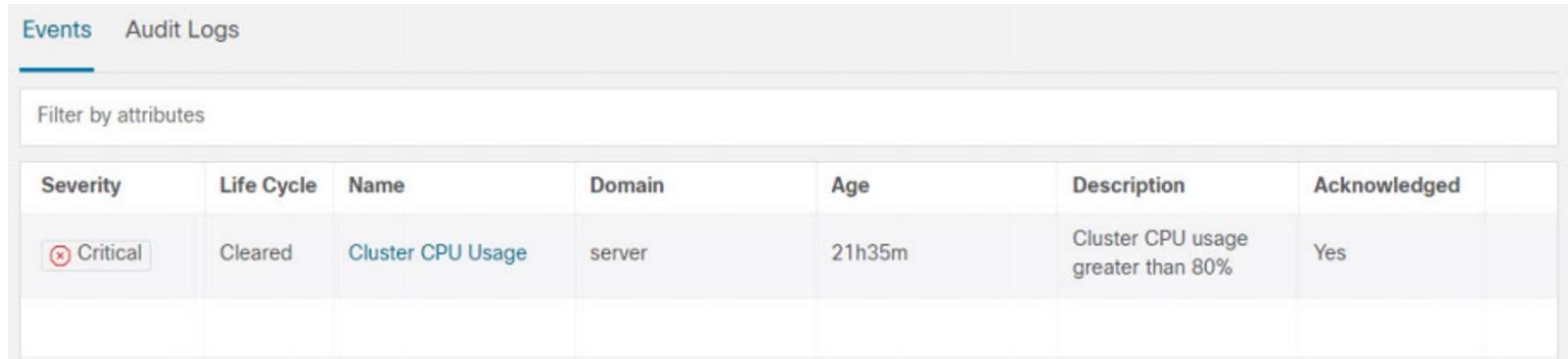
- TLS_ECDHE_RSA_WITH_AES_128_C...
- TLS_ECDHE_RSA_WITH_AES_256_G...
- TLS_ECDHE_ECDSA_WITH_AES_256...

Cancel Save


```
[rescue-user@ND2 ~]$ openssl req -new -x509 -keyout cert.pem -out cert.pem -days 28 -nodes
Generating a RSA private key
.
.
.
writing new private key to 'cert.pem'
-----
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.
-----
Country Name (2 letter code) [XX]:DE
State or Province Name (full name) []:Germany
Locality Name (eg, city) [Default City]:Munich
Organization Name (eg, company) [Default Company Ltd]:Cisco
Organizational Unit Name (eg, section) []:INSBU
Common Name (eg, your name or your server's hostname) []:*.tme-lab.local
Email Address []:insbu-muc@cisco.com
[rescue-user@ND2 ~]$ ]
```

Resource Monitoring

Resource Monitoring


- Provides Monitoring on
 - CPU
 - RAM
 - I/O Disk
 - I/O Network
- Node or Cluster level View
- Namespaces View

Resource Monitoring on Node and Cluster Level

Event Analytic

Event Analytic

The screenshot shows the 'Events' tab of the Nexus Dashboard. At the top, there are two tabs: 'Events' (which is selected and highlighted in blue) and 'Audit Logs'. Below the tabs is a search bar labeled 'Filter by attributes'. The main area is a table with the following columns: Severity, Life Cycle, Name, Domain, Age, Description, and Acknowledged. There is one data row visible, representing an event for 'Cluster CPU Usage' with the following details: Severity is 'Critical' (indicated by a red circle with a white 'X'), Life Cycle is 'Cleared', Name is 'Cluster CPU Usage', Domain is 'server', Age is '21h35m', Description is 'Cluster CPU usage greater than 80%', and Acknowledged is 'Yes'.

Severity	Life Cycle	Name	Domain	Age	Description	Acknowledged
X Critical	Cleared	Cluster CPU Usage	server	21h35m	Cluster CPU usage greater than 80%	Yes

Event Analytics enables easy access to your Nexus Dashboard's events and audit logs. In addition to viewing the events and logs directly in the Nexus Dashboard GUI, you can also configure the cluster to stream the events to an external syslog server (TCP/UDP)

Events

- Node CPU exceeding threshold (80%)
- Node storage exceeding threshold (80%)
- Node memory exceeding threshold (80%)
- Cluster node is unreachable
- Cluster node is rebooted
- All audit events
- NTP is not synchronized
- BGP peers are not reachable

Configuring Syslog Servers 1/2

The screenshot shows the Cisco Nexus Dashboard Admin Console with the following interface details:

- Header:** Nexus Dashboard, Admin Console, User icons.
- Left Sidebar:** Overview, Operate, Analyze, Admin.
- Page Title:** Admin > System Settings, System Settings.
- Section Headers:** General, Multi-Cluster Connectivity.
- Cluster Details:** Name: TME-MUC, App Subnet: 172.17.0.1/16, Service Subnet: 100.80.0.0/16.
- Proxy Configuration:** Type: Server, Ignore Hosts: (empty text input).
- Routes:** Management Network Routes: (empty text input), Data Network Routes: (empty text input).
- Network Scale:** Number of Sites: -, Number of Switches: -, Flows per second: -.
- NTP:** Key: (empty text input), NTP Host Name/IP Address: 192.168.10.120.
- DNS:** Domain Name: tme-muc.case.local, Providers IP Addresses: 10.49.153.3, Search Domains: (empty text input).
- Syslog:** Remote Destinations: 192.168.10.122.

Configuring Syslog Servers 2/2

Admin > System Settings

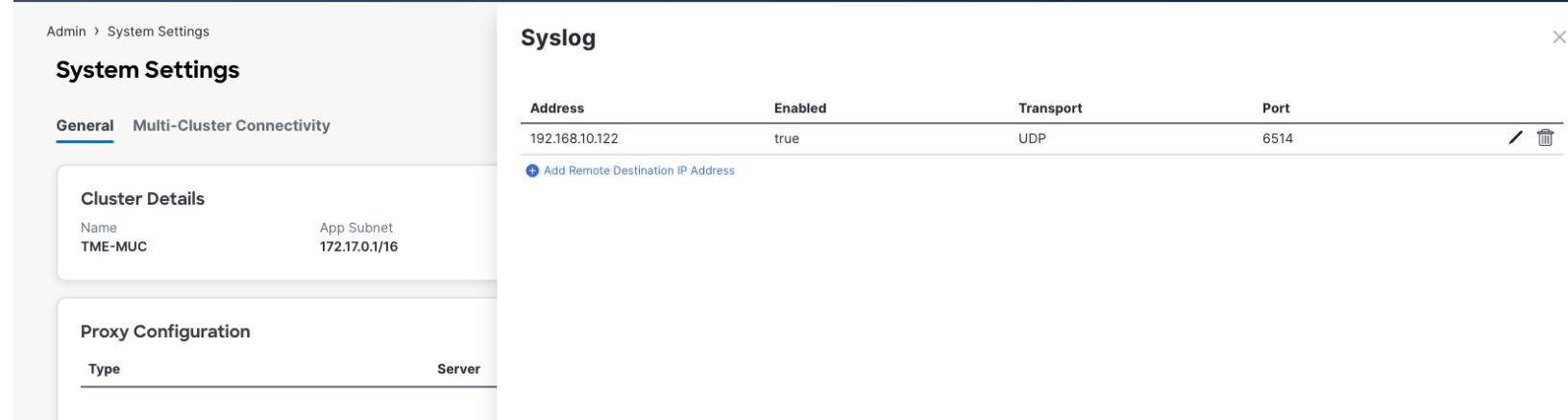
System Settings

General Multi-Cluster Connectivity

Cluster Details

Name	App Subnet
TME-MUC	172.17.0.1/16

Proxy Configuration


Type	Server
------	--------

Syslog

Address	Enabled	Transport	Port
192.168.10.122	true	UDP	6514

[+ Add Remote Destination IP Address](#)

X

Admin > System Settings

System Settings

General Multi-Cluster Connectivity

Cluster Details

Name	App Subnet
TME-MUC	172.17.0.1/16

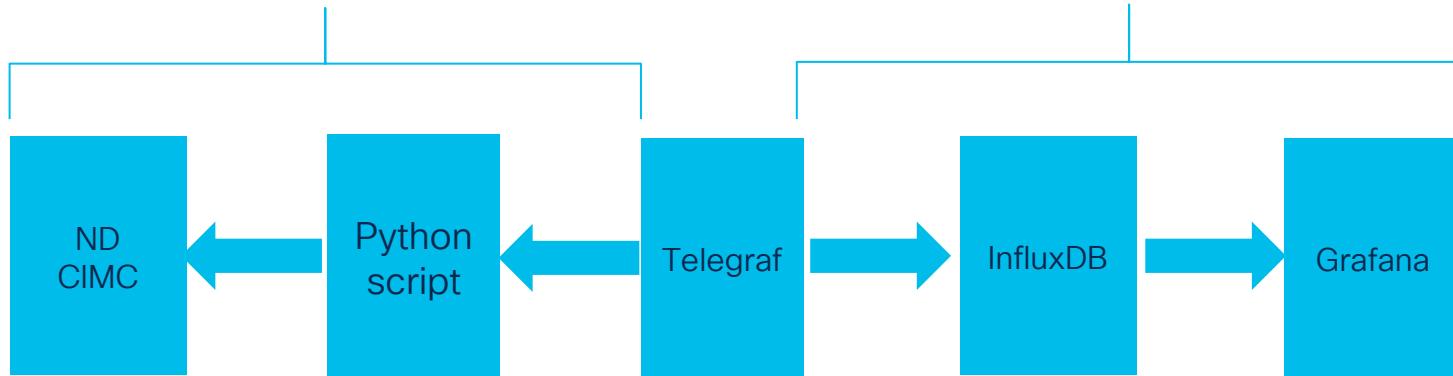
Syslog

Address	Enabled	Transport	Port
192.168.10.122	true	UDP	6514

192.168.10.122 UDP 614 X

X

Hardware Monitoring of ND via CIMC


Hardware Monitoring of ND via CIMC

- Leveraging REST-API of CIMC to get:
 - Power draw
 - Temperature
 - CPU, I/O and RAM Utilization
- Querying the following dns:
 - CPU, I/O and RAM : dn="sys/rack-unit-1/utilization"
 - Temperature: dn="sys/rack-unit-1/temperature"
 - Power: dn="sys/rack-unit-1/pwrmonitor-Platform"

SW Stack Example

Telegraf calling a Python script to collect periodically data from CIMC

Telegraf storing data as timeseries in InfluxDB. Grafana visualizes the data

Basic Troubleshooting

Basic Troubleshooting

- Accessing ND Console, only via “rescue-user” with “admin” password
- Usage of ACS

```
rescue-user@ND-Node1:~$ acs
usage: [-h] [-v] {debug-token,passphrase,version,system-config,verify,
: error: the following arguments are required: which
rescue-user@ND-Node1:~$ acs health
All components are healthy
rescue-user@ND-Node1:~$ █
```

Basic Troubleshooting

Usage of Kubectl to get information of the K8S

NAMESPACE	NAME	READY	STATUS	RESTARTS	AGE
aaamgr	aaamgr-5979845989-jmjbd	1/1	Running	0	57d
authy-oidc	authy-oidc-58bb444797-54qnn	1/1	Running	4 (57d ago)	57d
authy	authy-585955bc5f-jz9lz	3/3	Running	0	57d
authy	authy-585955bc5f-nwfgt	3/3	Running	0	57d
authy	authy-585955bc5f-zh5md	3/3	Running	0	57d
cisco-appcenter	apiserver-77b8dc6c65-t8xm6	1/1	Running	0	57d
cisco-appcenter	appcenterconnector-89d74b88b-ww6fv	1/1	Running	0	57d
cisco-appcenter	appsync-856f8f57b8-7bg77	1/1	Running	0	57d
cisco-appcenter	store-58f8fff84-nhkjz	1/1	Running	0	57d
cisco-intersightdc	deviceconnector-cjhnp	1/1	Running	0	57d
cisco-intersightdc	deviceconnector-kbjqv	1/1	Running	0	57d
cisco-intersightdc	deviceconnector-nj8c9	1/1	Running	0	57d

Conclusion

Take Away

- Better visibility with real time analysis
- Meaningful, actionable anomalies
- Root Cause is a few clicks away
- Assurance for your configuration intent

The bridge to possible

Thank you

CISCO Live!

cisco *Live!*

Let's go