cisco live!

Let's go

An Introduction to Quantum Network Technologies

What Every Network and Security Engineer Should Know About Quantum Technologies

Tim Szigeti, Principal Technical Marketing Engineer Outshift by Cisco

cisco lile

Pre-Session Quiz

- 1) What are some use-cases for quantum networks?
- 2) What are some of the special properties of quantum bits (Qubits)?
- 3) What makes a quantum computer so fast?
- 4) What is Y2Q? And when do most experts expect it?
- 5) Can you transmit information faster than light with quantum teleporting?
- 6) Will quantum networks replace classical networks?
- 7) What is Cisco researching and developing in Quantum?

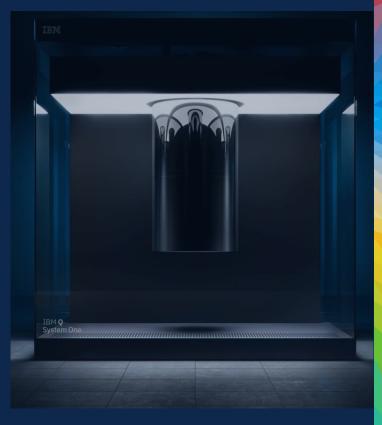
Agenda

- Intro to Quantum Mechanics
- Intro to Quantum Computing
 - Implications of Quantum Computing on Network Security
- Intro to Quantum Networking
- What is Cisco Doing?
- Summary & Next Steps

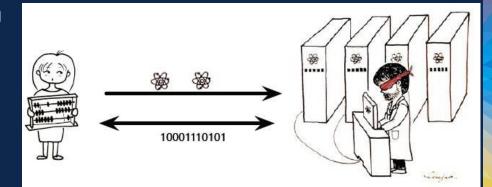
Why Build Quantum Networks?

cisco ive!

Quantum Cryptography


- Quantum networks can be used to securely exchange cryptographic keys, as these are mathematically proven to detect and prevent eavesdropping
- The most well-known method of this application is *Quantum Key Distribution (QKD)*

Distributed Quantum Computing


- Interconnecting geographicallydispersed quantum computers to realize benefits such as:
 - Increased Processing Power
 - Distributed Quantum Computing
 - Specialized Quantum Modules
 - Fault Tolerance
 - Hybrid Quantum-Classical Systems
 - Etc.

Blind Quantum Computing

- A privacy-preserving method in which a client can delegate a computation task to remote quantum computer(s) without disclosing the source data or algorithms
- The results of the computations
 would likewise be private

Network Clock Synchronization

- A world-wide set of high-precision clocks connected by quantum networks could achieve ultra precise clock signals
- Current accuracy: ≤ 30 ns
- Quantum accuracy: ≤1ps

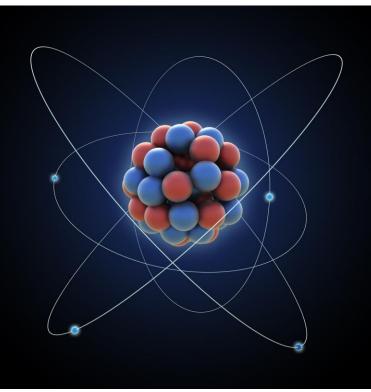
https://www.gps.gov/systems/gps/performance/accuracy/ https://ieeexplore.ieee.org/document/9856607

Distributed Sensing

- Signals from distributed sensors can be combined via quantum networks to obtain higheraccuracy measurements than currently possible with classical network interconnections
- E.g. Deep Space Telescope Array
 - Classical precision: $\pm 1/\sqrt{N}$
 - Quantum precision: $\pm 1/N$

Quantum Money

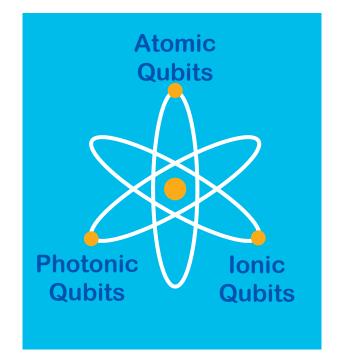
- The main security requirement of money is unforgeability
- A quantum money scheme aims to fulfill by this requirement by exploiting the no-cloning property of the unknown quantum states



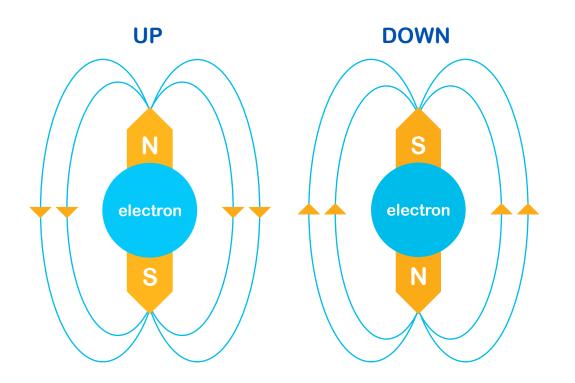
An Introduction to Quantum Mechanics

What is Quantum Mechanics?

- Quantum mechanics is the field of physics that explains how subatomic objects simultaneously have the characteristics of both:
 - Particles-tiny pieces of matter, and
 - Waves-variations that transfer energy



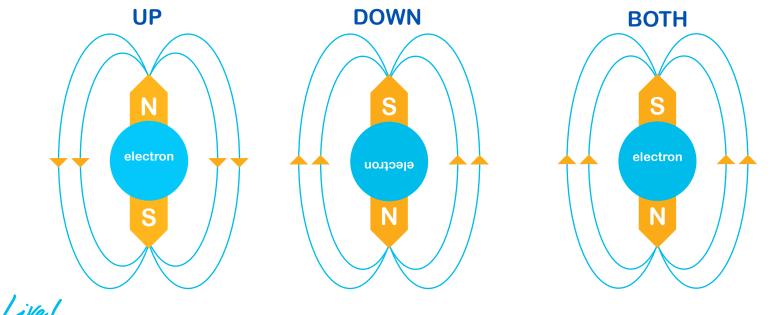
Quantum Bits (Qubits)


 Any quantum particle that can be measured in two discrete states, and as such, could be used to represent information

• E.g. a 0 or 1

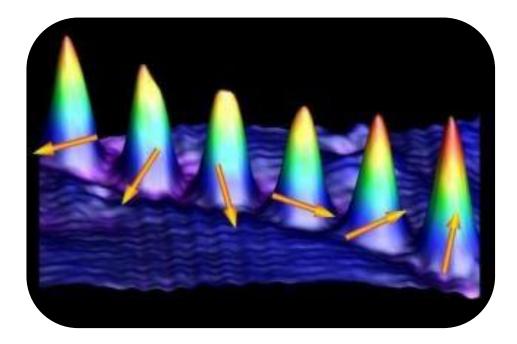
Qubit Example

- The spin of an electron can be used as a Qubit
- For example:
 - An upwards spin could be used represent a 0
 - A downward spin could be used to represent 1



Angular Momentum

• The spin may not always be perfectly up or down, but angular


• i.e. some *combination* of BOTH up-spin and down-spin

16

An Electron Microscope View Of Electron Spin

• The pointier the hat, the more upward the spin

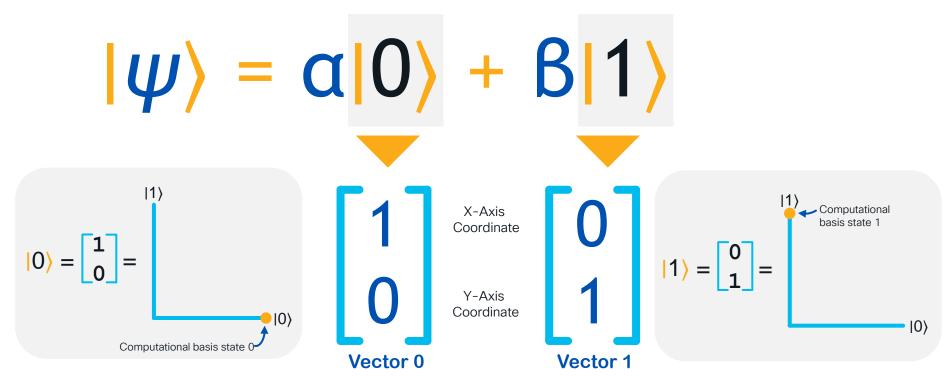
General Quantum State Formula

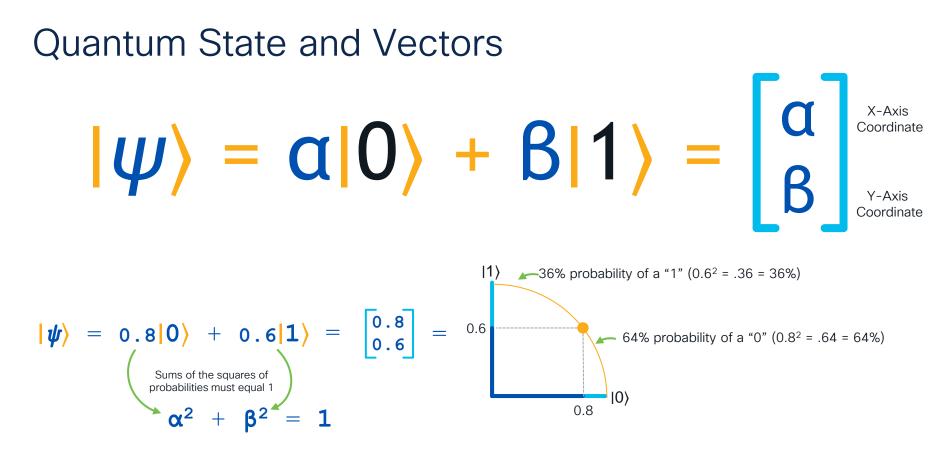
$|\psi\rangle = \alpha |0\rangle + B|1\rangle$

Quantum State represented by Psi

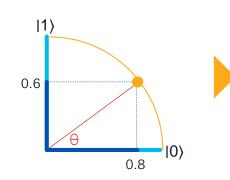
(Psi is the 23rd letter of the Greek alphabet)

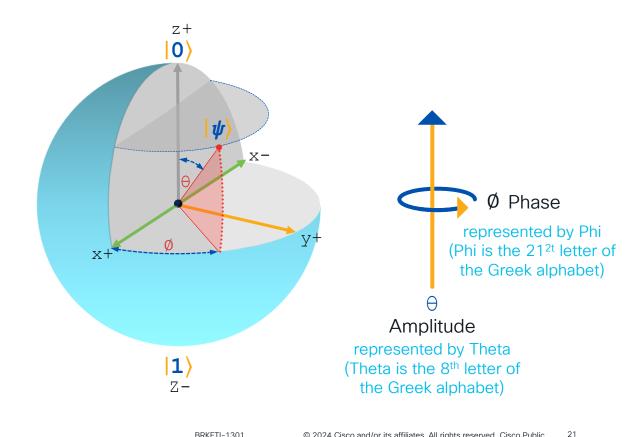
Alpha Ket 0 Alpha represents the amplitude of state 0


(Alpha is the first letter of the Greek alphabet)


Beta Ket 1 Beta represents the amplitude of state 1

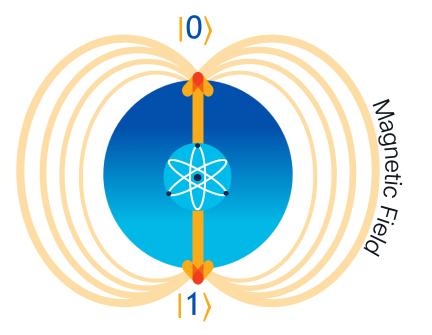
(Beta is the second letter of the Greek alphabet)


Quantum State and Vectors



cisco live!

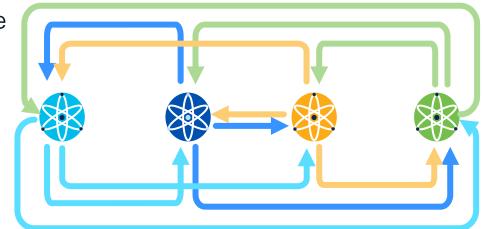
The Bloch Sphere: A 3D Qubit Representation


 $|\psi\rangle = 0.8|0\rangle + 0.6|1\rangle$

Quantum Special Property: Superposition

As long a Qubit is unobserved (i.e. unmeasured) it is in a "Superposition" of probabilities for 0 and 1

Quantum Special Property: Superposition


- As long a Qubit is unobserved (i.e. unmeasured) it is in a "Superposition" of probabilities for 0 and 1
- The instant a Qubit is measured, the superposition will collapse into one of the two discrete states

Quantum Special Property: Entanglement

- Entanglement is a physical relationship between Qubits where they react to a change in the other(s) state instantaneously regardless of how far they are apart
- Multiple qubits can become entangled with each other
 - The current record is 54

https://www.newscientist.com/article/2382022-record-breaking-number-of-qubits-entangled-in-a-quantum-computer/

Quantum Special Property: Entanglement

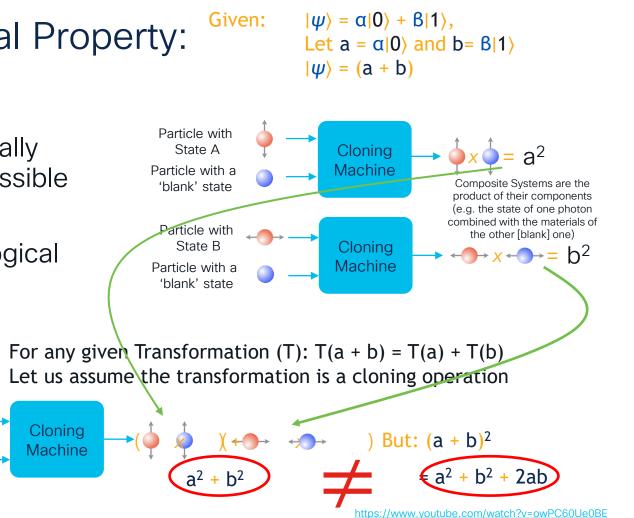
- If an entangled qubit is measured, then entanglement is broken
- The discrete state of the entangled qubit will depend on the entanglement operation that was performed
 - the states may be the same, or
 - the states may be opposite (as shown in this example)
- The important point is that as one entangled qubit changes state, its counterpart(s) will instantaneously reflect that change

0

Quantum Special Property: No Cloning

- It can be mathematically proven that it is impossible to clone a qubit
- The proof uses the logical method of "Proof by Contradiction"

Quantum state: $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$

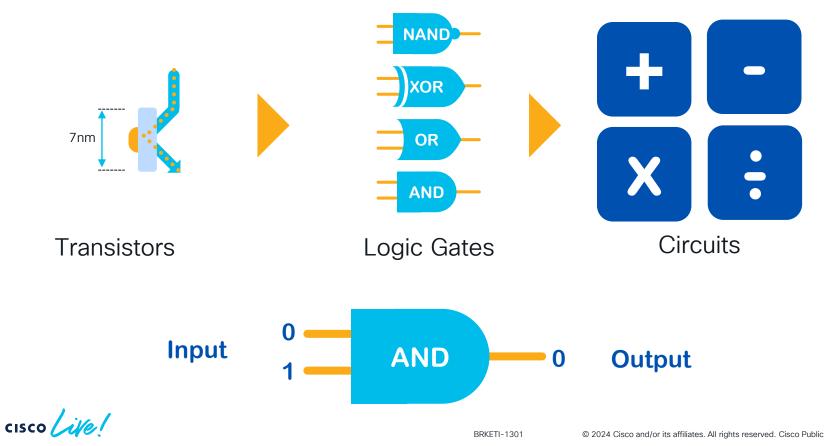

Simplified to: $|\psi\rangle = (a + b)$

Particle with

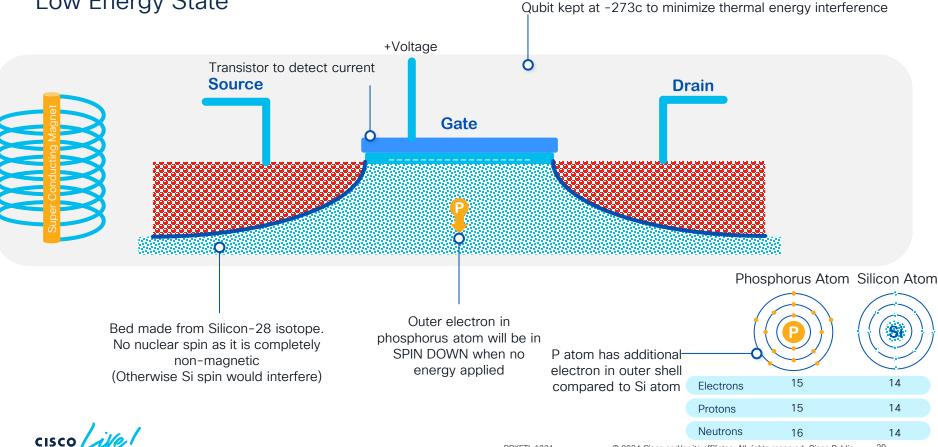
a quantum state

Particle with

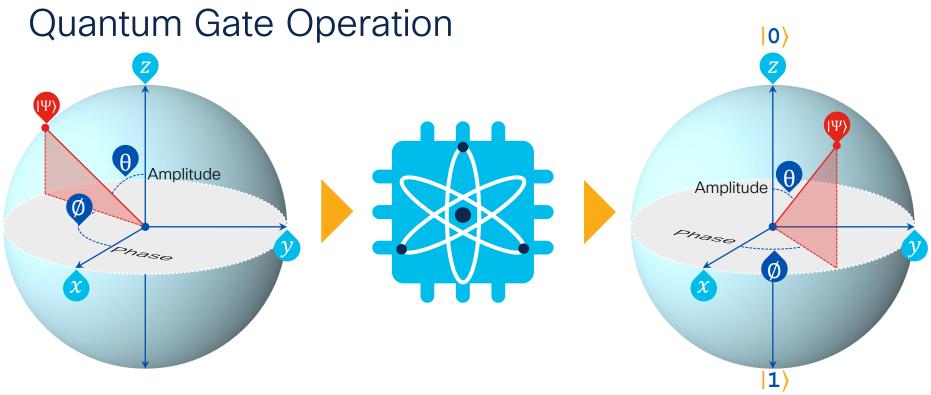
a 'blank' state



An Introduction to Quantum Computing

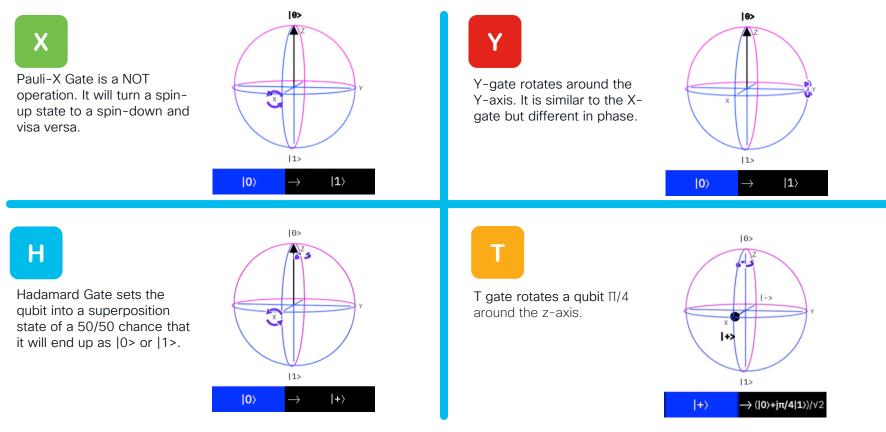



Digital Circuits Quick Recap

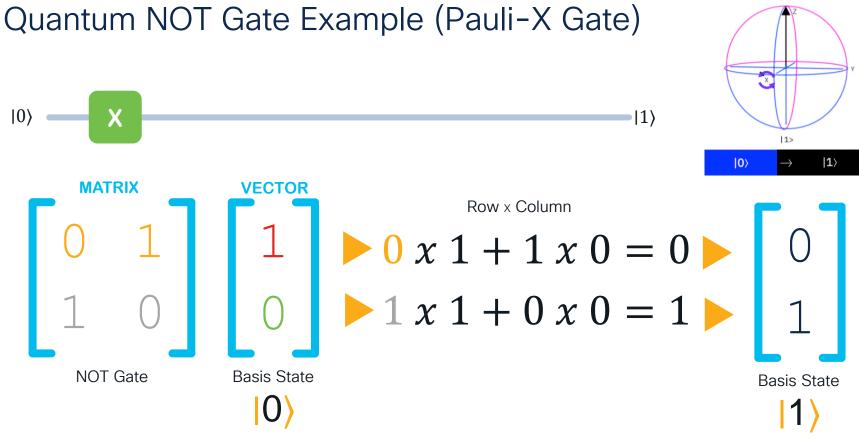

28

Anatomy of a Compute Qubit Low Energy State

cisco live!



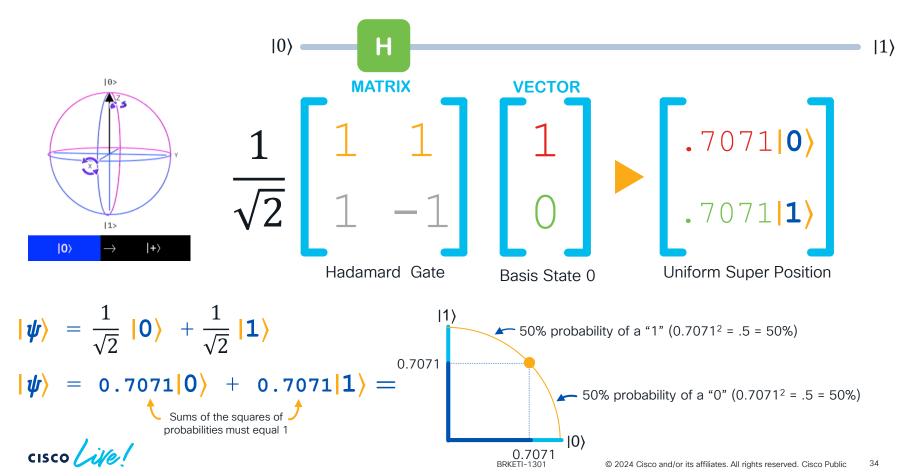
Quantum Gates :


- manipulate Amplitude θ and Phase Φ of the state vector
- take superpositions as inputs, rotate their probabilities, and produce *another* superposition as outputs

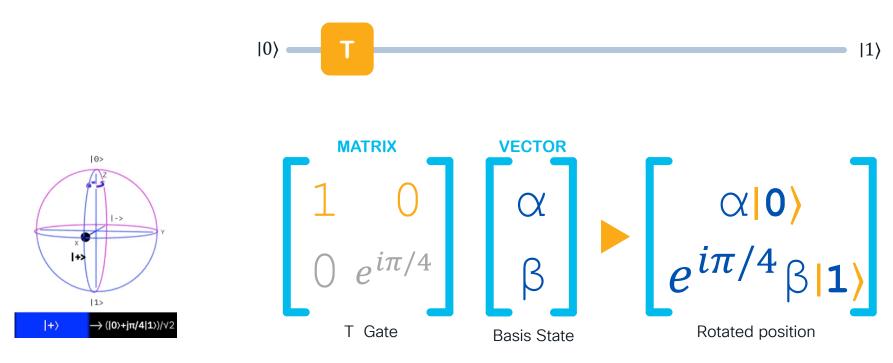
cisco

Quantum Gate Examples

Source: quantum.ibm.com

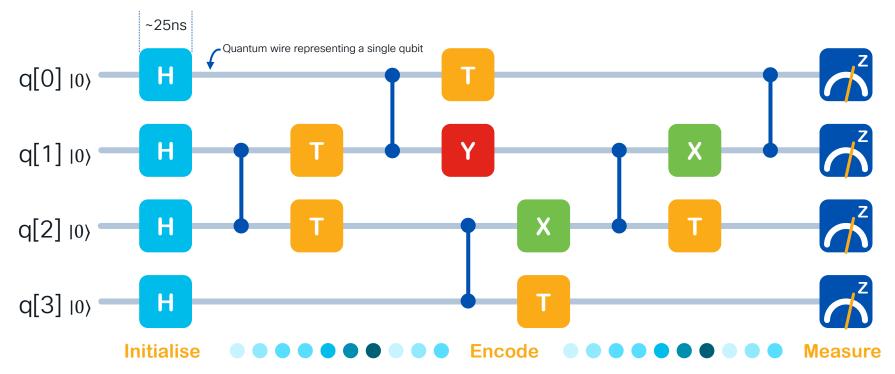


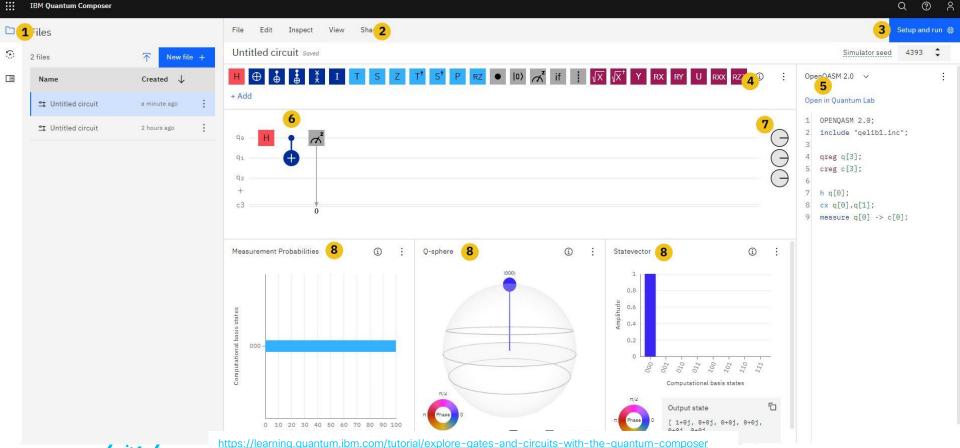
cisco / ile


BRKETI-1301 © 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public 33

|0>

Hadamard Gate Example (Set to 50/50 State)


T Gate Example (Rotate $\pi/4$ around the Z-axis)


Quantum Circuits

Include Both Quantum Operators + Classical Computing

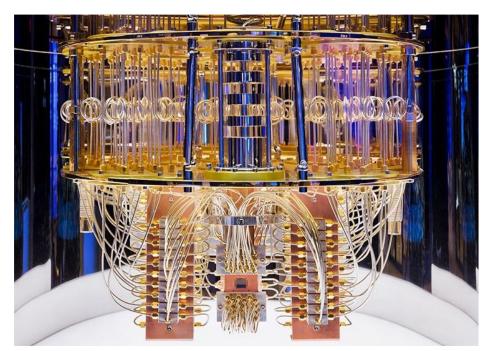
Number of input Qubits must match number of output Qubits

IBM Quantum Composer

cisco life!

BRKETI-1301

Quantum Parallelism


Holds & operates on values of 0 and 1 simultaneously Holds & operates on values of 00, 01, 10, 11 simultaneously

Holds & operates on **values** of 000, 001, 010, 011, 100, 101, 110, 111 *simultaneously*

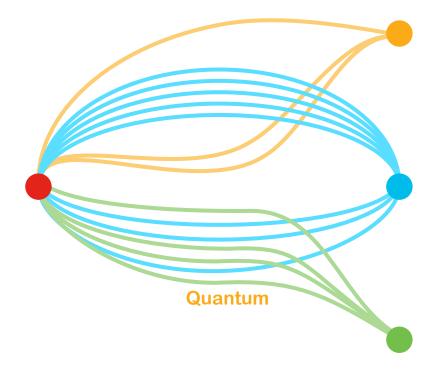
How Much Faster is a Quantum Computer?

- In 2021, the world's largest quantum computer had 127 Qubits
- This machine was <u>158M</u> times faster than its classic counterpart
- Example Task Execution Times:
 - Classic Computer: 2,500 years
 - Quantum Computer: 1 minute

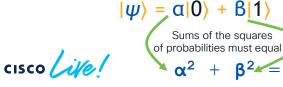
$2^{127} = 1.7 \times 10^{38}$ values

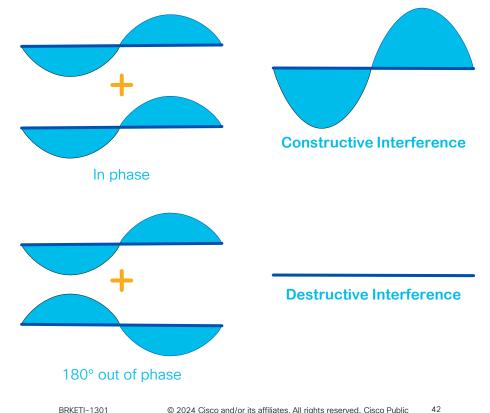
BRKETI-1301

Classical Computing Problem Solving


 A classic computer needs to sequentially iterate through a problem until the correct result is found

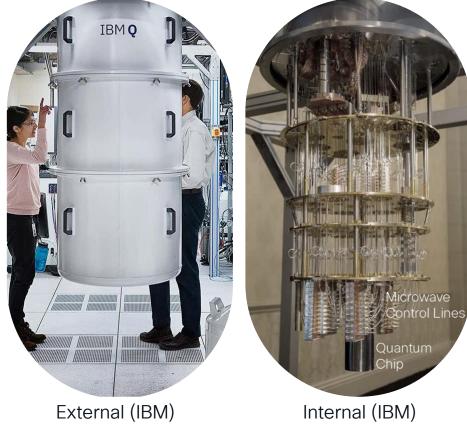
Quantum Computing Problem Solving

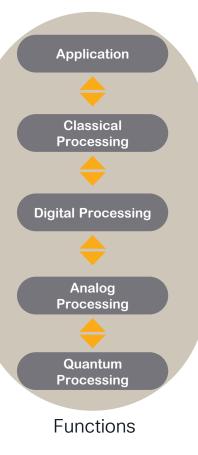

 Quantum computing can provide a single or small number of answers with the highest probability of being correct, which narrows down the search for the correct solution



Interference Manipulation

- Another benefit that can be realized by quantum computing comes from manipulating interference
- · Interference may be
 - constructive or
 - destructive
- Programmers of quantum algorithms (like Grover's and Shor's algorithms) endeavor to arrange qubits so that :
 - correct answers generate constructive interference
 - incorrect answers generate destructive interference
- Remember: Probability = Amplitude²




What Do Quantum Computers Look Like?

External (IBM)

cisco live!

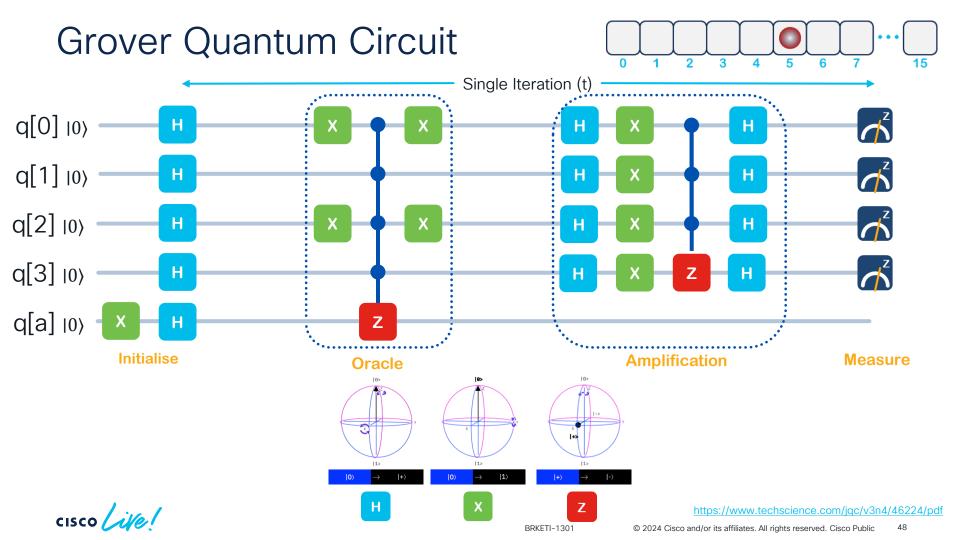
Implications of Quantum Computing on Network Security

Security-Concerning Quantum Algorithms

- Shor's Algorithm:
 - factorizes large numbers
 - with quantum compute, Shor's algorithm threatens the security of classical Public Key Infrastructure (PKI) including:
 - Diffie-Hellman (DH)
 - Elliptic Curve Cryptography (ECC), and
 - Elliptic Curve Diffie Hellman (ECDH)
 - The key exchange is at greatest risk
- Grover's Algorithm
 - searches an unstructured database (or an unordered list) $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ for a specific result
 - With quantum compute, Grover's algorithm will threaten the security of AES
 - Immediate recommendation is to increase key sizes

Y2Q, CRQC and SNDL

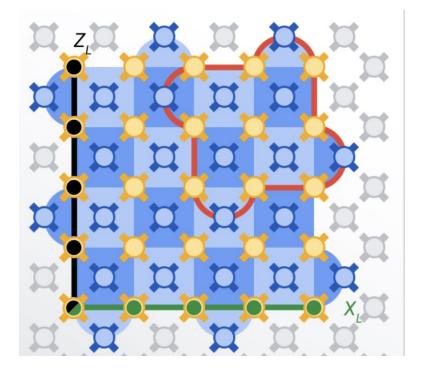
- Years to Quantum (Y2Q) refers to the unknown number of years before there is are Cryptographically Relevant Quantum Computers (CRQC)
- A CRQC can compute prime factorizations and discrete logarithms in polynomial time by Shor's algorithm, thereby rendering public key algorithms all but obsolete
- However, an adversary can capture network traffic today in the hopes of decrypting it later with a CRQC; this is a Store Now, Decrypt Later (SNDL) type of attack, and means that sensitive data is vulnerable right now to future quantum threats
 - Sometimes this method is also referred to as Harvest
 Now Decrypt Later (HNDL)



Grover's Algorithm: Classic vs. Quantum 3 Classic *f*("*red ball*") "Position 5" Worst Case: *N searches* Search f("Pos 2?") "False" Quantum Search Worst Case: \sqrt{N} searches "True" f("Pos 5?")

- Grover's algorithm uses amplitude amplification to return the correct result with high probability
- As such, with quantum parallelism and interference management, Grover's algorithm becomes quadratically faster than a classical algorithm

How many Qubits are required to Break RSA and AES?


• Experts estimate that:

- RSA-2048 requires a quantum computer with 4,096 logicallycorrected qubits to be broken
- AES-256 requires a quantum computer with 6,681 logicallycorrected qubits to be broken

https://pqcrypto2016.jp/data/Langenberg-Grover-AES.pdf

How Many Physical Qubits are Required to Produce a Logically-Corrected Qubit?

- Qubits are notoriously fragile and extremely sensitive to the environment and can easily lose coherence (state)
- The logical state of a qubit can be spread over many physical qubits to achieve Quantum Error Correction
- In March 2023, Google realized a logically-corrected qubit with just 49 physical qubits
- In December 2023, Harvard scientists achieved the same with just 48 qubits

https://blog.google/inside-google/message-ceo/our-progress-toward-quantum-error-correction/ https://thequantumrecord.com/quantum-computing/breakthrough-in-quantum-error-correction/

So, really... How many Qubits are required to Break RSA and AES?

- Let's assume 50 physical qubits for one logically-corrected qubit
- Experts estimate that:
 - RSA-2048 requires a quantum computer with 4,096 logically-corrected qubits to be broken
 - (4096 * ~50) 200,800 physical qubits
 - AES-256 requires a quantum computer with 6,681
 logically-corrected qubits to be broken
 - (6681 * 334,050) 334,050 physical qubits
- But remember:
 - Quantum computers are *increasing* in size, while
 - Quantum Error Correction circuits are *decreasing* in size

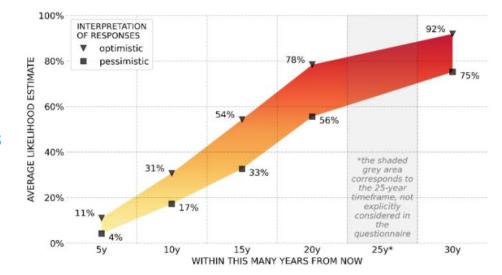
https://pqcrypto2016.jp/data/Langenberg-Grover-AES.pdf

c 51

How Far Off Is That?

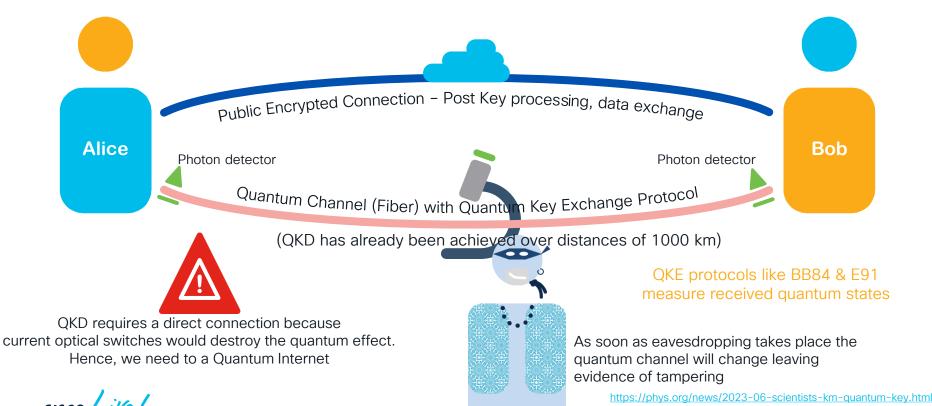
Development Roadmap IBM Quantum												
	2016-2019 🛛	2020 🥏	2021 🥑	2022 🥑	2023 🥑	2024	2025	2026	2027	2028	2029	2033+
	Run quantum circuits on the IBM Quantum Platform	Release multi- dimensional roadmap publicly with initial aim focused on scaling	Enhancing quantum execution speed by 100x with Qiskit Runtime	Bring dynamic circuits to unlock more computations	Enhancing quantum execution speed by 5x with quantum serverless and Execution modes	Improving quantum circuit quality and speed to allow 5K gates with parametric circuits	Enhancing quantum execution speed and parallelization with partitioning and quantum modularity	Improving quantum circuit quality to allow 7.5K gates	Improving quantum circuit quality to allow 10K gates	Improving quantum circuit quality to allow 15K gates	Improving quantum circuit quality to allow 100M gates	Beyond 2033, quantum- centric supercomputers will include 1000's of logical qubits unlocking the full power of quantum computing
Data Scientist	Data Scientist Platform											
						Code assistant 🔞	Functions	Mapping Collection	Specific Libraries			General purpose QC libraries
Researchers					Middleware							
					Quantum 🔗 Serverless	Transpiler Service 🔕	Resource Management	Circuit Knitting x P	Intelligent Orchestration			Circuit libraries
Quantum Physicist			Qiskit Runtime									
	IBM Quantum Experience	0	QASM3 🥹	Dynamic circuits 🥹	Execution Modes 🥥	Heron (5K) 🕲	Flamingo (5K) Error Mitigation	Flamingo (7.5K) Error Mitigation	Flamingo (10K) Error Mitigation	Flamingo (15K) Error Mitigation	Starling (100M) Error correction	Blue Jay (1B) Error correction
	Early Falcon Canary Atbetross Preguin Prototype Sigubits 20 gubits 50 gubits 51 gubits		Eagle Sectorsating 127 qubits		Sk gates 133 qubits Classical modular 133x3 = 399 qubits	Sk gates 156 qubits Quantum modular 156x7 = 1092 qubits	7.5k gates 156 qubits Quantum modular 156x7 = 1092 qubits	10k gates 156 qubits Quantum modular 156x7 = 1092 qubits	15k gates 156 qubits Quantum modular 156x7 = 1092 qubits	100M gates 200 qubits Error corrected modularity	18 gates 2000 qubits Error corrected modularity	

Innovation Roadmap


IBM Quantum / © 2023 IBM Corporation

https://newsroom.ibm.com/2023-12-04-IBM-Debuts-Next-Generation-Quantum-Processor-IBM-Quantum-System-Two,-Extends-Roadmap-to-Advance-Era-of-Quantum-Utility

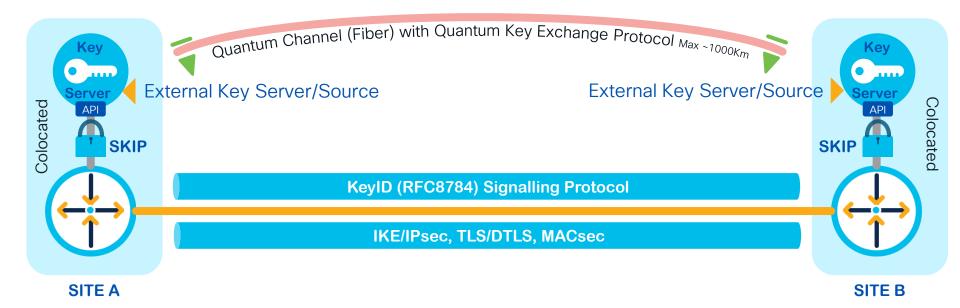
cisco ile


How Many Y2Q?

- Cloud Security Alliance:
 - April 14, 2030
- Global Risk Institute:
 - ~50% of experts predict 15 years
- White House / NIST
 - "in the not-too-distant future"

https://cloudsecurityalliance.org/press-releases/2022/03/09/cloud-security-alliance-sets-countdown-clock-to-quantum/ https://globalriskinstitute.org/publication/2023-quantum-threat-timeline-report/ https://www.whitehouse.gov/briefing-room/statements-releases/2022/05/04/fact-sheet-president-biden-announces-two-presidential-directives-advancing-quantum-technologies/

Quantum Key Distribution (QKD)



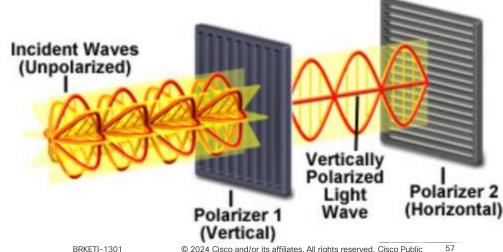
BRKETI-1301

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

54

Secure Key Import Protocol (SKIP)

cisco ile


An Introduction to Quantum Networking

Photonic Qubits

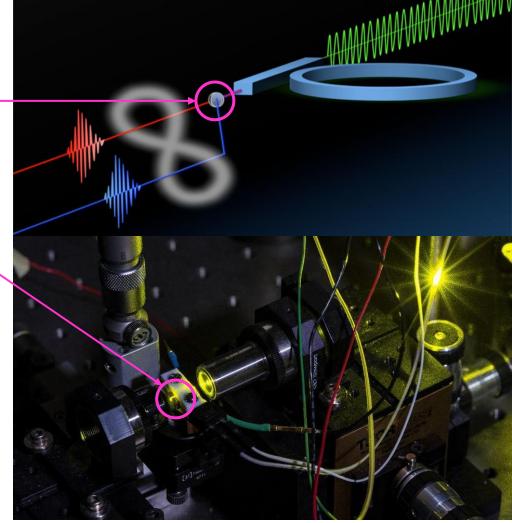
- Photons can represent Qubits, as well as electrons
- Photons are more conducive to quantum networking than electrons
 - electrons are more conducive to computing
- The logical states of 0 or 1 are not determined by the spin of photons, but rather by their polarization
 - Horizontal Polarization |1>
 - Vertical Polarization |0>

What Happens When Two Waves Intersect?


- When two waves intersect, the resulting displacement of the medium at any location is the *algebraic sum* of the displacements of the individual waves at that same location
- Therefore, another algebraic operation (specifically, a subtraction) can completely reverse the effects of the intersection

Photonic Qubits

- Photons can represent Qubits, as well as electrons
- Photons are more conducive to quantum networking than electrons (which are more conducive to computing)
- Logical states of 0 or 1 are not determined by spin, but rather by polarization
 - Horizontal Polarization |1)
 - Vertical Polarization |0)



https://www.olympus-lifescience.com/en/microscope-resource/primer/java/polarizedlight/3dpolarized/

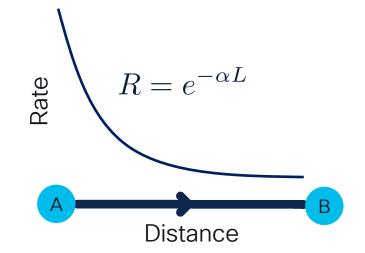
How Are Photons Entangled?

- The most common approach to generate entangled photons is via Spontaneous Parametric Down-Conversion (SPDC) in nonlinear crystals
- SPDC is an instant optical process that converts one photon of higher energy into a pair of photons of lower energy

https://www.nature.com/articles/s41377-021-00537-2 https://spectrum.ieee.org/entanglement-on-a-chip https://www.nist.gov/image/non-linear-crystal

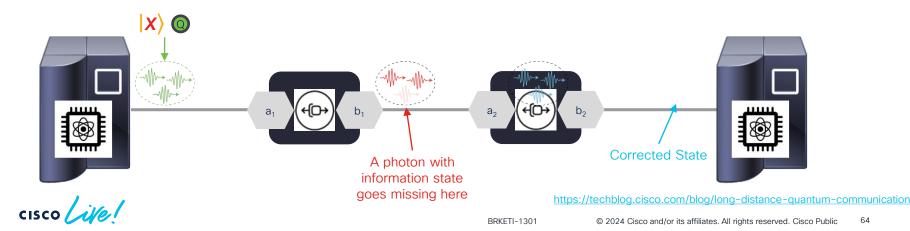
Classical Optical Communication

cisco ile!


Quantum Communication via Transporting

cisco live!

Primary Challenge to Quantum Transport


- Rate decays exponentially with distance
- · Can we amplify the signal?
 - No, because of the <u>No Cloning Theorem</u>

(One-Way) Quantum Repeaters

- Quantum Repeaters leverage Quantum Error Correction, where encoded quantum information is transmitted in the form of multi-photon states
 - Parity information is included in the multi-photon state
- Intermediate repeater stations check the incoming state for errors and prepare a fresh encoded qubit as the output to be sent to the next repeater
- This does NOT violate the <u>No Cloning Theorem</u>, as quantum repeaters perform a multi-qubit measurement that does not disturb the quantum information in the encoded state, but rather, retrieves indirect information about a potential error

(Two-Way) Quantum Communication via Teleporting Initial State

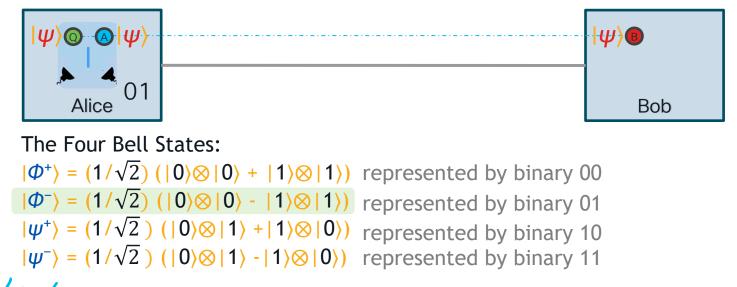
cisco live

Quantum Communication via Teleporting Step 1: Entangle a Pair of Photons and Send One to the Receiver

cisco /

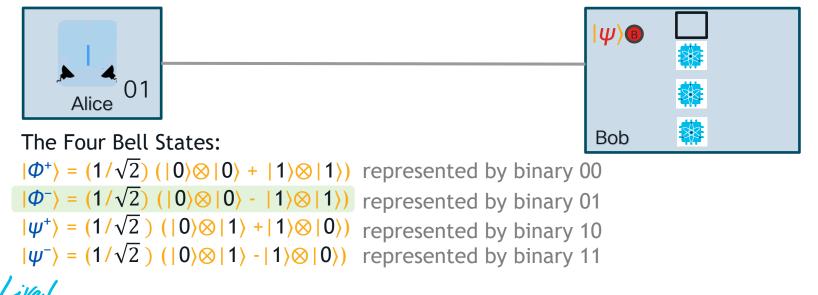
Quantum Communication via Teleporting Step 2: Perform Another Entanglement Operation at the Sender

Note: This step results in a teleportation of the *combination* of the states of qubits Q and A to qubit B


Quantum Communication via Teleporting

Step 3: Perform a Bell State Measurement at the Sender

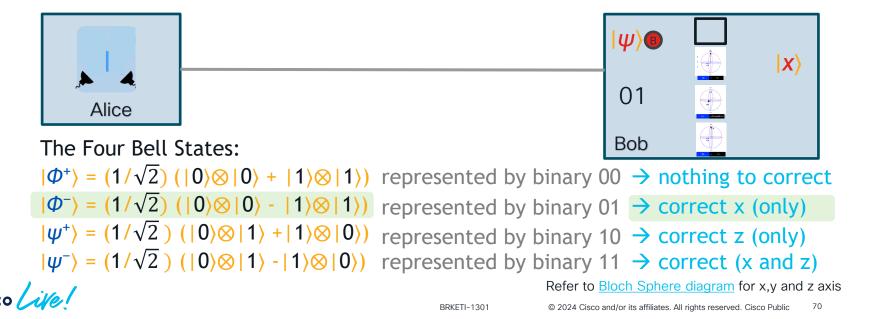
Note: The Bell State Measurement simultaneously:


- breaks the three-way entanglement,
- collapses the superpositions of qubits Q and A, and
- produces a result of 1 of 4 Bell States

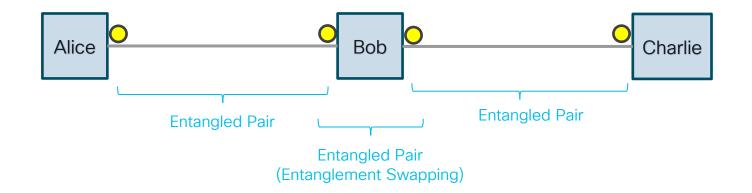
Note: \otimes is a mathematical notation for a tensor product; that is, a product of two quantum states, $|\psi\rangle$ and $|\Phi\rangle$

Quantum Communication via Teleporting

Step 4: Send the Bell State Measurement Result over a Classical Channel

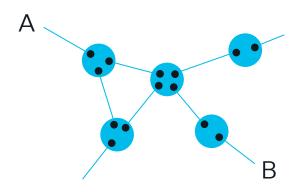


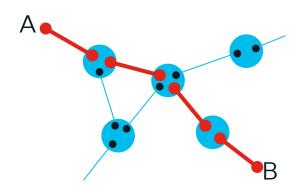
BRKETI-1301


Quantum Communication via Teleporting

Step 5: Perform a Correction Operation on the Received Qubit (if necessary)

Note: **X** represents the original state of the qubit, which has now been received in its corrected form


Extending Quantum Teleporting

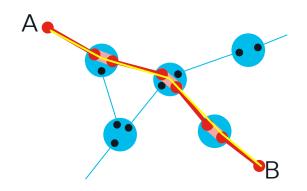

Quantum Routers & Protocols

Two-Way Entanglement Distribution Network Example

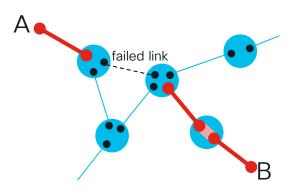
cisco Lile

Two-Way Entanglement Distribution Network Example

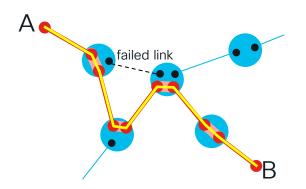
Elementary link entanglement


Two-Way Entanglement Distribution Network Example

Elementary swapping

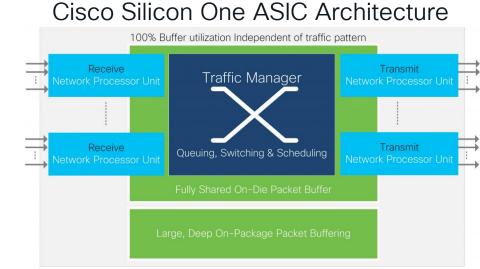

Two-Way Entanglement Distribution Network Example

End-to-end entanglement


Two-Way Entanglement Distribution Network Example

Network failure event

Two-Way Entanglement Distribution Network Example

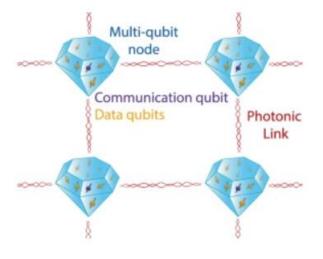


Reestablishing end-to-end entanglement

cisco / il

The Key Role of Memory in a Network Switch

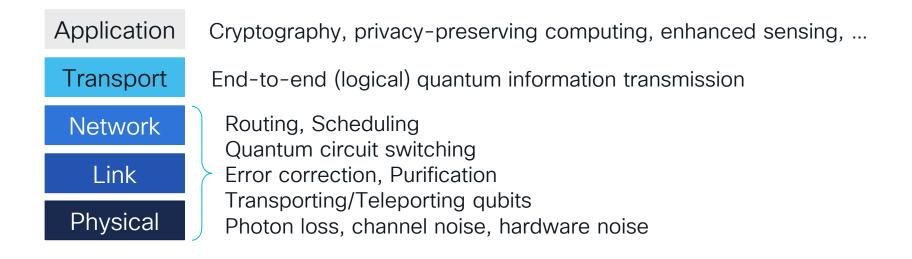
- A major component of any network switch is memory
- Memory enables:
 - Ingress buffering and queuing
 - Switching
 - Egress buffering and queuing


(everything shaded green represents memory)

Note: Cisco Silicon One is **NOT** an ASIC for a quantum switch, but rather is only being used as an example to illustrate how extensive memory is within switching architectures

Quantum Memory Methods and Storage Times

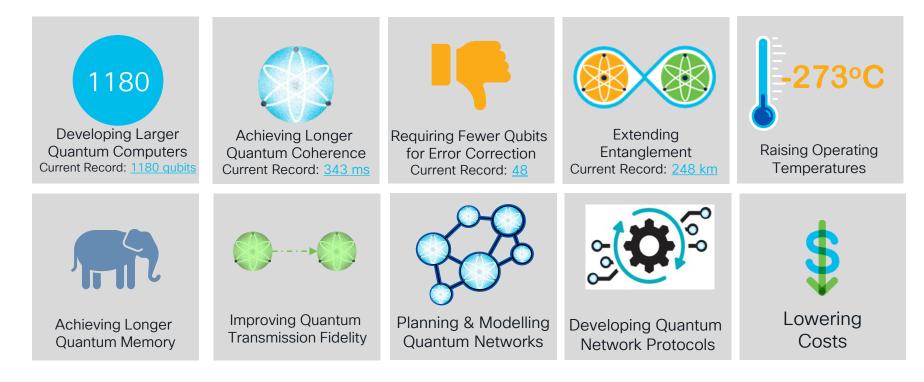
- Optical Quantum Memory
 - milliseconds to seconds.
- Superconducting Qubits
 - microseconds to milliseconds.
- Trapped lons
 - seconds to minutes
- Note: techniques such as Quantum Error Correction may be employed to extend the effective storage times



An Example of Optical Quantum Memory Using Engineered Diamonds

https://www.nature.com/articles/s41534-022-00637-w

Quantum Networking Challenges by OSI Layer



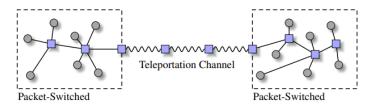
What is Cisco doing?

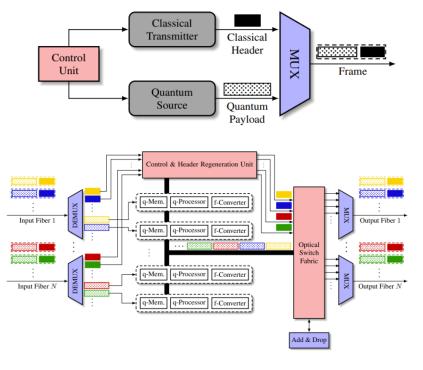
cisco live!

Key Engineering Challenges in Quantum Computing & Networking

Steps to Building a Quantum Internet

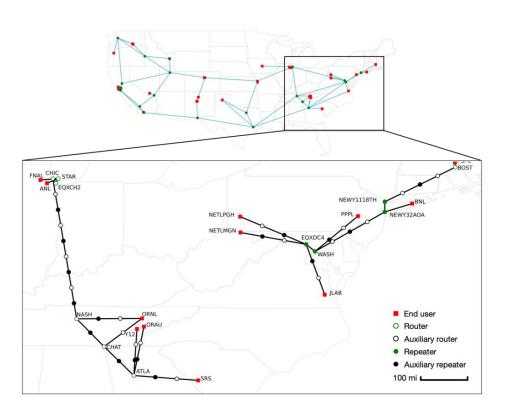
- 1) Research & Mathematical Modelling
- 2) Quantum Simulation
- 3) Lab testing





Modelling a Unified Classical & Quantum Internet

- "We are now with Quantum Internet where we were with the classical Internet in the 1960s"
- The Cisco Research team has published a paper on how can we design a network that can serve thousands and eventually millions of end nodes

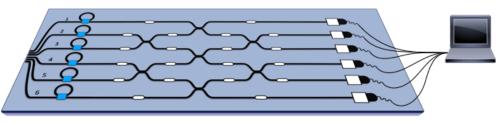

https://outshift.cisco.com/blog/making-a-quantum-ready-internet https://arxiv.org/abs/2205.07507

Planning Quantum Networks Over Existing Fiber Networks

Research

- In another paper, the Cisco Research team developed a framework to guide the first steps of planning a quantum network using the existing optical network infrastructure
- This framework was formulated as an optimization problem
 - Specifically as an Integer Linear Programming (ILP) problem

https://outshift.cisco.com/blog/first-steps-to-quantum-network-planning https://arxiv.org/abs/2308.16264



Photonic Quantum Processors

- Quantum photonics emerges as a promising platform for scalable quantum information processing
 - possibly at room temperature
- These directly enable quantum networking
 - · by serving as a repeater for quantum error correction, or
 - as a server for distributed quantum computing resources

https://outshift.cisco.com/blog/how-powerful-are-photonic-quantum-processors

Quantum Network Design Kit (QDNK) Simulator

.ı ı.ı ı cısco														Ð	Ŀ	ć	6	£ ₽	l Builde	Þ		JL III
Q —0	Canvas 1	•																				
×																						
	· •																					
F	• • • • •																					
Д	· · · · · · · · · · · · · · · · · · ·																					
:=																						
≣																						
	Č 🕭																					
÷€																						
Ξ																						

cisco Life

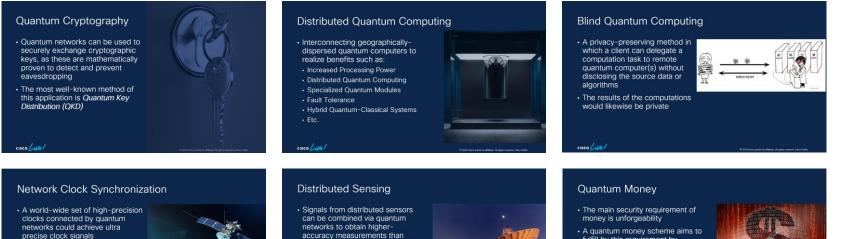
Cisco Quantum Research Lab

 Cisco announced the opening of a Quantum Research Lab in March 2023 in Santa Monica, CA



https://outshift.cisco.com/blog/quantum-research-lab-announcement

Summary & Next Steps



Pre-Session Quiz

- 1) What are some use-cases for quantum networks?
- 2) What are some of the special properties of quantum bits (Qubits)?
- 3) What makes a quantum computer so fast?
- 4) What is Y2Q? And when do most experts expect it?
- 5) Can you transmit information faster than light with quantum teleporting?
- 6) Will quantum networks replace classical networks?
- 7) What is Cisco researching and developing in Quantum?

Post Session Quiz / Summary 1) What are some use-cases for quantum networks?

- Current accuracy: ≤ 30 ns
- Quantum accuracy: ≤1ps

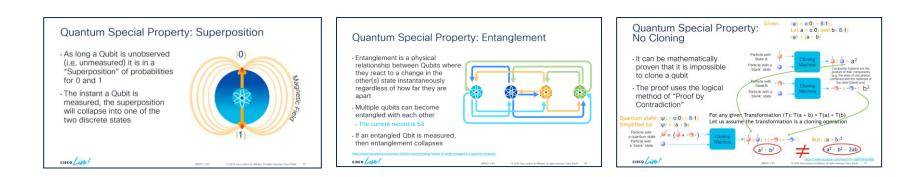
cisco Lille

accuracy measurements than currently possible with classical network interconnections

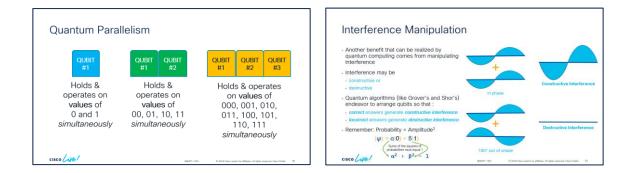
· E.g. Telescope Array Classical precision: ± 1/√N Quantum precision: ± 1/N

cisco Lille

cisco Like



fulfill by this requirement by


exploiting the no-cloning property

of the unknown quantum states

2) What are some of the special properties of quantum bits (Qubits)?

3) What makes a quantum computer so fast?

4) What is Y2Q? And when do most experts expect it?

5) Can you transmit information faster than light with quantum teleporting?

Key Takeaway:

Quantum teleportation does NOT enable faster than light communication

In fact, *for every bit* of information sent via *quantum* teleportation, *at least 3 additional bits* of data must be sent over *classical* channels

	DMMUNICATION N Pair of Photons and Se		
ix) Alice			Bob
cisco Lite!		6662Th-1321 0.202	la a Chao anglor Ita Alfabera Alf Agrito Hearved Chaol Pacific 64

IX) Alice		Bob
cisco Live!	6603Th-1301	© 2014 Cauce and/or the attitutes, and lights reserved. Cauce Petides 65

Equivalent to sending (at least) one bit over a classical channel

Teleporting one of 4 random states does occur faster than light, but (strictly speaking) this not an information transfer on its own merit, since we cannot correctly interpret what has been sent without additional data

(At least) Two more bits of data are sent over a classic channel

Quantum Communication via Teleporting Step 2: Perform Another Entanglement Operation at the Sender

6) Will quantum networks replace classical networks?

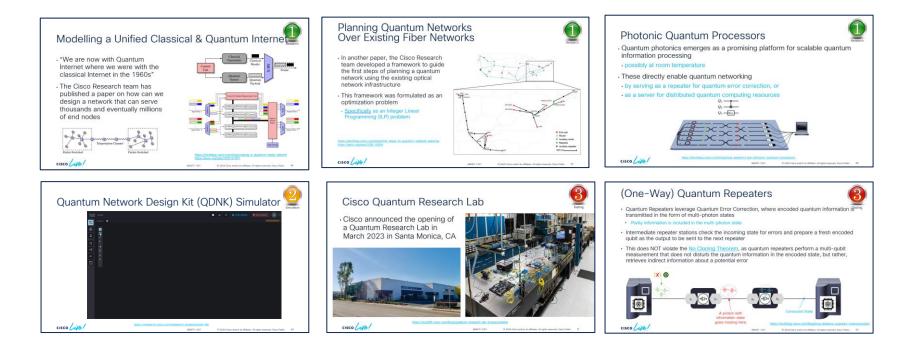
Key Takeaway:

Quantum teleportation does NOT enable faster than light communication

In fact, *for every bit* of information sent via *quantum* teleportation, *at least 3 additional bits* of data must be sent over *classical* channels

Quantum Communication Step 1: Entangle a Pair of Photons and	
IX) Alice	Bob
cisco Libe!	billio (see a doo a segue a selece a seque a seque several chara Vana da

IX) Alice		Bob
cisco Live!	686071-1321	Ø yillig Dass andjor its affiliates, all system searched. Oben Patient 56


Equivalent to sending (at least) one bit over a **classical channel**

Teleporting one of 4 random states does occur faster than light, but (strictly speaking) this not an information transfer on its own merit, since we cannot correctly interpret what has been sent without additional data

(At least) Two more bits of data are sent over a **classic channel**

Quantum Communication via Teleporting Step 2: Perform Another Entanglement Operation at the Sender

Post Session Quiz / Summary7) What is Cisco researching and developing in Quantum?

cisco ile

Acknowledgements

- Jeff Apcar
- Hassan Shapourian
- Stephen DiAdamo
- Peng Zhao

cisco ile

Continue the Discussion

 Come visit us in the Outshift booth in the Cisco World of Solutions (Booth D10)

- Book your one-on-one Meet the Engineer meeting
- See what's coming by meeting with us in the Innovation Forum
- Book a meeting with us for an extended discussion on any Outshift area of research and development

Visit Outshift in the World of Solutions!

- Snap a picture of this slide and visit the Outshift Booth, D10.
- Get your badge scanned to be entered into our daily drawing* for €250 Cisco Store Gift Certificate.
- Attend the interactive education with DevNet, Capture the Flag, and Walk-in Labs

*Winners will be notified via email

Thank you

cisco live!

Let's go