cisco live!

Let's go

Tune your Cisco Wi-Fi Designs for the Most Demanding Clients and Applications Boosted with Applied AI

Jerome Henry, Distinguished Engineer, Office of the Wireless CTO

cisco ile

BRKEWN-2926

Agenda

- Introduction
- What is this Client?
 - How this information helps you
- How do your clients see the World?
 - Use it to better design your cells, their power and their overlap
- Why did the client leave?
 - Use it to better troubleshoot issues
- Conclusion

Why Are We Here Together?

Different Perspectives

AP

AP understands its own RF environment and the success of downstream traffic

AP sees client upstream data rate and the 'retry' bit, but can only infer why there is a difference

AP has visibility of neighboring cells their client load

Client

Client has limited awareness of other clients in the cell

Client has limited awareness of neighboring cells

Client has no awareness of cell edge location or next cell conditions

Cisco brings to your customer the client view

Cisco is the *only* company with the size and power to partner with the largest client vendors

Your clients send exclusive messages to Cisco APs that help make your network better

What is this client?

- Form factor (phone/tablet/laptop) Helps learn behavior
- HW (what chipset), SW (what drivers, what OS)
- Spot bugs / specific behavior overrides

How does the client see the RF?

• AP RSSI, neighbor APs signal, Retries, problems

Why did it leave?


- 802.11 has 'standard' reasons
- what if you click another SSID in your client OS?
- User reasons, upper layer reasons, deeper 802.11 reasons

Next: let's exchange further

- · Bring the 'view from the ceiling' to the client
- Clients roam faster, find the best cell, optimize its traffic

Better Knowing Your Clients

What is this client?

- Apple: Immediately after association, the iOS / MacOS** client sends an unsolicited (encrypted) action frame with platform ("iPhone 14") and OS ("iOS 13.5.1")
- Intel: Immediately after association, the Intel (AX200 and later) client sends an unsolicited (encrypted) action frame with HW-Model ("AX210"), driver versions ("4.5.12"), OS Version (Win 11.0.12"), AC/DC voltage ("AC" - useful for plugged/on battery)
- Samsung: Immediately after association, the Samsung (Galaxy S10 and later, Android 9 and later) client sends an unsolicited (encrypted) action frame with platform "(Galaxy 22 Ultra)", OS ("Android 14.1"), Manufacturer build (Samsung v5.917"), SP build ("AT&T v4.1.17")
- Technical points: Frame is of type "action", "vendorspecific" subtype. Client only sends it when detecting a Cisco AP (from probe responses/beacons).

** MacOS: supported on Intel platforms since 2918, added to Mx (M1/M2) platforms in June 2023 *** Samsung details are not supported in Meraki Dashboard yet

Visible in C9800, Catalyst Center, Meraki Dashboard***. No configuration required ✓ Detail Information Jan 3 2023 11:52 AM Device Info Connectivity RF iOS Analytics Information Device Type iPad Pro (11 inch) (2nd gen) Operating System iOS 13.5.1 (os:"Apple iPhone" OR os:"Apple iPad" OR os:"Ma Clients ~ Download \sim Connection ~ Status Description Dv4 address Karas-MacBook Ø Wireless Apr 24 15:03 811.8 MB 192.168.10.17 Mac OS 3 Air-3 DAHUCAB) Apr 24 15:03 1.70 GB 192.168.10.7 Wireless Norma Wireless Apr 24 15:03 4.40 GB 13. 192.168.10.15 Normal iOS15.6. 10.6 MB iPad Air Wireless DH-iPad-Air Apr 24 15:03 192.168.10.20 Normal l am iOS 13.5.1,

ŝ

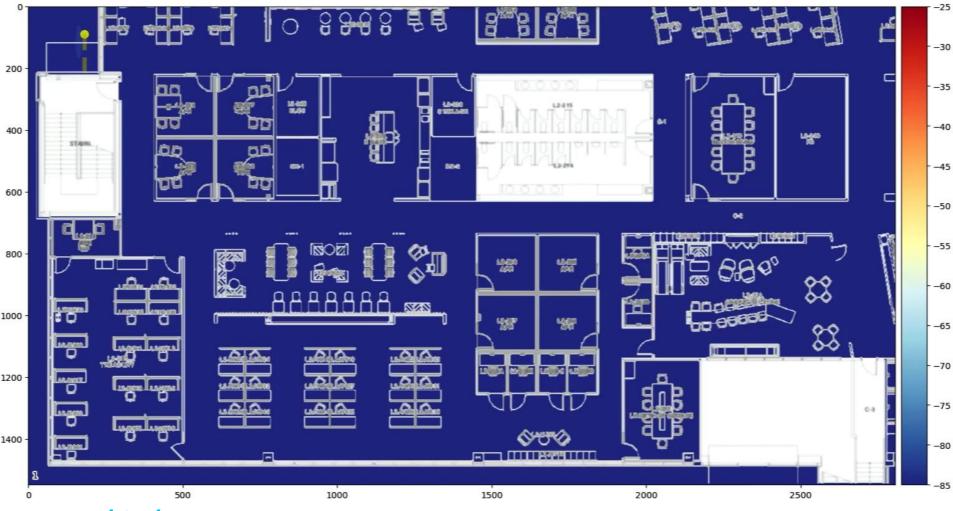
Intel Analytics on Catalyst Center Client 360

 Detail Information 	DN Jun 2, 2022 3:19 PM									
Device Info Connectivity Information	RF Intel Connectivity Analytics	Connection Informati	Connection Information							
Device Type	Dell Inc. Inspiron 5406 2n1	Band	6 GHz							
Operating System	Windows 10	Spatial Streams	1							
User Name		Channel Width	40 MHz							
Host Name	OTA-wind11-156-U5DT	WMM	Supported							
MAC Address	A4:6B:B6:40:37:51	U-APSD	Disabled							
IPv4 Address	40.235.10.11									
IPv6 Address	2000:40:235:0:352b:2cc7:c720:322b (7 more)	Station Information								
Status	Connected	HW Model	AX210 160MHz							
VLAN ID	2435	SW Version	22.110.00.02							
Association Protocol	Wi-Fi 6E	AC/DC Voltage	AC	Intel Endpoint						
Protocol Capability	Wi-Fi 6E	System Manufacture	er Intel	Specific Info						
L3 Virtual Network		System Model	Inspiron 5406 2n1							

How does the client see the Network?

- Apple: Right after successful key-exchange during association (and after sending the model number), the iOS /MacOS device sends to its AP an 802.11k Beacon Report (Unsolicited mode) with list of BSSIDs/channels /RSSI for the current SSID
- Intel: After association (after sending client details), the Intel client sends to its AP an 802.11k Beacon Report (table). At any time, your can also ask for another 11k Beacon Report (table, passive, active)
- **Samsung:** After association (upon receiving STA specs), AP autoqueries the phone (802.11k beacon report request) to send an 802.11k Beacon Report (table). At any time, you can also ask for another 11k Beacon Report (table, passive, active)
- Technical points: There are 3 types of beacon reports: table (in the phone memory as a result of previous scan valid for a few secs as the phone may be moving), passive/active (AP instructs phone to go scan passively (silent but longer) or actively (faster) one or many channels). On demand scan is from WLC CLI, with command 'wireless client mac-address <a.b.c> scan-report'

* Samsung details are not supported in Meraki Dashboard yet


cisco live!

Visible in Catalyst Center, Meraki Dashboard*,

Device Info Connectivit	y RF iOS Analyt	ics			
Neighbor APs (6)				1 Export	Clier
Q Search Table				∇	Q
BSSID 👻	AP Name	Channel	RSSI (dBm)	Location	Time 🔻
AC:4A:56:AE:92:CD	Assurance_9130_3	48	-49	Global/San Jose/Building 14/F	
A4:53:0E:7D:42:AD	SJC14-TME-AP10	52	-80	Global/San Jose/Building 14/F	
6C:8D:77:2E:04:2D	SJC14-F1-9164-3	100	-75	Global/San Jose/Building 14/F	
10:F9:20:FD:68:8D	SJC14-F1-9166-1	116	-61	Global/San Jose/Building 14/F	
6 Records			Show Re	ecords: 10 🗸 < 🕚 >	
SJC14-TME 10:33:C624 SJC14-TME A4:53:0670 SJC14-F1-1 10:F9:20:FD	-AP10 (x42:AD ())	-54 dBm -80 dBm -61 dBm	_	-75 dBm 🕞 6C-8 -65 dBm SJC -49 dBm	14-F1-9164-3 ID:77:2E:04:2E 14-TME-AP11 3:C6:24:9E:6E irance_9130_3 IA:56:AE:92:Cl
- ((: °	1 1 1	Here is APs I s	s the list see	of	

Use Client 11k Reports to Map your RF Floor

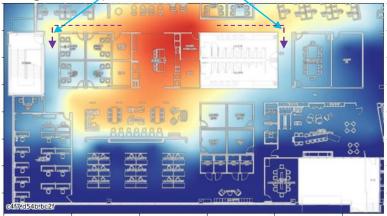
cisco life!

cisco live!

Map your RF Floor

From your client viewpoint

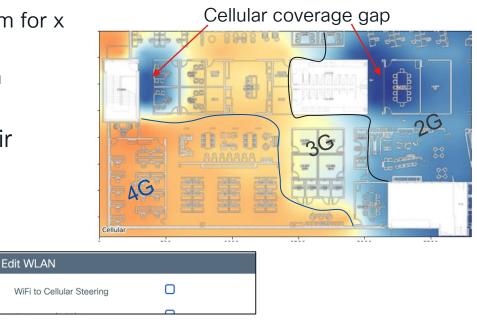
With a Cisco network and any recent Samsung galaxy or Intel client, you can send 802.11k (MBO) requests* to get the <u>client view</u>, anywhere, anytime


- Table report (last scan, 0 scanning cost)
- Channel report (how do you see me?)
- Channel class report (go scan channels A, B and C)

*https://github.com/jhenry-github/floor-heatmap

16:9d29.87cf

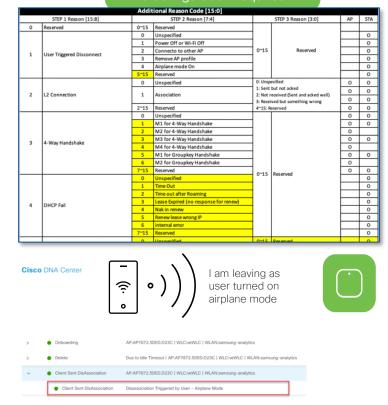
Fast fading coverage gap behind a pillar


Signal drop as client turns the corner

cisco /

Mapping your RF Floor Bonus

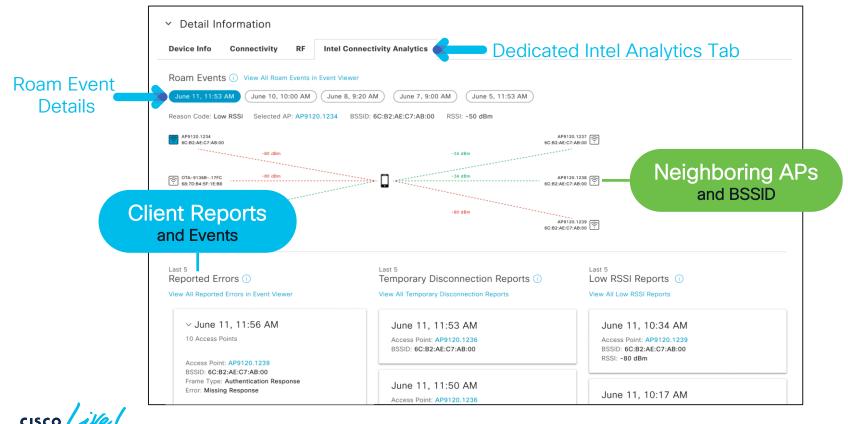
- Intel clients also send us "Bad Coverage" and Temporary disconnection" reports
 - "I hear you, but been below -75 dBm for x minutes"
 - "Moved to you, but lost contact with AP1 at -X dBm Y minutes ago"
- Samsung clients also send us their cellular signal (along with Wi-Fi)
 - For the first time, you can map your indoor cellular coverage!... and automatically push your Samsung clients to cellular at the edge of the Wi-Fi domain!



Why did the client go away?

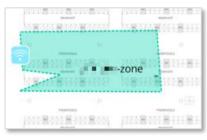
- When a client roams or disconnects, it sends a disassociation message. The Apple, Samsung and Intel client sends a proprietary reason code telling us when the reason is not 802.11 in nature (in addition to the 802.11 reason code)
- Apple: Adds #9 upper Layer reasons to the 802.11 reasons (DHCP failed, EAP timed out, 802.1X failed, device is idle, captive portal security failed, decryption failed, Wi-Fi interface disabled, user triggered deassoc, AP-triggered deassoc)
- Samsung: Adds #34 Layer 2 or higher reasons (same family as Apple, but detailed, for example DHCP failed, Samsung says at what step)
- Intel: Intel sends other reports (next slide)

Used internally in WLC, Catalyst Center and Meraki Dashboard <u>No configuration required</u>


* Samsung details are not supported in Meraki Dashboard yet

Even More Feedback - Intel

Intel Connectivity Analytics on Client 360


Intel Connectivity Analytics on Client 360 (cont.)

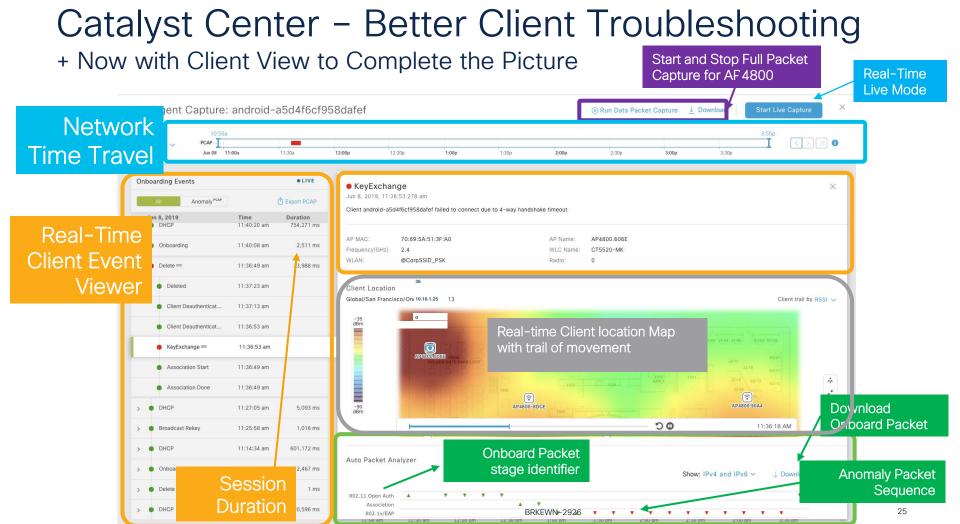
Filte	er 🏦 Export Go to Globa	al Event Viewer	Roam Reasons	Detailed Report
	Roam Report X			Roam Report May 9, 2022 7:25:28 PI
N	ay 9, 2022			
	Intel Roam Report	9:25:35.935 PM	RSSI: -47 dBm AP: OTA-9136B-17E0 Reason Code: Low RSSI] Type: Device Analytics - Intel	Detailed Information
	Intel Roam Report	8:55:33.628 PM	RSSI: -47 dBm AP: OTA-9136B-17E0 Reason Code:Batter AP Type: Device Analytics - Intel	Status: Report Received
	Intel Roam Report	8:25:32.200 PM	RSSI: -47 dBm AP: OTA-9136B-17E0 Reason Code: _{Other} Type: Device Analytics - Intel	Details:
	Intel Roam Report	7:55:30.066 PM	RSSI: -47 dBm AP: OTA-9136B-17E0 Reason Code:11v force Type: Device Analytics - Intel	AP Name OTA-9136B-17E0 더
	Intel Roam Report	7:25:28.241 PM	RSSI: -47 dBm AP: OTA-9136B-17E0 Reason Code: Other Type: Device Analytics - Intel	AP Mac 68:7D:B4:5F:1D:60
	inter noun report	7.20.20.24111		BSSID 68:7D:B4:5F:1D:68
	Intel Roam Report	7:25:28.241 PM	RSSI: -47 dBm AP: OTA-9136B-17E0 Reason Code:Low RSSI Type: Device Analytics - Intel	Type Device Analytics - Intel
	Intel Roam Report	6:55:27.112 PM	RSSI: -46 dBm AP: OTA-9136B-17E0 Reason Code: Better API Type: Device Analytics - Intel	Reason Code Low RSSI
				RSSI -47 dBm
	Intel Roam Report	6:25:26.366 PM	RSSI: -47 dBm AP: OTA-9136B-17E0 Reason Code: other Type: Device Analytics - Intel	Candidate APs Access Point: OTA-9136B17FC BSSID: 68:70:84:5F:1E:88
	Intel Roam Report	5:55:24.129 PM	RSSI: -46 dBm AP: OTA-9136B-17E0 Reason Code: Other Type: Device Analytics - Intel	RSSI: -61 dBm
			Showing 1 - 9 of 48	

cisco live

Why it Matters

- Better Troubleshooting
 - 96% of STAs disconnecting in this zone are Galaxy S23 running Android 14

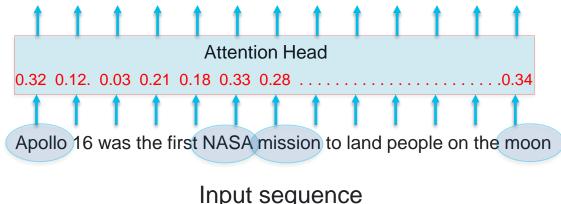
Proactive maintenance


cisco /

- Day 0 issue affects Android 14
- · Identify which devices run this version

- Roaming Issues
 - · iPhone 15 roams here
 - Short connection drops reported

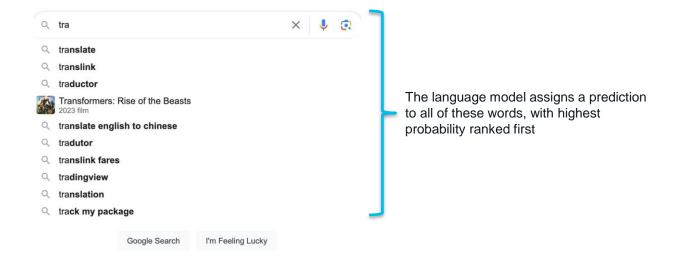
- · Galaxy S23 roams here
- $\boldsymbol{\cdot}$ No issues reported


Feeding Device Ecosystem Data Into your AIML Projects

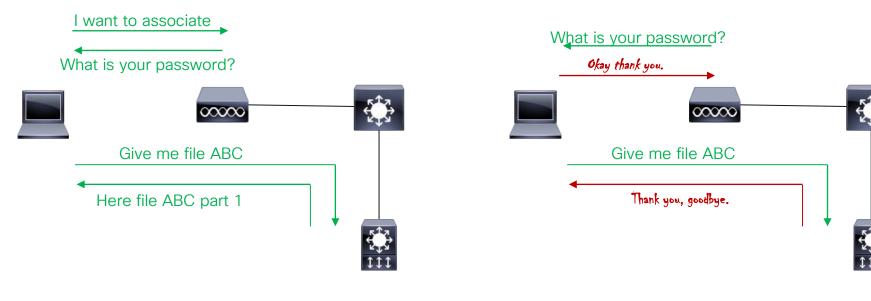
- We already include them in our AI RRM computations (Catalyst Center)
 - Cisco Wireless AlOps BRKEWN-2029
 - Advanced RF Tuning for Wi-Fi 6E... while getting a little help from AI BRKEWN-3413

≡ -thethe DNA Center	Assurance / Al Network Analytics / Al-Enhanced RRM	our own AIML engines				
All Sites Al Enabled Sites	○ 24 Hours ∨ Band SGHz 2.4GHz 6GHz AI RF Profile: RRM_RF_PROFILE Next RRM Run (): 4 m 22 s	Create Simulation Configure the below AI RF Profile parameters to run a simulation and view the metrics during the recorded busy hour.				
Q Search	SUMMARY RF PERFORMANCE SUMMARY RF COVERAGE SUMMARY AI RF PROFILE SIMULATOR 20 30 99 / 100 13 % 16 High High (35 dB)	Simulation Name* RRM_RF_PROFILE				
Europe/England/London/London 1	20 30 99 / 100 13 % 16 High High (35 dB) Run RRM Simulation Total AP Count Total Clients RRM Performance ① APs with High CCI ② RRM Changes AP Density Connectivity	✓ Basic Settings				
	applied the suggestions	Radio Frequency Settings 2.4 GHz Z GHz B GHz O				
	Consider changing the configured Busy Hours for RRM to be more effective. Consider expanding the configured Channel List for reduced neighbor contention and improved performance. Consider changing the configured Channel Width for improved performance.	Busy Hours Start time End time Busy Hour Sensitivity 8:00 17:00 Low Medium High				
		Enable RF Settings 2.4 GHz 5 GHz 6 GHz				
	AI-based predictions and suggestions	Dynamic Channel Assignment O				
		Dynamic Bandwidth Selection 💿				
1		Transmit Power Control 💿				
cisco 🗸	BRKEWN-2926	© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public. 26				

Example Customized AIML: Air Capture LLM


- How do you build a Large Language Model?
 - <u>Language modeling (LM)</u> is a technique that uses statistical and probabilistic models to determine the probability of a word (token) or a sequence of words (tokens) in a sentence (i.e., given previous words)
 - To build a LLM, take a (large) set of text, cut it into logical units (tokens), then compute how many times tokens follow each other

Example Customized AIML: Air Capture LLM


- LLM Inference
 - Then you start a word sequence, and the tool can either:
 - Predicts what comes next (and tell you)
 - Tell you if there is something strange about the sequence

Example Customized AIML: Air Capture LLM

Networking Exchanges are sentences

- Network frames are sequences of bits
 - The order of the bits results in meaning
 - Fields have different lengths
 - The byte-based approach ignores this fundamental property
 - The meaning is ritualized bits 64 to 98 means XYZ not because of the meaning of 64 and 98, but because the position of XYZ is described in a ritual manual (IEEE 802.11/802.3 etc.)
 - Time between frames has meaning
 - Individual frames need to be tied (in time) to one another

0000	00	00	38	00	6f	0 8	00	с0	01	00	00	40	c4	f7	d5	4b
0010	9e	c9	b8	b2	00	00	00	00	12	0c	Зc	14	40	01	bf	a2
0020	01	09	00	10	18	00	03	00	02	00	00	01	00	10	18	03
0030	06	00	48	60	02	00	00	00	80	00	00	00	ff	ff	ff	ff
0040	ff	ff	c4	f7	d5	4b	bc	2f	c4	f7	d5	4b	bc	2f	b0	38
0050	4f	00	dd	9f	00	00	00	00	64	00	01	11	00	09	43	6f
0060	72	70	6f	72	61	74	65	01	08	8c	12	98	24	b0	48	60
0070	6c	05	04	00	01	00	00	07	4e	55	53	04	24	01	18	28
0080	01	18	2c	01	18	30	01	18	34	01	18	38	01	18	Зc	01
0090	18	40	01	18	64	01	18	68	01	18	6c	01	18	70	01	18
00a0	74	01	18	78	01	18	7c	01	18	80	01	18	84	01	18	88
00b0	01	18	8c	01	18	90	01	18	95	01	1e	99	01	1e	9d	01
00c0	1e	a1	01	1e	a5	01	1e	20	01	00	0b	05	00	00	04	8d
00d0	5b	46	05	33	00	00	00	00	2d	1a	ad	09	17	ff	ff	ff
00e0	ff	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00f0	00	00	00	00	3d	16	24	00	00	00	00	00	00	00	00	00
0100	00	00	00	00	00	00	00	00	00	00	00	00	7f	0 8	04	00
0110	0 8	84	01	40	00	40	6b	01	13	6c	02	7f	00	6f	0b	00
0120	33	00	40	96	00	50	54	00	50	a7	bf	0c	b1	69	83	0f
0130	aa	ff	00	00	aa	ff	00	20	с0	05	00	24	00	fc	ff	c3
0140	02	00	22	ff	24	23	01	00	0 8	12	00	10	44	20	02	с0
0150	0f	43	85	18	00	0c	00	aa	ff	aa	ff	3b	1c	с7	71	1c
0160	с7	71	1c	с7	71	00	00	00	00	ff	07	24	04	00	00	81
0170	fc	ff	ff	0e	26	04	00	a4	08	20	a4	0 8	40	43	0 8	60
0180	32	0 8	dd	05	00	40	96	03	05	dd	05	00	40	96	14	00
0190	dd	05	50	6f	9a	10	21	dd	05	00	40	96	0b	89	dd	05
01a0	00	40	96	2c	0e	dd	18	00	50	f2	02	01	01	84	00	03

- · Wireshark has documented the ritual manual
 - A promising direction is to use the ritual words in the sentence, because this is what the field 'means'
 - When 16th field, "SSID" says "Corporate", the meaning is different from the 16th field in another frame (which may also be a string)

>	Frame 1: 460 bytes on wire (3680 bits), 460 bytes cap
>	Radiotap Header v0, Length 56
>	802.11 radio information
>	IEEE 802.11 Beacon frame, Flags:C
\sim	
	> Fixed parameters (12 bytes)
	 Tagged parameters (364 bytes)
	> Tag: SSID parameter set: "Corporate"
	> Tag: Supported Rates 6(B), 9, 12(B), 18, 24(B),
	> Tag: Traffic Indication Map (TIM): DTIM 0 of 1 b
	> Tag: Country Information: Country Code US, Envir
	> Tag: Power Constraint: 0
	> Tag: QBSS Load Element 802.11e CCA Version
	> Tag: RM Enabled Capabilities (5 octets)
	> Tag: HT Capabilities (802.11n D1.10)
	> Tag: HT Information (802.11n D1.10)
	> Tag: Extended Capabilities (8 octets)
	> Tag: Interworking
	> Tag: Advertisement Protocol
	> Tag: Roaming Consortium
	> Tag: VHT Capabilities
	> Tag: VHT Operation
	> Tag: Tx Power Envelope

 Let's convert the Wireshark captures to csv files, now each frame is a sentence, where each word is a field.

num1 len460 caplen460 frame.section number1 frame.interface id0 frame.interface nameen0 frame.encap type23 frame.offset shift0.000000000 frame.time_epoch1681917506.078047000 frame.time_delta0.000000000 frame.time_delta_displayed0.00000000 frame.time_relative0.000000000 frame.number1 frame,len460 frame.cap len460 frame.marked0 frame.ignored0 frame.protocolsradiotap:wlan radio:wlan radiotap.version0 radiotap.pad0 radiotap.length56 radiotap.present.word0xc000086f radiotap.present.tsft1 radiotap.present.flags1 radiotap.present.rate1 radiotap.present.channel1 radiotap.present.fhss0 radiotap.present.dbm antsignall radiotap.present.dbm antnoise1 radiotap.present.lock guality0 radiotap.present.tx attenuation0 radiotap.present.db tx attenuation0 radiotap.present.dbm tx power0 radiotap.present.antenna1 radiotap.present.db antsignal0 radiotap.present.db antnoise0 radiotap.present.rxflags0 radiotap.present.txflags0 radiotap.present.data retries0 radiotap.present.xchannel0 radiotap.present.mcs0 radiotap.present.ampdu0 radiotap.present.vht0 radiotap.present.timestamp0 radiotap.present.he0 radiotap.present.he_mu0 radiotap.present.0_length.psdu0 radiotap.present.l_sig0 radiotap.present.tlv0 radiotap.present.rtap_ns0 radiotap.present.vendor ns1 radiotap.present.ext1 radiotap.present.word0x40000001 radiotap.present.rtap ns0 radiotap.present.vendor ns1 radiotap.present.ext0 radiotap.mactime2998454686 radiotap.flags0x12 radiotap.flags.cfp0 radiotap.flags.preamble1 radiotap.flags.wep0 radiotap.flags.frag0 radiotap.flags.fcs1 radiotap.flags.datapad0 radiotap.flags.badfcs0 radiotap.flags.shortgi0 radiotap.datarate6 radiotap.channel.freg5180 radiotap.channel.flags0x0140 radiotap.channel.flags.700mhz0 radiotap.channel.flags.800mhz0 radiotap.channel.flags.900mhz0 radiotap.channel.flags.turbo0 radiotap.channel.flags.cck0 radiotap.channel.flags.ofdm1 radiotap.channel.flags.2ghz0 radiotap.channel.flags.5ghz1 radiotap.channel.flags.passive0 radiotap.channel.flags.dynamic0 radiotap.channel.flags.gfsk0 radiotap.channel.flags.gsm0 radiotap.channel.flags.sturbo0 radiotap.channel.flags.half0 radiotap.channel.flags.guarter0 radiotap.dbm_antsignal-65 radiotap.dbm_antnoise-94 radiotap.antenna1 radiotap.vendor namespace00:10:18:00:03:00:02:00:00 radiotap.vendor oui4120 radiotap.vendor subns0 radiotap.vendor data len3 radiotap.vendor namespace00:10:18:03:06:00:48:60:02:00:00:00 radiotap.vendor oui4120 radiotap.vendor subns3 radiotap.vendor data len6 wlan_radio.phy5_wlan_radio.11a.turbo_type0 wlan_radio.data_rate6 wlan_radio.channel36 wlan_radio.frequency5180 wlan_radio.signal_dbm-65 wlan radio noise dbm-94 wlan radio snr29 wlan radio timestamp2998454686 wlan radio duration564 wlan radio preamble20 wlan radio start tsf2998454122 wlan radio.end tsf2998454686 wlan.fc.type_subtype0x0008 wlan.fc0x8000 wlan.fc.version0 wlan.fc.type0 wlan.fc.subtype8 wlan.flags0x00 wlan.fc.ds0x00 wlan.fc.tods0 wlan.fc.fromds0 wlan.fc.fraq0 wlan.fc.retry0 wlan.fc.pwrmgt0 wlan.fc.moredata0 wlan.fc.protected0 wlan.fc.order0 wlan.duration0 wlan.raff:ff:ff:ff:ff:ff:ff wlan.ra_resolvedBroadcast wlan.addrff:ff:ff:ff:ff:ff:ff wlan.addr_resolvedBroadcast wlan.daff:ff:ff:ff:ff:ff:ff wlan.da_resolvedBroadcast wlan.tac4:f7:d5:4b:bc:2f wlan.ta_resolvedCisco_4b:bc:2f wlan.sac4:f7:d5:4b:bc:2f wlan.sa_resolvedCisco_4b:bc:2f wlan.bssidc4:f7:d5:4b:bc:2f wlan.bssid_resolvedCisco_4b:bc:2f wlan.addrc4:f7:d5:4b:bc:2f wlan.addr_resolvedCisco_4b:bc:2f wlan.addrc4:f7:d5:4b:bc:2f wlan.addr_resolvedCisco_4b:bc:2f_wlan.frag0_wlan.seq907_wlan.fcs0x3e27c7df_wlan.fcs.status2_wlan.fixed.timestamp2682060879_wlan.fixed.beacon100 wlan fixed capabilities@x1101 wlan fixed capabilities.ess1 wlan fixed capabilities.ibss0 wlan fixed capabilities reserved10 wlan.fixed.capabilities.reserved20 wlan.fixed.capabilities.privacy0 wlan.fixed.capabilities.short preamble0 wlan.fixed.capabilities.reserved30 wlan.fixed.capabilities.reserved40 wlan.fixed.capabilities.spec_man1 wlan.fixed.capabilities.gos0 wlan.fixed.capabilities.short_slot_time0 wlan fixed canabilities ansd0 wlan fixed canabilities radio measurement1 wlan fixed canabilities end0 wlan fixed canabilities reserved50

CISCO /

• The structure of the language we build has word roots, and conjugation

wlan_radio.phy5 wlan_radio.11a.turbo_type0 wlan_radio.data_rate6 wlan_radio.channel36 wl wlan_radio.noise_dbm-94 wlan_radio.snr29 wlan_radio.timestamp2998454686 wlan_radio.durat wlan_radio.end_tsf2998454686 wlan.fc.type_subtype0x0008 wlan.fc0x8000 wlan.fc.version0 w wlan.fc.tods0 wlan.fc.fromds0 wlan.fc.frag0 wlan.fc.retry0 wlan.fc.pwrmgt0 wlan.fc.morec wlan.raff:ff:ff:ff:ff wlan.ra_resolvedBroadcast wlan.addrff:ff:ff:ff:ff:ff wlan.addr

cisco / ile

- "ChatNetPT" tokenizes roots and terminations, and finds relationships
- For example:
 - We insert a frame (a series of fields)
 - This is a "sentence" that one side (e.g. a client) says
 - We ask ChatNetPT what is the most likely next frame
 - This is "the answer that the other side should say"
 - We can also train ChatNetPT to classify (recognize) frame types (trivial)

	<pre>ifname == "main": main()</pre>	
Wł	hat do you want to do?	
]:		
]:		
1:		
]:		
]:		
]:		

apabilities.40mhzintolerant0,wlan.ht.capabilities.lsiq0,wlan.ht.ampduparam0x1b,wlan.ht.ampduparam.maxlength0x03,wlan.ht.ampduparam.mpdudensity0x06,wlan.ht.ampduparam.reserved0x00,wlan.ht.mcsse t.rxbitmask.0to70x000000ff,wlan.ht.mcsset.rxbitmask.8to150x000000ff,wlan.ht.mcsset.rxbitmask.16to230x0000000,wlan.ht.mcsset.rxbitmask.24to310x00000000,wlan.ht.mcsset.rxbitmask.320x0000000,wl an.ht.mcsset.rxbitmask.33to380x00000000,wlan.ht.mcsset.rxbitmask.39to520x0000000,wlan.ht.mcsset.rxbitmask.53to760x0000000,wlan.ht.mcsset.highestdatarate0x0000,wlan.ht.mcsset.txsetdefined0,wl an.ht.mcsset.txrxmcsnotequal0,wlan.ht.mcsset.txmaxss0x0000,wlan.ht.mcsset.txunequalmod0,wlan.htex.capabilities0x0000,wlan.htex.capabilities.pco0,wlan.htex.capabilities.transtime0x0000,wlan.hte x.capabilities.mcs0x0000.wlan.htex.capabilities.htc0.wlan.htex.capabilities.rdresponder0.wlan.txbf0x00000000.wlan.txbf.txbf0.wlan.txbf.txs50.wlan.txbf.t lan.txbf.impltxbf0,wlan.txbf.calibration0x0000000,wlan.txbf.csi0.wlan.txbf.fm.uncompressed.tbf0,wlan.txbf.fm.compressed.tbf0,wlan.txbf.rcsi0x00000000,wlan.txbf.fm.uncompressed.rbf0x0000000,w lan.txbf.fm.compressed.bf0x00000000,wlan.txbf.mingroup0x00000000,wlan.txbf.csinumant0x00000000,wlan.txbf.fm.uncompressed.maxant0x00000000,wlan.txbf.fm.compressed.maxant0x00000000,wlan.txbf.cs i.maxrows0x00000000,wlan.txbf.channelest0x00000000.wlan.txbf.reserved0x00000000,wlan.asel.capable0.wlan.asel.txci0.wlan.asel.txif0.wlan.asel.csi0.wlan.asel.if0.wlan.asel.rx0.wla n.asel.sppdu0,wlan.asel.reserved0x00,wlan.tag.number127,wlan.tag.length8,wlan.extcap.b00,wlan.extcap.b10x00,wlan.extcap.b20,wlan.extcap.b30x00,wlan.extcap.b40,wlan.extcap.b50x0 0, wlan.extcap.b60, wlan.extcap.b70, wlan.extcap0x00, wlan.extcap.b80, wlan.extcap.b100, wlan.extcap.b110, wlan.extcap.b120, wlan.extcap.b130, wlan.extcap.b140, wlan.extcap.b150, wlan.ext cap0x08,wlan.extcap.b160,wlan.extcap.b170,wlan.extcap.b180,wlan.extcap.b191,wlan.extcap.b200,wlan.extcap.b210,wlan.extcap.b220,wlan.extcap.b230,wlan.extcap0x04,wlan.extcap.b240,wlan.extcap.b25 0, wlan.extcap.b261, wlan.extcap.b270, wlan.extcap.b280, wlan.extcap.b290, wlan.extcap.b300, wlan.extcap.b310, wlan.extcap.0300, wlan.extcap.b320, wlan.extcap.b330, wlan.extcap.b330, wlan.extcap.b350x00, w lan.extcap.b360.wlan.extcap.b370.wlan.extcap.b380.wlan.extcap.b390.wlan.extcap.b400.wlan.extcap.serv int granularity0.wlan.extcap.b440.wlan.extcap.b450.wlan.extcap.b460.wlan.extcap.b300.wlan.ext tcap.b470x00.wlan.extcap0x00.wlan.extcap.b400.wlan.extcap.b500.wlan.extcap.b510.wlan.extcap.b520.wlan.extcap.b530.wlan.extcap.b540.wlan.extcap.b550.wlan.extcap0x40.wlan.extca p.b560,wlan.extcap.b570,wlan.extcap.b580,wlan.extcap.b590x00,wlan.extcap.b600,wlan.extcap.b621,wlan.extcap.b621,wlan.tag.number191,wlan.tag.length12,wlan.vht.capabilities0x0f8 17032, wlan. vht. capabilities. maxmpdulength0x00000002, wlan. vht. capabilities. supported chanwidthset0x00000000, wlan. vht. capabilities. rxldpc1, wlan. vht. capabilities. sho rt1600.wlan.vht.capabilities.txstbc0,wlan.vht.capabilities.rxstbc0x0000000,wlan.vht.capabilities.subeamformer0,wlan.vht.capabilities.subeamformee1,wlan.vht.capabilities.beamformee_sts_cap0x00 000003,wlan.vht.capabilities.soundingdimensions0x00000001,wlan.vht.capabilities.mubeamformer0,wlan.vht.capabilities.wlthtc 0.wlan.vht.capabilities.maxampdu0x00000007.wlan.vht.capabilities.linkadapt0x0000003.wlan.vht.capabilities.rxpatconsist0,wlan.vht.capabilities.txpatconsist0,wlan.vht.capabilities.ext nss bw su pport0x00000000,wlan.vht.mcsset.rxmcsmap0xfff5,wlan.vht.mcsset.rxmcsmap.ss10x0001,wlan.vht.mcsset.rxmcsmap.ss20x0001,wlan.vht.mcsset.rxmcsmap.ss30x0003,wlan.vht vht.mcsset.rxmcsmap.ss50x0003,wlan.vht.mcsset.rxmcsmap.ss60x0003,wlan.vht.mcsset.rxmcsmap.ss70x0003,wlan.vht.mcsset.rxmcsmap.ss80x0003,wlan.vht.mcsset.rxmcsmap.ss70x0003,wlan.vht.mcsset.rxmcsmap.ss80x0003,wlan.vht.mcsset.rxmcsmap.ss70x0003,wlan.vht.mcsset.rxmcsmap.ss80x0003,wlan.vht.mcsset.rxmcsmap.ss70x0003,wlan.vht.mcsset.rxmcsmap.ss80x0003,wlan.vht.mcsset.rxmcsmap.ss70x0003,wlan.vht.mcsset.rxmcsmap.ss80x0003,wlan.vht.mcsset.rxmcsmap.ss70x0003,wlan.vht.mcsset.rxmcsmap.ss80x0003,wlan.vht.mcsset.rxmcsmap.ss80x0003,wlan.vht.mcsset.rxmcsmap.ss70x0000,wlan.vht.mcsset.rxmcsmap.ss70x0000,wlan.vht.mcsset.rxmcsmap.ss70x000,wlan.vht.mcsset.rxmcsmap.ss70x000,wlan.vht.mcsset.rxmcsmap.ss70x000,wlan.vht.mcsset.rxmcsmap.ss70x000,wlan.vht.mcsset.rxmcsmap. t.max nsts total0.wlan.vht.mcsset.txmcsmap.ss10x0001,wlan.vht.mcsset.txmcsmap.ss20x0001.wlan.vht.mcsset.txmcsmap.ss30x0003,wlan. n.vht.mcsset.txmcsmap.ss50x0003,wlan.vht.mcsset.txmcsmap.ss60x0003,wlan.vht.mcsset.txmcsmap.ss80x0003,wlan.vht.mcsset.txmcsmap.ss80x0003,wlan.vht.mcsset.txmcsmap.ss80x0003,wlan.vht.mcsset.txmcsmap.ss80x0003,wlan.vht.mcsset.txmcsmap.ss80x0003,wlan.vht.mcsset.txmcsmap.ss80x0003,wlan.vht.mcsset.txmcsmap.ss80x0003,wlan.vht.mcsset.txmcsmap.ss80x0003,wlan.vht.mcsset.txmcsmap.ss80x0003,wlan.vht.mcsset.txmcsmap.ss80x0003,wlan.vht.mcsset.txmcsmap.ss80x0003,wlan.vht.mcsset.txmcsmap.ss80x0003,wlan.vht.mcsset.txmcsmap.ss80x0003,wlan.vht.mcsset.txmcsmap.ss80x0003,wlan.vht.mcsset.txmcsmap.ss80x0003,wlan.vht.mcsset.txmcsmap.ss80x0003,wlan.vht.mcsset.txmcsmap.ss80x0003,wlan.vht.mcsset.txmcsmap.ss80x0003,wlan.vht.mcsset et.ext_nss_bw_cap0,wlan.vht.ncsset.reserved0x0000,wlan.tag.number221,wlan.tag.length11,wlan.tag.oui6130,wlan.tag.vendor.oui.type10,wlan.tag.vendor.data0a:00:01:04:00:00:00:00,wlan.tag.number22 1, wlan.tag.length5, wlan.tag.oui36940, wlan.tag.vendor.oui.type4, wlan.vs.pren.type4, wlan.vs.pren.unknown_data07, wlan.tag.number221, wlan.tag.length10, wlan.tag.oui4120, wlan.tag.vendor.oui.type2, wlan.tag.vendor.tag.vend an.tag.vendor.data02:00:00:10:00:00:00,wlan.tag.number221,wlan.tag.length7,wlan.tag.oui20722,wlan.tag.vendor.oui.type2,wlan.wfa.ie.type0x02,wlan.wfa.ie.wme.subtype0,wlan.wfa.ie.wme.version1,wl an.wfa.ie.wme.gos info0x00.wlan.wfa.ie.wme.gos info.sta.max sp length0x00.wlan.wfa.ie.wme.gos info.sta.ac be0.wlan.wfa.ie.wme.gos_info.sta.ac be0.wlan.wfa.ie.wme.gos_info.sta.ac be0.wlan.wfa.ie.wme.gos_info.sta.ac vi0.wlan.wfa.ie.wme.gos_info.sta.ac be0.wlan.wfa.ie.wme.gos_info.sta.ac be0.wlan.wfa.ie.wme.gos_info.sta.ac be0.wlan.wfa.ie.wme.gos_info.sta.ac be0.wlan.wfa.ie.wme.gos_info.sta.ac be0.wlan.wfa.ie.wm e.wme.gos info.sta.ac_vo0,wlan.wfa.ie.wme.gos info.sta.reserved0x00,

This frame is: an association request

What do you want to do? what is this frame?

Enter a set of values separated by a comma.

NA, len68, caplen68, frame.section_number1, frame.interface_id0, frame.interface_nameen0, frame.encap_type23, frame.offset_shift0.00000000, frame.time_epoch1698532538.455748000, frame.time_delta0.000 014000.frame.time delta displaved0.000014000.frame.time relative23.127411000.frame.number4614.frame.len68.frame.cap len68.frame.marked0.frame.ignored0.frame.protocolsradiotap:wlan radio:wlan,r adiotap.version0, radiotap.pad0, radiotap.length54, radiotap.present.word0xc000086f, radiotap.present.tsft1, radiotap.present.flags1, radiotap.present.rate1, radiotap.present.channel1, radiotap.present t.fhss0,radiotap.present.dbm_antsignal1,radiotap.present.dbm_antnoise1,radiotap.present.lock_quality0,radiotap.present.tx_attenuation0,radiotap.present.db_tx_attenuation0,radiotap.present.dbm_ tx_power0, radiotap.present.antenna1, radiotap.present.db_antsignal0, radiotap.present.db_antnoise0, radiotap.present.rxflags0, radiotap.present.txflags0, radiotap.present.dtata_retries0, radiotap.pre sent.xchannel0,radiotap.present.mcs0,radiotap.present.ampdu0,radiotap.present.vht0,radiotap.present.timestamp0,radiotap.present.he0,radiotap.present.he_mu0,radiotap.present.0_length.psdu0,radi otap.present.l_sig0,radiotap.present.tlv0,radiotap.present.rtap_ns0,radiotap.present.vendor_ns1,radiotap.present.ext1,radiotap.present.word0x40000001,radiotap.present.rtap_ns0,radiotap.present t.vendor_ns1, radiotap.present.ext0, radiotap.mactime2730419686, radiotap.flags0x12, radiotap.flags.cfp0, radiotap.flags.preamble1, radiotap.flags.wep0, radiotap.flags.frag0, radiotap.flags.frs1, radio tap.flags.datapad0,radiotap.flags.badfcs0,radiotap.flags.shortgi0,radiotap.datarate6,radiotap.channel.freq5500,radiotap.channel.flags0x0140,radiotap.channel.flags.700mhz0,radiotap.channel.flags s.800mhz0,radiotap.channel.flags.900mhz0,radiotap.channel.flags.turbo0,radiotap.channel.flags.cck0,radiotap.channel.flags.ofdm1,radiotap.channel.flags.2ghz0,radiotap.channel.flags.5ghz1,radiot ap.channel.flags.passive0,radiotap.channel.flags.dynamic0,radiotap.channel.flags.gfsk0,radiotap.channel.flags.gsm0,radiotap.channel.flags.sturbo0,radiotap.channel.flags.half0,radiotap.channel. flags.guarter0.radiotap.dbm antsignal-40.radiotap.dbm antnoise-79.radiotap.antenna1.radiotap.vendor namespace00:10:18:00:03:00:02:00:00.radiotap.vendor oui4120.radiotap.vendor subns0.radiotap. vendor data len3, radiotap.vendor namespace00:10:18:03:04:00:03:01:00:00, radiotap.vendor oui4120, radiotap.vendor subns3, radiotap.vendor data len4.wlan radio.phv5, wlan radio.11a.turbo tvpe0, wlan _radio.data_rate6,wlan_radio.channel100,wlan_radio.frequency5500,wlan_radio.signal_dbm-40,wlan_radio.noise_dbm-79,wlan_radio.snr39,wlan_radio.timestamp2730419686,wlan_radio.duration44,wlan_rad io.preamble20,wlan_radio.ifs255,wlan_radio.start_tsf2730419642,wlan_radio.end_tsf2730419686,wlan.fc.type_subtype0x001d,wlan.fc0xd400,wlan.fc.version0,wlan.fc.type1,wlan.fc.subtype13,wlan.flags 0x00,wlan.fc.ds0x00,wlan.fc.tods0,wlan.fc.fromds0,wlan.fc.frag0,wlan.fc.retry0,wlan.fc.pwrmgt0,wlan.fc.moredata0,wlan.fc.protected0,wlan.fc.order0,wlan.duration0,wlan.ra4e:b3:48:6a:f5:ce,wlan. ra resolved4e:b3:48:6a:f5:ce.wlan.addr4e:b3:48:6a:f5:ce.wlan.addr resolved4e:b3:48:6a:f5:ce.wlan.fcs0xd9b29af6.wlan.fcs.status2.

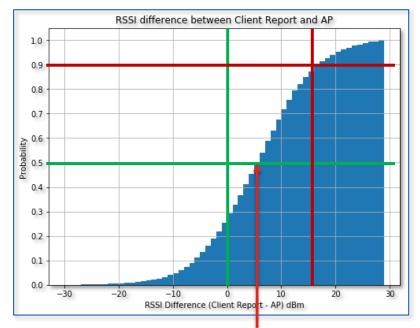
This frame is: an association response

What do you want to do?

Using Client Knowledge for better Design

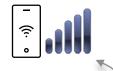
cisco live!

The "View from my Hand" is Different from the "View from the Ceiling"


Six months report from network "designed from the ceiling":

AP power set with "AP to AP" in mind (max 'level 1')

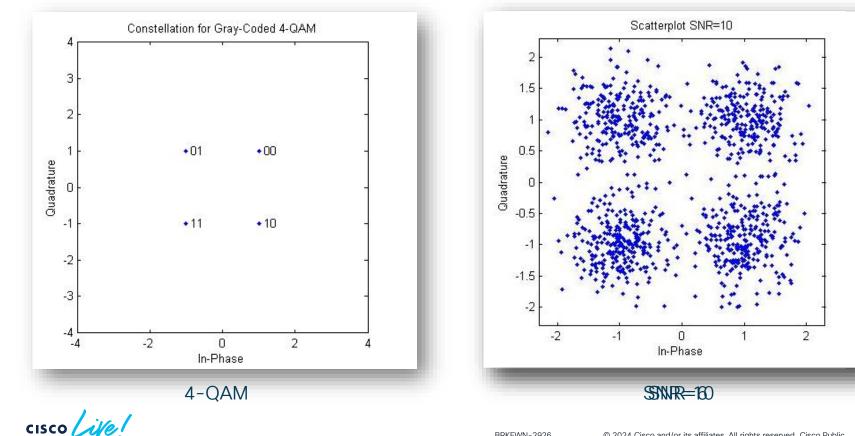
- RSSI seen by the AP is lower than that seen by Client (likely due to lower transmit power of Client)
 - 50% of time difference is up to 6 dB.
 - 90% of time difference is up to 15 dB



If half the clients' power was the same as half the APs' power, this point would be at the center of the green cross... but it is 6 dB below

If AP Signal is Strong, Client Uses High Data Rate

• Client power can be low, noise at the AP high, HW specs may be different...



This is the AP 'signal' (at phone level)

Modulation, SNR and Data Rates

Relationship Between Modulation and SNR

Protocol and	MCS Value A	MCS Value Achieved by Clients at Various Signal to Noise Ratio (SNR) Levels												
Channel Width	0	1	2	3	4	5	6	7	8	9	10	11	12	
IEEE_802.11b 20 MHz	None	None	None	None	MCS 0	MCS 0	MCS 0	MCS 1	MCS 1	MCS 1	MCS 1	MCS 2	MCS 2	MC
IEEE_802.11ag 20 MHz	None	None	MCS 0	MCS 0	MCS 1	MCS 2	MCS 2	MCS 2	MCS 2	MCS 3	MCS 3	MCS 4	MCS 4	MC
IEEE_802.11n 20 MHz	None	None	MCS 0	MCS 0	MCS 0	MCS 1	MCS 1	MCS 1	MCS 1	MCS 2	MCS 2	MCS 3	MCS 3	MC
IEEE_802.11n 40 MHz	None	None	None	None	None	MCS 0	MCS 0	MCS 0	MCS 1	MCS 1	MCS 1	MCS 1	MCS 2	MC
IEEE_802.11ac 20 MHz	None	None	MCS 0	MCS 0	MCS 0	MCS 1	MCS 1	MCS 1	MCS 1	MCS 2	MCS 2	MCS 3	MCS 3	MC
IEEE_802.11ac 40 MHz	None	None	None	None	None	MCS 0	MCS 0	MCS 0	MCS 1	MCS 1	MCS 1	MCS 1	MCS 2	MC
IEEE_802.11ac 80 MHz	None	None	None	None	None	None	None	None	MCS 0	MCS 0	MCS 0	MCS 1	MCS 1	MC
IEEE_802.11ac 160 MHz	None	None	None	None	None	None	None	None	None	None	None	MCS 0	MCS 0	MC

cisco ile

Can Power Really Damage Cell Conditions?

Bad design example: Client @ 12 dBm, AP @20 dBm

			- <u> </u>		,			
17 0.039879000	172.31.255.101	172.31.255.103	UDP	1420	34	-35 55 dB 54.0 Source port: 50857 Destination port: search-agent		
18 0.040266000	172.31.255.101	172.31.255.103	UDP	1420	34	-35 55 dB 54.0 Source port: 50857 Destination port: search-agent		
19 0.040648000	172.31.255.101	172.31.255.103	UDP	1420	34	-34 56 dB 54.0 Source port: 50857 Destination port: search-agent		
20 0.041938000	172.31.255.101	172.31.255.103	UDP	1420	34	-34 56 dB 54.0 Source port: 50857 Destination port: search-agent		
21 0.042217000	172.31.255.101	172.31.255.103	UDP	1420	34	-29 61 dB 36.0 Source port: 50857 Destination port: search-agent		
22 0.043444000	172.31.255.101	172.31.255.103	UDP	1420	34	-29 61 dB 12.0 Source port: 50857 Destination port: search-agent		
23 0.043445000		Cisco_Oa:O4:2e (RA)	802.11	40		-45 45 dB 12.0 Acknowledgement, Flags=C		
24 0.043850000	172.31.255.101	172.31.255.103	UDP	1420	34	-34 56 dB 54.0 Source port: 50857 Destination port: search-agent		
25 0.044245000	172.31.255.101	172.31.255.103	UDP	1420	34	-34 56 dB 54.0 Source port: 50857 Destination port: search-agent		
26 0.044641000	172.31.255.101	172.31.255.103	UDP	1420	34	-34 56 dB 54.0 Source port: 50857 Destination port: search-agent		
27 0.045023000	172.31.255.101	172.31.255.103	UDP	1420	34	-35 55 dB 54.0 Source port: 50857 Destination port: search-agent		
28 0.045750000	172.31.255.101	172.31.255.103	UDP	1420	34	-29 61 dB 36.0 Source port: 50857 Destination port: search-agent		
29 0.046223000	172.31.255.101	172.31.255.103	UDP	1420	34	-29 61 dB 36.0 Source port: 50857 Destination port: search-agent		
30 0.047450000	172.31.255.101	172.31.255.103	UDP	1420	34	-29 61 dB 12.0 Source port: 50857 Destination port: search-agent		
31 0.047450000		Cisco_Oa:O4:2e (RA)	802.11	40		-47 43 dB 12.0 Acknowledgement, Flags=C		
22 0 047962000	170 01 055 101	177 21 255 102	UDD	1420	24	24 56 dP 54 0 cource nort, 50057 Destination mort, coarch agent		
Frame 29: 1420 bytes on wire (11360 bits), 1420 bytes captured (11360 bits) on interface 0								

Radiotap Header v0, Length 26 👘

IEEE 802.11 QOS Data, Flags:R.F.C

Type/Subtype: QoS Data (0x28) Frame Control: 0x0A88 (Normal)

Version: 0 Type: Data frame (2)

Subtype: 8

🖃 Flags: OXA

Based on Rx AP signal, client thinks 54 Mbps rate is okay... But client message is too weak, and AP does not ACK until rate falls to 12 mbps

...., 0.. = More Fragments: This is the last fragment

....[1..] = Retry: Frame is being retransmitted

...0 = PWR MGT: STA will stay up

..O. = More Data: No data buffered

.0.. = Protected flag: Data is not protected

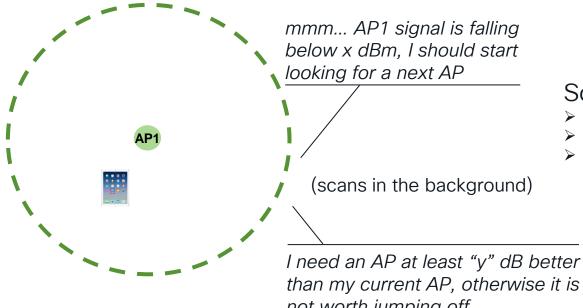
0... = Order flag: Not strictly ordered

Each message takes 8 times more to be transmitted (including EIFS and retries)

So... You need your cell edge where signal is still strong, and MCS high

There can be a 20 dB difference between these photos

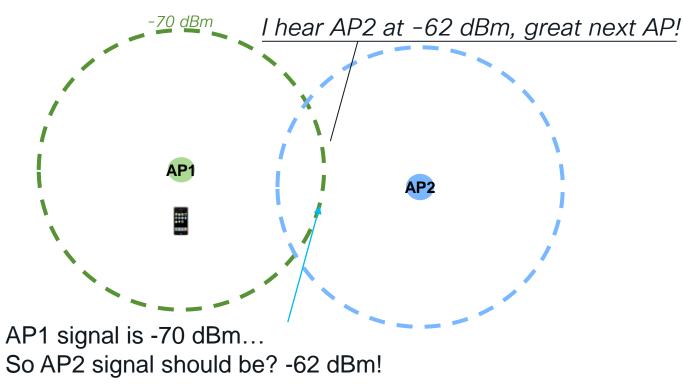
cisco ile

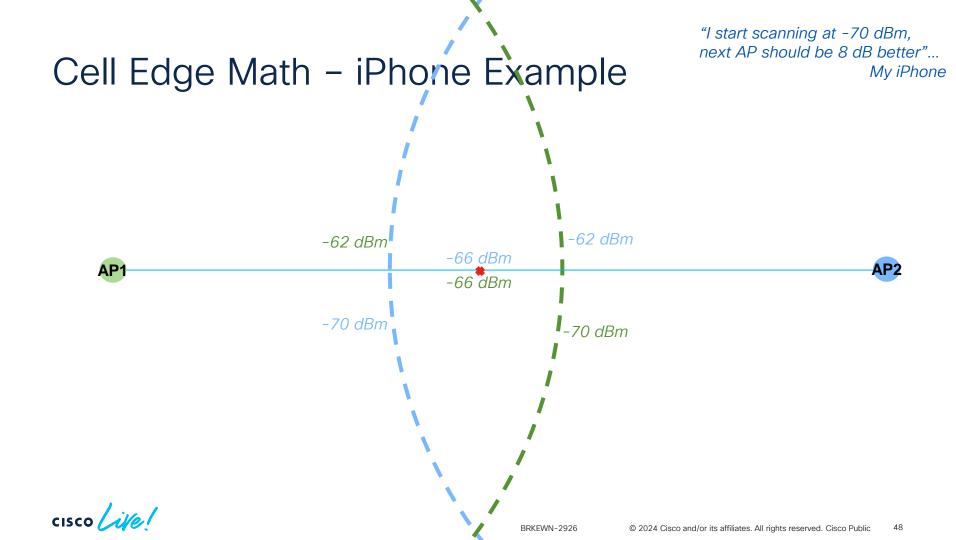

It is not Because You Decide that The Cell Should Stop There, That It Will

Clients will stay connected until they decide to roam...

cisco ile

Client Cell Edge Logic

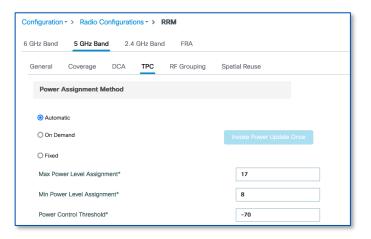

Some clients add conditions:


- Active traffic? -> less picky* than if idle
- Fast MCS drop? -> less picky*
- Lots of retries -> less picky* *accepts next AP 'less than y better'

not worth jumping off

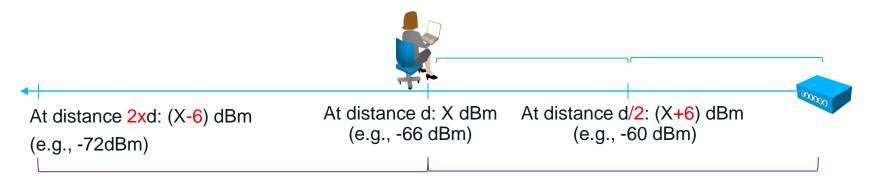
Cell Edge Math – iPhone Example

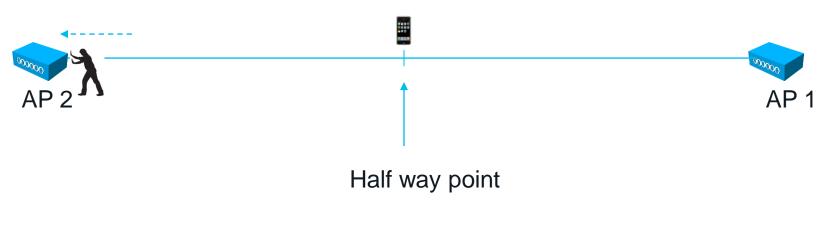
"I start scanning at -70 dBm, next AP should be 8 dB better"... My iPhone


-66 dBm, but What is the AP Power?

- In short: right AP max power value is at your worst client max power
 - Experience shows you can allow a 3 dB margin
 - For 5 GHz, most worst clients are at 14 dBm, set your AP power to 17 dBm max

• Otherwise, you get this:


((·	(·
•	


How To Design Your Overlap

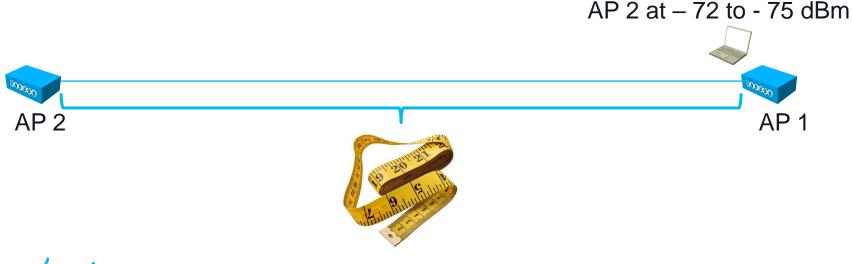
- First trick to know:
 - Twice the distance = -6 dB
 - Half the distance = + 6dB

The – 6 dBm Rule

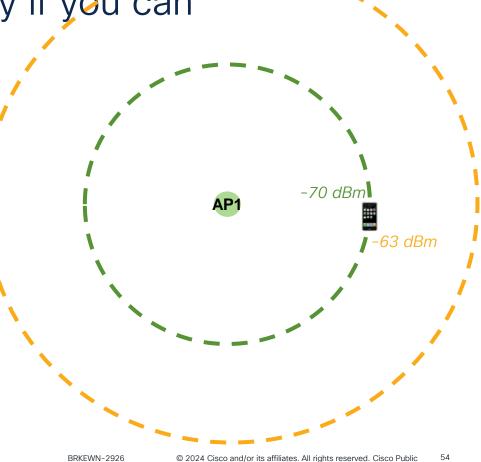
- So if you stand at the "-66 dBm border"...
 - Move away from AP 1 until you get 66 dBm
 - Then pull AP 2 in the other direction until you also hear it at 66 dBm

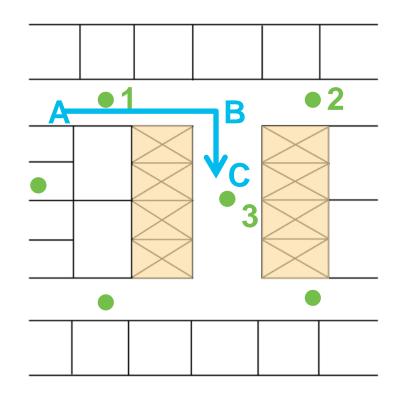
AP 2 at – 66 dBm AP 1 at – 66 dBm

The – 6 dBm Rule

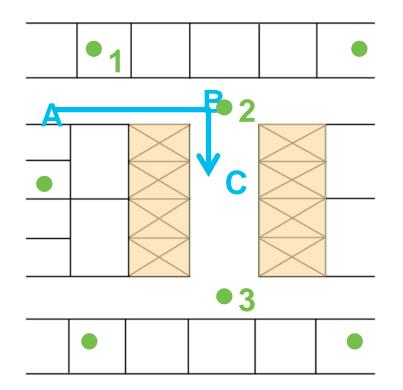

- Go back to AP 1
 - AP2 should be at "- 66 6" = -72 dBm. Add 2-3dB loss if there is a plaster wall
 -> 75 dBm
 2 times the distance

The – 6 dBm Rule


- Measure
 - This is your average AP to AP distance for this environment

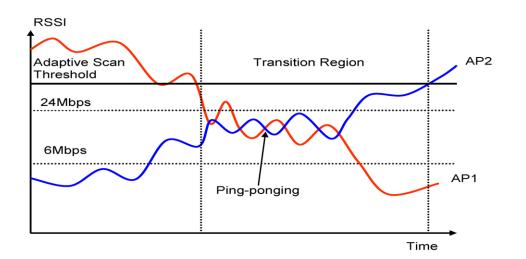

Design for 5/6 GHz-only if you can

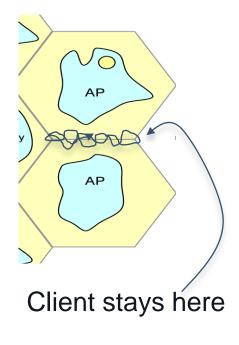
- 2.4 GHz signal, at same distance from the AP, is commonly 7 dB better than 5 GHz signal
- Your client may roam to the same AP 2.4Ghz radio


Use the Reports to Strategically Position Your Transition APs

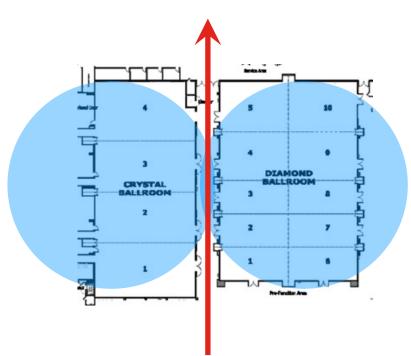
- At "A" the phone is connected to AP 1
- At "B" the phone has AP 2 in the neighbor list, AP 3 has not yet been scanned due to the RF shadow caused by the elevator bank
- At "C" the phone needs to roam, but AP 2 is the only AP in the neighbor list
- The phone then needs to rescan and connect to AP 3
 - 200 B frame @ 54 Mbps is sent in 3.7 µs
 - 200 B frame @ 24 Mbps is sent in 8.3 µs
 - Rate shifting from 54 Mbps to 24 Mbps can waste 1100 μs

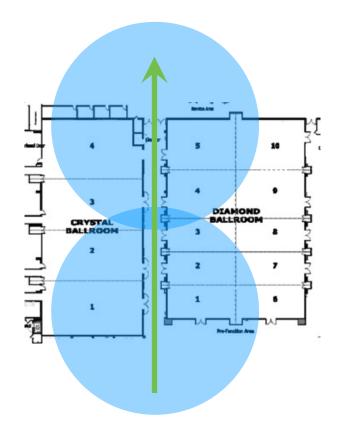
55


Use the Reports to Strategically Position Your Transition APs



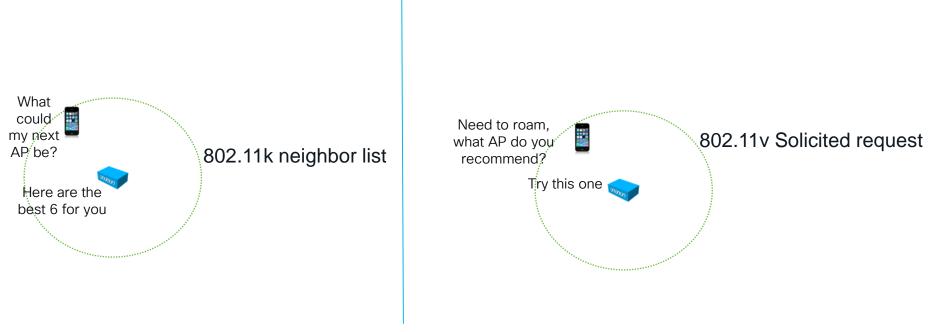
- At point A the phone is connected to AP 1
- At point B the phone has AP 2 in the neighbor list as it was able to scan it while moving down the hall
- At point C the phone needs to roam and successfully selects AP 2
- The phone has sufficient time to scan for AP 3 ahead of time


Avoid Ping Pong Zones



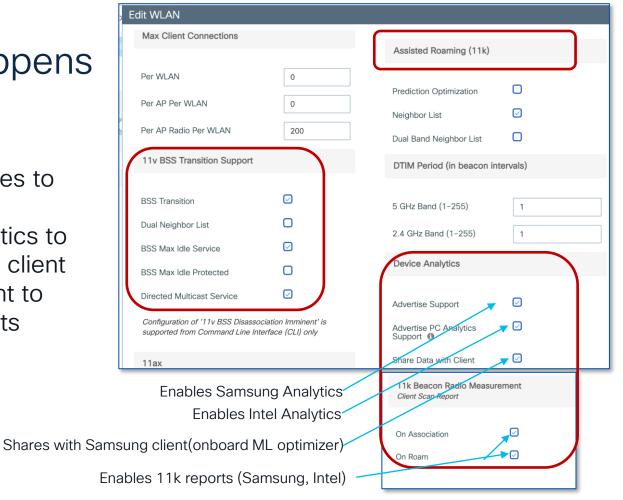
Ping-pong effect occurs when a wireless client is at the edge of two cells and hops between them.

Avoiding Ping Pong Zones

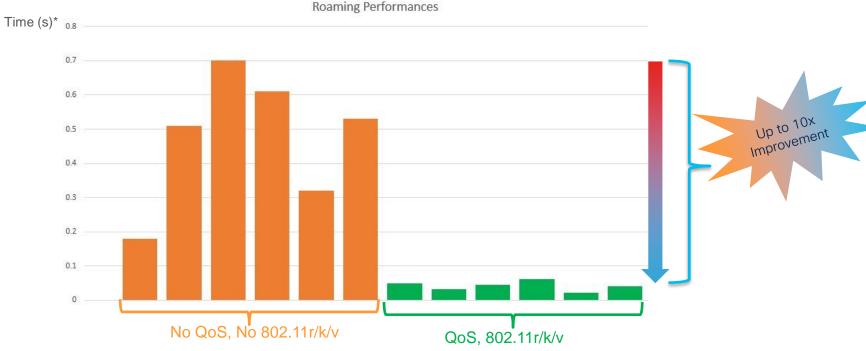


cisco live!

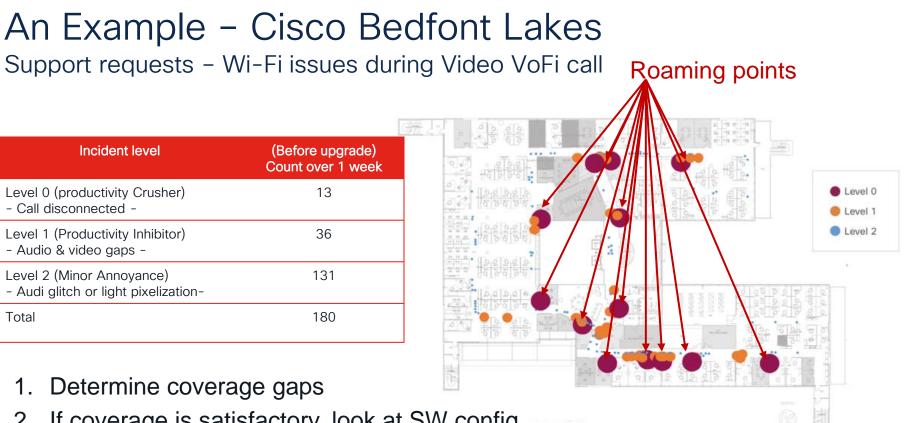
Tell your Clients About the Next (Best) Cell


• 802.11k and 802.11v BSS Transition Management

Where this Happens


- Enable individually 802.11k,v
- There is no downsides to 802.11k/v
- Enable Device Analytics to get information from client
- Share data with client to help upstream reports

cisco live!


Roaming Performance :

10x Better end-user Browsing and App Experience

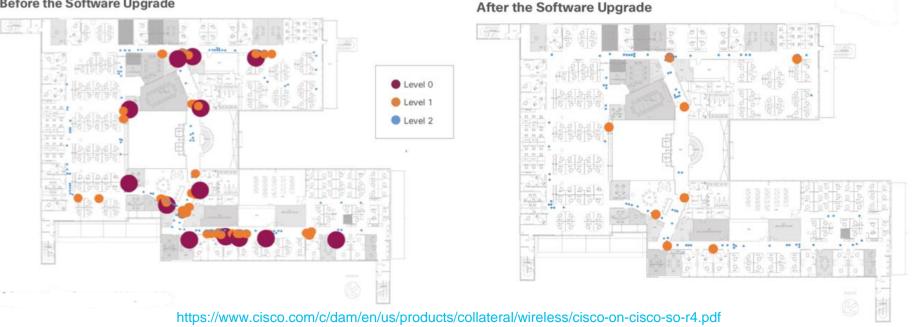
*Time Interval between last packet on previous AP, and first packet on next AP

cisco (

2. If coverage is satisfactory, look at SW config

cisco ile

76


An Example – Cisco Bedfont Lakes Support requests – Wi-Fi issues during Video VoFi call

Incident level	(Before upgrade) Count over 1 week	(After upgrade) Count over 1 week	Change (%)
Level 0 (productivity Crusher) - Call disconnected -	13	0	- 100%
Level 1 (Productivity Inhibitor) - Audio & video gaps -	36	8	- 78%
Level 2 (Minor Annoyance) - Audi glitch or light pixelization-	131	96	- 27%
Total	180	104	-42 %

cisco / ile

An Example – Cisco Bedfont Lakes Support requests - Wi-Fi issues during Video VoFi call

Before the Software Upgrade

cisco ile

Takeaways

cisco live!

Conclusion

- Leverage the knowledge of your Wi-Fi clients in Cisco networks
 - Who is the client, how the client sees the world, why did the client leave
 - Use the pre-built tools in WLC/Catalyst Center/Meraki Dashboard, or build your own scrips if you have custom needs – we give you the raw data to empower you further
 - Set your AP power to match your client power
 - Remember, -70 dBm roaming edge is common, 14 dBm is common
- Think "roaming path", position your APs so that view from the ceiling = view from the ground
- Enable 11k/r/v, QoS, 5 GHz-only SSIDs if you can

Meet The Engineer

 If you have specific questions, ChatGPT suggest an MTE: "ChatGPT, write an ode to getting an MTE with Jerome"

Meet the Engineer with wisdom, Jerome by name, With keen proficiency, he seeks channels free, Optimizing WiFi networks, his claim to fame. For real-time apps demanding high connectivity, He fine-tunes signals with profound efficacy.

In crowded halls and bustling spaces, Jerome's expertise embraces, Video streams and urgent commands, He eradicates WiFi's limiting strands.

From interference, ensuring seamless glee. In milliseconds, success is defined, Jerome's quidance, a network's lifeline.

Raise your voice, celebrate this wondrous seer, Meet the Engineer, Jerome, connectivity's pioneer. With his expertise, fear not a flawed connection, WiFi optimized with Jerome's perfection.

Thank you

cisco live!

cisco live!

Let's go