Let's go cisco live!

Low Earth Orbit Satellites

Leveraging Cisco Technologies to Improve Your LEOsat Deployments

Ian Procyk, Technical Solutions Architect

Oli Boehmer, Principal Architect

Dave Zacks, Distinguished Engineer

By Way of Introduction ...

I am a Distinguished Engineer in the Cisco Transformation team, and have been with Cisco for 24 years.

I work primarily with large, high-performance Enterprise network architectures, designs, and systems. I have over 39 years of experience with designing, implementing, and supporting solutions with many diverse network technologies.

I have a strong background in, and focus on, customer requirements, and integrating these into the products and solutions Cisco builds.

I have a special interest in Flexible Hardware, Network Fabrics, End-to-End Assurance & Analytics, and ML/Al for Networking.

Dave Zacks
Distinguished Engineer
dzacks@cisco.com

cisco Life!

@DaveZacks

By Way of Introduction ...

I joined Cisco in 2011 and has remained **focused on wireless technologies** since. I apply over 20 years of field experience helping customers architect, implement and support complex wireless deployments across all verticals.

Internally, I lead the Cisco's Mobility Technical Advisory Group, a global team of wireless specialists helping to ensure that customer's feedback crosses paths with engineering's priorities and new product development.

Before coming to Cisco, I held positions with a start-up IT consulting firm based in Vancouver and the Canadian Coast Guard. I started my career in IT at the University of British Columbia where I was involved in one of the first large scale WLAN deployments in the country.

lan Procyk
Technical Solutions Architect
iprocyk@cisco.com

By Way of Introduction ...

I am a Principal Engineer in our CX organization, and with Cisco for 23 years.

My main tasks is working with our largest Enterprise and Service Provider customers in Europe to design and implement complex, cross-architecture deployments. Lately, I've been focusing on network automation and programmability, applying DevOps principles to today's networks.

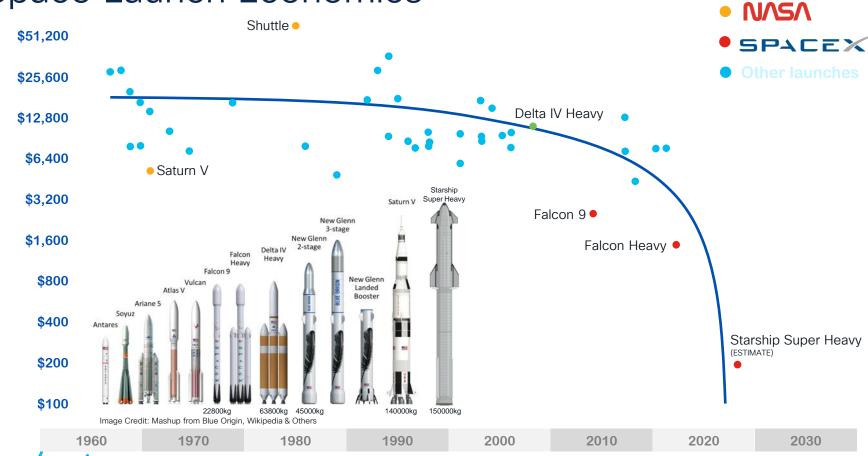
I live in rural Northern Germany and have been using LEO Satellite Service for almost three years now.

Oliver Boehmer
Principal Engineer
oboehmer@cisco.com

- Introduction to LEOsats
- LEOsat Operational Details
- What's Up There?
- Constellation Dynamics
- Phased Array Antennas
- Mobility And Laser Inter-Satellite Links
- Real World Deployments Dave
- Real World Deployments Oli
- Real World Deployments Ian
- LEOsat Programmability
- LEOsat Futures And Opportunities
- Conclusion

We all know

that the future is in the Cloud(s), right?


but look beyond that...
and you just might conclude that it's in SPACE too!

Low Earth Orbit (Satellites (LEOsats)

Changing the Game

Space Launch Economics

• ULA

Satellite Orbits

Our focus for today's session ...

2000KM

Multiple uses

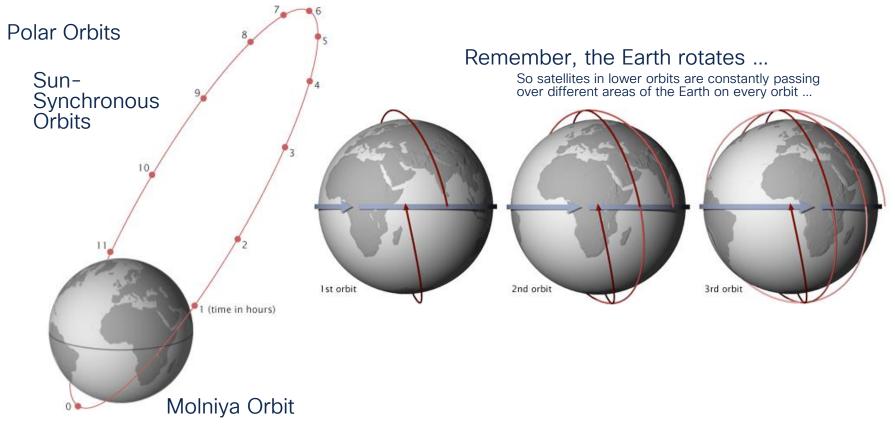
MEO

20200KM

10000KM

Navigation (GPS, ...)

Remote sensing, navigation and communications


GEO Earth

More about Orbits

Comms and remote sensing over high latitudes

Traditional View of Satellite Communications

Geosynchronous Operation

Geosynchronous Orbit

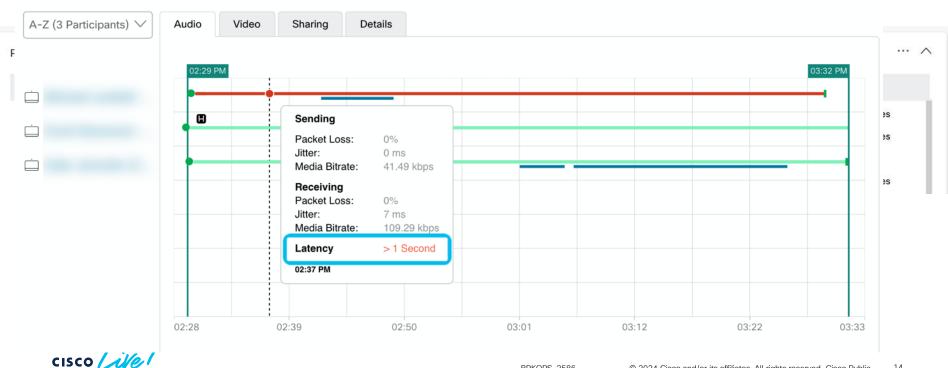
Rotates in sync with Earth rotation Around 35,000 km altitude Static location in the sky from ground observation

Moderate Performance

Throughput: 0-100Mbps max, 5-10Mbps typical

Latency: ~120msec each way

Roundtrip: ~477 msec round-trip latency


Typical: ~600+ msec latency

Large spot coverage due to limited geosync satellites

Traditional View of Satellite Communications

Geosynchronous Performance - Real-World

Low Earth Orbit (LEO) Satellite Constellations

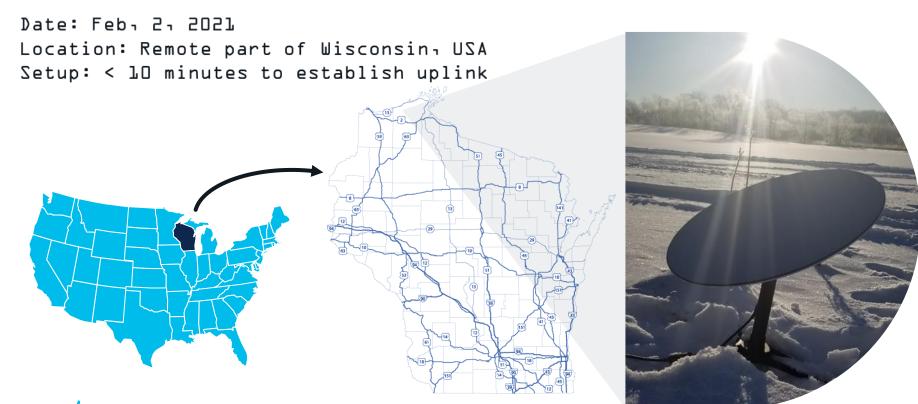
Low Earth Orbit Operation

- Located at ~500km altitude (varies)
- Constantly moving from ground observer viewpoint
- Many LEO satellites in constellation
- Starlink = 4,425 in initial planned deployment)

Improved performance

- Throughput~: 200Mbps down, 25Mbps up (Starlink ~8x increase)
- Latency~: 20-40 msec typical, ~10x+ decrease
- Smaller spot coverage due to closer satellite location
- Per-satellite bandwidth of ~20Gbps currently (estimated)
- Aggregate bandwidth of ~80Tbps+ across 4,425 satellites

Connection Coverage


No. of Sats	Connection Time
1	Few minutes per day
10	Every several hours
100	Every 5 to 20 minutes
1500	Continuous

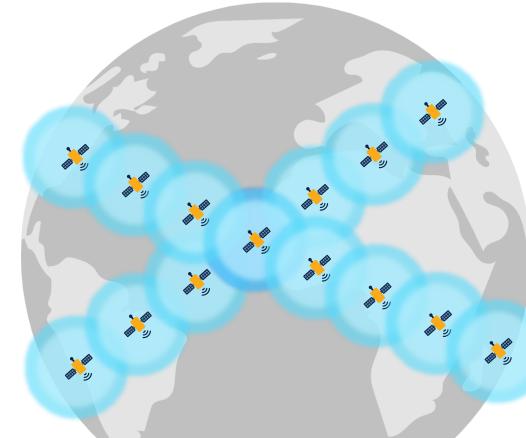
Coverage over 24 Hours

LEOsat View of Satellite Communications

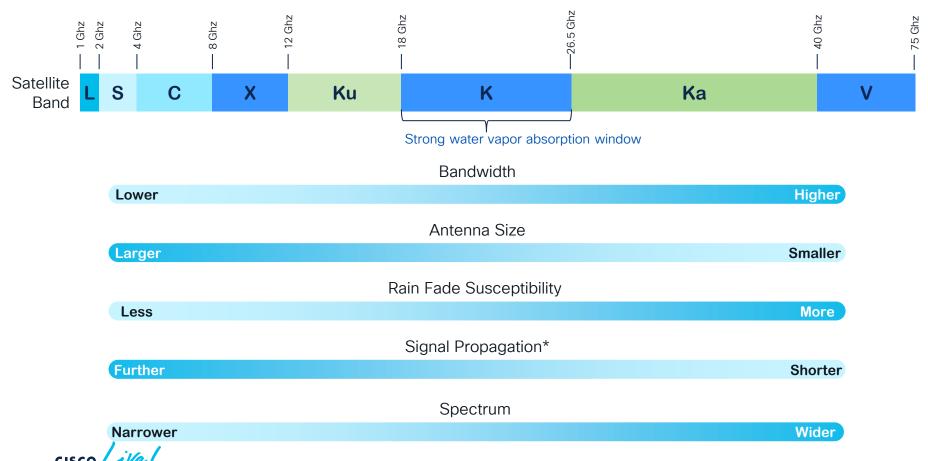
Example of Performance - Real-World

LEOsat View of Satellite Communications

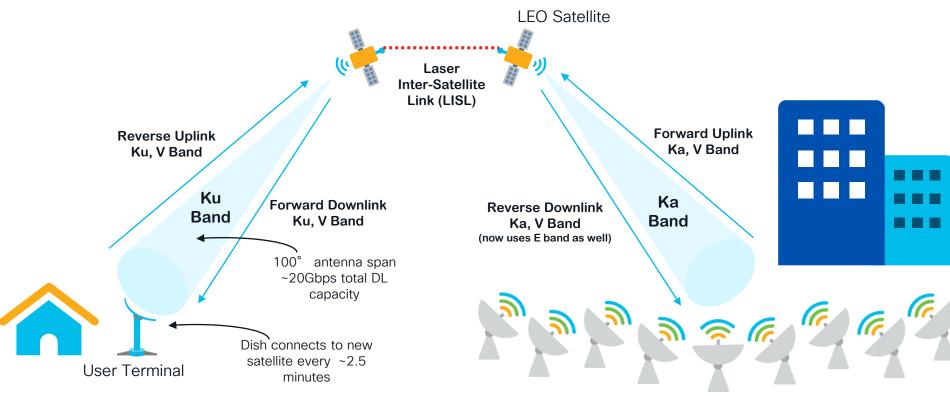
Example of Performance - Real-World


Starlink Operational Details

SpaceX Starlink - Initial Deployment


First launch Feb 22nd, 2018 - Operational since November, 2019

Available 5289 2020 in most **locations Public Testing** on Earth Ka Ku 2.2M+ **Band** Band Active Subscribers* 26.5-40 GHz 12-18 GHz

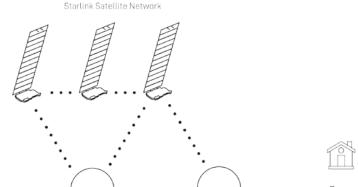


Satellite Bands

Starlink Operational Architecture

Ground Stations (Many onsite at Google DC)

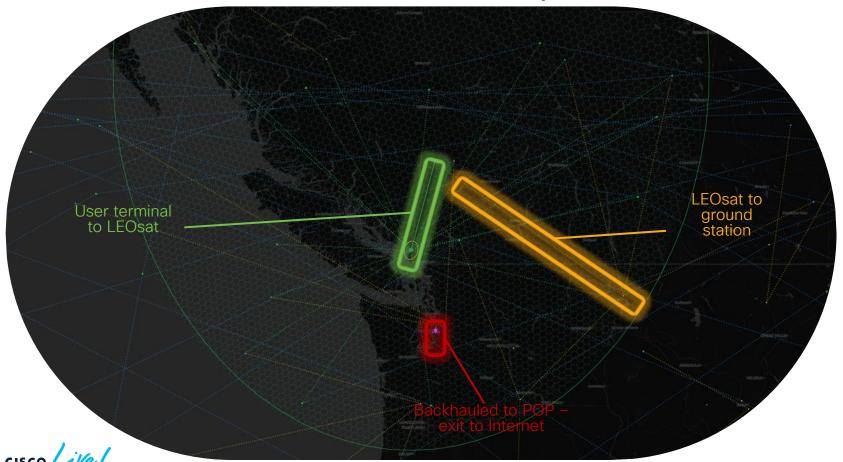
Source: https://www.redorbit.com/spacex-plans-to-reduce-number-of-v-band-starlink-satellites/Source: https://dgtlinfra.com/elon-musk-starlink-and-satellite-broadband/



Ground Stations

https://www.starlinkinternet.info/community-gateway

BRKOPS-2586

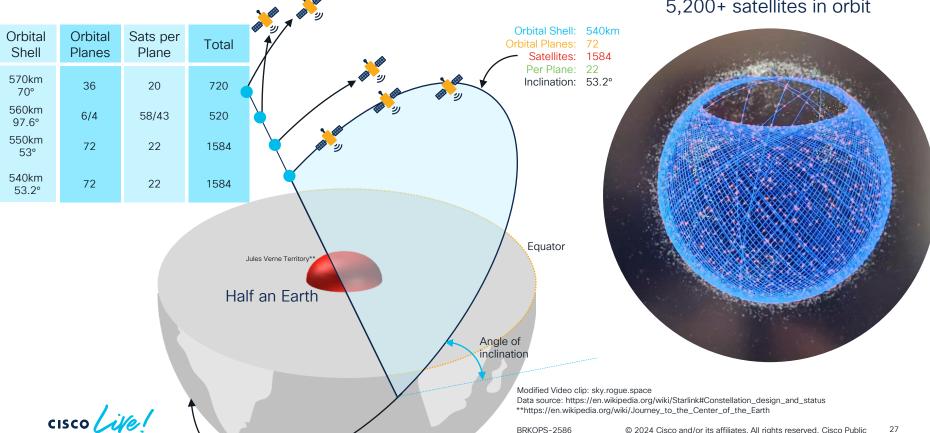

Local Networks.

Starlink Community Gateways

With Community Gateways, Starlink satellites are able to deliver fiber-like speeds with local providers distributing connectivity to homes, businesses, and governments using last-mile fiber, fixed wireless and mobile wireless.

The Community Gateway traffic transits through Starlink's global laser mesh network and utilizes our high bandwidth Gateways operating in a dedicated Ka spectrum band.

How the LEOsats Move - Example


What's Up There?

Starlink Phased Deployment

Starlink Constellation

as of January, 2024 there are 5,200+ satellites in orbit

How Often does SpaceX Launch New LEOsats?

SCIENCE . EDITORS' PICK

SpaceX Launches Rocket With 143 Satellites – The Most Ever Flown On A Single Mission

Jonathan O'Callaghan Contributor ①

Jonathan is a freelance space journalist that covers commercial spaceflight, space exploration, and astrophysics

Follow

Source: https://www.forbes.com/ Source: Dave's Man Cave

Constantly!

I tune in for a lot of the launches

Starlink Launch Config

60 typically deployed in a single launch

LEOsat Players are Growing

January 15, 2021

ONEWEB SECURES INVESTMENT FROM SOFTBANK AND HUGHES NETWORK SYSTEMS

- · OneWeb has raised \$1.4 billion in total financing
- SoftBank to take a seat on OneWeb Board of Directors

London, 15 January, 2021 - OneWeb, the Low Earth Orbit (LEO) satellite communications company jointly owned by the UK Government and Bharti Global, announced today that it has secured additional funding from SoftBank Group Corp. ("SoftBank") and Hughes Network Systems LLC ("Hughes"), bringing OneWeb's total funding to \$1.4 billion. The capital raid date positions the Company to be fully funded for its first-generation satellite fleet 648 satellites, by the end of 2022.

Amazon marks breakthrough in Project Kuiper development

LEOsat Competitor Space

GeeSpace

240 LEO Planned

5,200 LEO Active

(4396 - Phase 1)

(7518 - Phase 2)

~12000 in total by 2027

OneWeb 634 LEO Active

(as of May, 2023)

AST SpaceMobile

170 LEO Planned

AMAZON Kuiper 3236 LEO planned

75 LEO Active

Source:

https://interestingengineering.com/innovation/St arlink-here-are-6-of-spacexs-biggest-rivalsfor-satellite-internet-dominance 6300 rocket launches

since 1957

14450

satellites launched

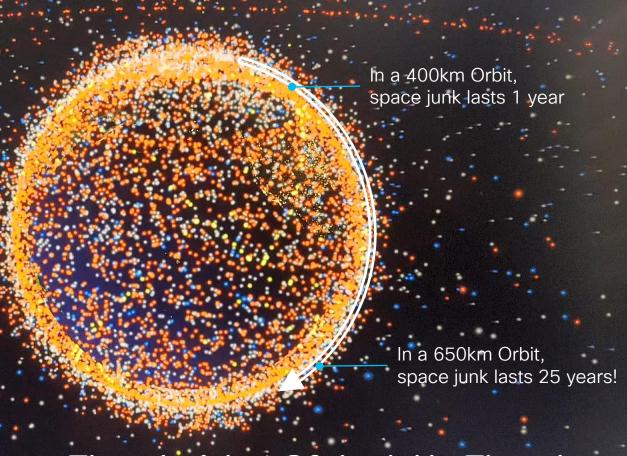
32160

debris regularly tracked

9610

Satellites still in space

630

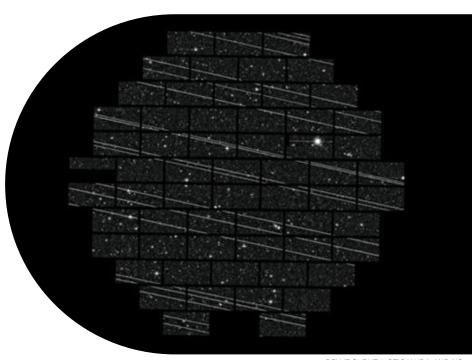

collisions resulting in further debris

6800

satellites still functioning

10400

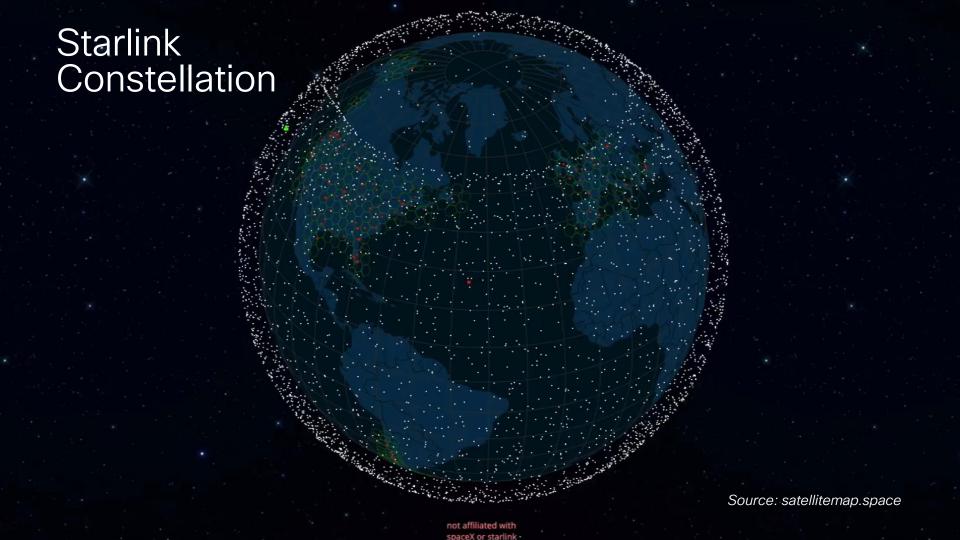
tonnes of debris



There's A Lot Of Junk Up There!

Modified Video clip: sky.rogue.space

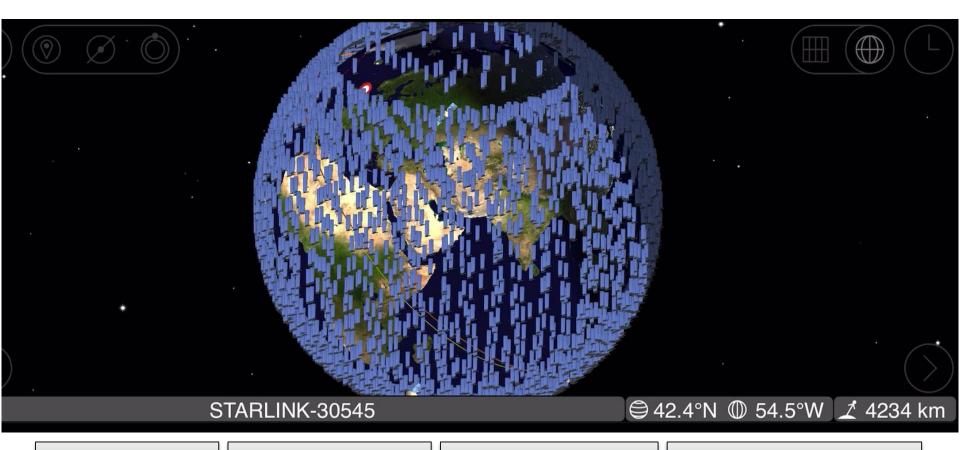
Astronomer's Issue - Sky Clog



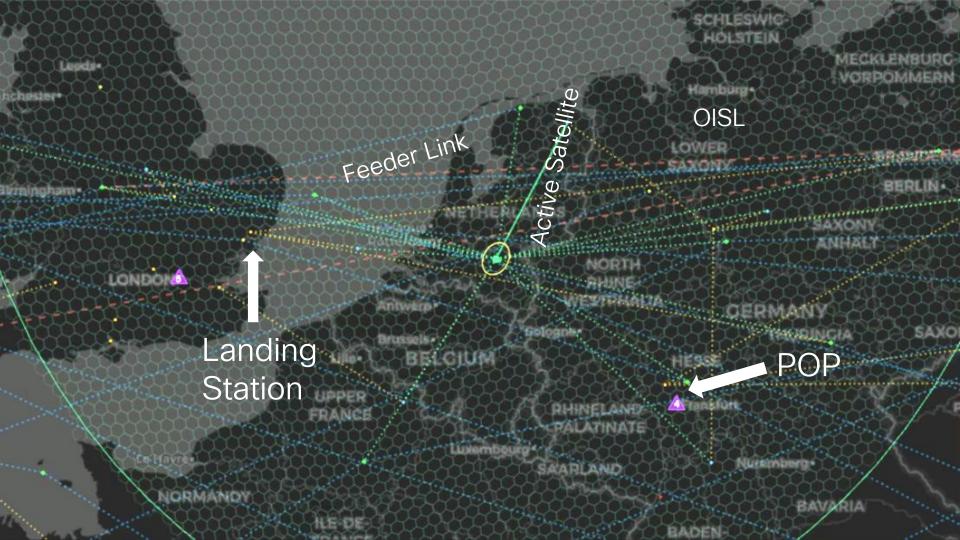
NATIONAL OPTICAL-INFRARED ASTRONOMY RESEARCH LAB/NSF

DELVE SURVEY, CTIO/AURA AND NS

Example of Starlink satellites leaving 19 trails of light on a telescope image



Constellation Dynamics


Circular Orbits

Polar & Inclined

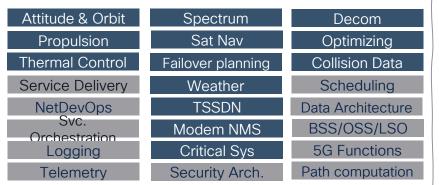
12-16 turns/day

7-12 mins/handover

Architecture

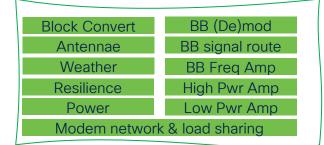
NOC

Satellite Constellation Landing Station


POP

Backbone

Handoff



Architecture

Consider:

- Individual path tracking and adjustments
- Space environment mamt.
- POP/LS failover
- Multi-laver mamt, and orch. dependencies
- Central SLA assurance and reporting

Security DPI encaps. Resilience Failover mech Geography Session steer Telemetry Aggregation Lawful-Intercept Capacity

Backbone Backhaul Management NOC failover **Telemetry**

Consider:

- Atmospheric depolarization
- Radome, weather, maritime skew
- Power chain
- Satellite handoff

Consider:

- Service assurance & aggregation
- In-band measurements?
- High rate-of-change to global network path routing
- Leverage time-boxed satellite movement

Consider:

- Out-of-band management
- Leverage Internet connectivity
- Careful capacity constraints for critical management traffic
- Backhaul requirements in failure scenarios

Consider usual telco interconnection stuff. SLA on newer constellations.

Segment Routing Suitability

- No path signalling dynamic source routing
- External path computation
- Granular traffic control
- Lightweight (SWaP)

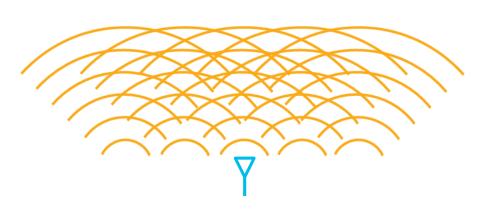
The Life of a Packet – 5G NTN Example Network

UT Satellite 2 + gNodeB DU/RU		Satellite 1		Feed	Feeder Link		PE			gNodeB CU			UPF			Application	
PDU	PDU	PDU	PDU	PDU	PDU	PDU		PDU	PDU		PDU	PDU		PDU	PDU		PDU
SDAP	SDAP	SDAP	SDAP	SDAP	SDAP	SDAP		SDAP	SDAP		SDAP	GTP-U		GTP-U	ETH		ETH
PDCP	PDCP	PDCP	PDCP	PDCP	PDCP	PDCP		PDCP	PDCP		PDCP	UDP		UDP	L1		L1
GTP-U	GTP-U	GTP-U	GTP-U	GTP-U	GTP-U	GTP-U		GTP-U	GTP-U		GTP-U	IP		IP		,	
RLC	RLC	UDP	UDP	UDP	UDP	UDP		UDP	UDP		UDP	ETH		ETH			
MAC	MAC	IP	IP	IP	IP	IP		IP	IP		IP	L1		L1			
5G PHY	5G PHY	ETH	ETH	ETH	ETH	ETH		ETH	ETH		ETH		-				
		SR SVC	SR SVC	SR SVC	SR SVC	SR SVC		SR SVC	IP		L1						
		SR LSP	SR LSP	SR LSP	SR LSP	SR LSP		SR LSP				-					
		ETH	ETH	ETH	ETH	ETH		ETH									
		OPT PHY	OPT PHY	GSE	GSE	L1		L1									
				DVB-S2	DVB-S2		-						-				
											5 5 1						

Phased Array Antennas

Basic Antennas

A basic antenna will transmit the same power in all directions



Phased Array Antennas - Multiple Elements

Phased array antennas can contains 100s of antenna elements.

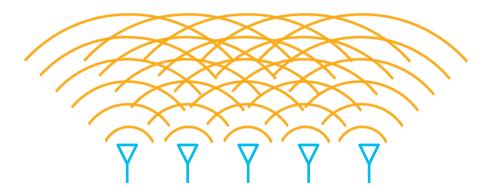
As the waves travel outward from the antennas they constructively and destructively interfere with each other

https://www.ruaviation.com/news/2016/1/14/4629/?h

Phased Array Antennas - Narrow Beam

Phased array antennas can contains 100s of antenna elements.

Through software we can concentrate the beam in one specific direction and cancel out in all other directions


The result is a single composite antenna with a very narrow beam perpendicular to the antenna

Phased Array Antennas - Controlling Direction

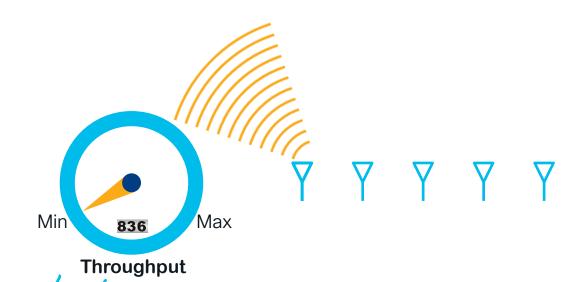
Phased array antennas can contains 100s of antenna elements.

By adding a slight delay to each signal

Phased Array Antennas - Controlling Direction

Phased array antennas can contains 100s of antenna elements.

We can change the direction of the beam to optimally follow the path of the LEO Sat


The result is a single composite antenna with a very narrow beam perpendicular to the antenna

Phased Array Antennas - Throughput

Throughput will vary whilst connecting and as the LEOsat moves across the sky

For illustrative purposes only.

Starlink Phased Array Antennas

GEN 2 User Terminal

(Different to dBi - Dog Butt Interference)

https://soyacincau.com/2022/01/10/cats-are-very-fond-of-the-self-heating-Starlink-satellite-dish-by-spacex-and-its-a-big-prob

Size Weight

Height

7.3kg

64.5cm

-30°C to +50°C

Op. Temp

Power PoE

Outdoor IP54 (Modem indoor only)

Heating Integrated

WiFi Modem 2 x MU-MIMO

Ethernet Port Onboard dish

Price USD599 + USD90-120pm

50cm x 30cm

4.2kg

61cm

-30°C to +50°C

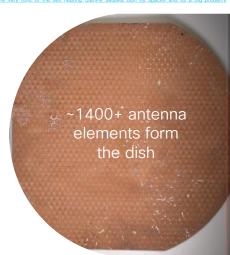
PoE

IP54 (Modem outdoor)

Integrated

3 x MU-MIMO

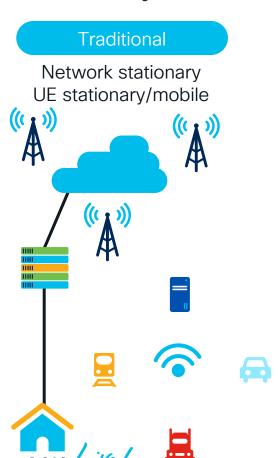
Requires adaptor


USD599 + USD90-120pm

... and more antenna options for mobile applications ...

... plus

Starlink Business


(higher speed, lower latency)

Mobility Support

Mobility

Mobility

Traditional

Network stationary UE stationary/mobile

LEO

Network mobile UE stationary

Mobility

Traditional

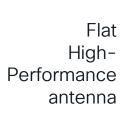
Network stationary UE stationary/mobile

LEO

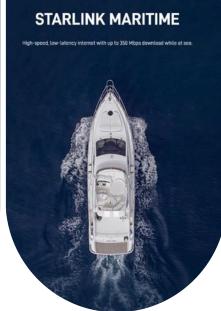
Network mobile UE stationary

LEO Mobility

Network mobile UE mobile



BRKOPS-2586


Starlink Mobility Offerings

Bad idea

Roaming (Cell-phone) Mobility via LEOsats

Existing phones and mobile networks are set up to accommodate bullet train speeds not orbital velocities

Technology Enhancements To Support Direct Handset Connectivity						
Doppler Shift	Doppler compensation allows for a phone to see LEO as a fixed tower					
Software Defined Radios	Allows for frequency hopping to connect various licenced spectrums					
Larger LEO antennas	Allows communication with low-power, low-signal-strength phones					
Cell Timing	Mobile phones require highly accurate timing					

No changes to existing cell phones

Larger Antenna & More Power - Cell Phones

Lynk 4sqm

cisco Live!

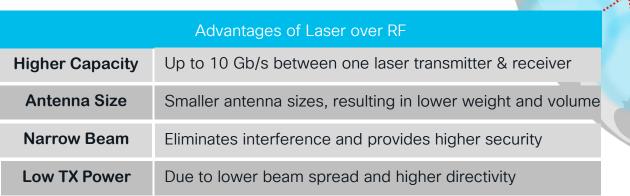
Starlink Gen2
25sqm
1250Kgs

AST Spacemobile 400sqm (Planned) Several 1000kgs

A Marriage Made In Low Earth Orbit

Many partnerships are being formed

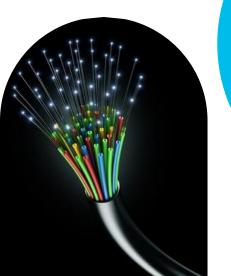
Initial offers are texting services and low bw broadband


Many MNO

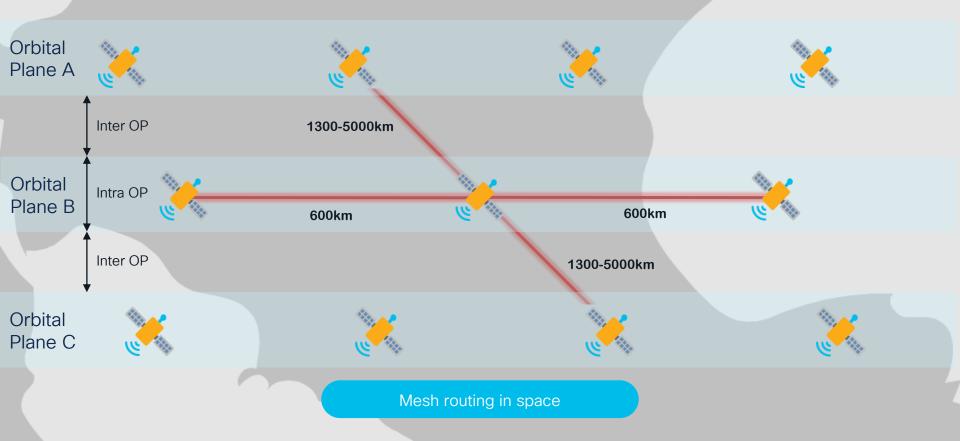
Laser Inter-Satellite Links

Laser Inter-Satellite Links

Signals in FREE SPACE REDUCE LATENCY



Free Space and the Speed of Light


Index of Refraction (Ratio of Speed of Light)					
Vacuum	1				
Air	1.003				
Fibre	1.4682				

Starlink Laser Inter-Satellite Links

https://arxiv.org/abs/2103.00056

Starlink Laser Inter-Satellite Links - Fun Facts!

9000 Space lasers deployed

5.6Tbps+ peak throughput

Delivering 42 PETABYTESof customer data a day (42 million gigabytes)

Laser Link Highlights

Longest link distance 5400 km Number of acquisitions per day 266,141 Longest link duration Weeks

Max. data rate 200Gbps

Fastest acquisition 12 seconds

Min. altitude link 122km <<< maintained while de-orbiting a satellite! ©

Source: PCMag, https://uk.pcmag.com/networking/150673/starlinks-laser-system-is-beaming-42-million-gb-of-data-per-day

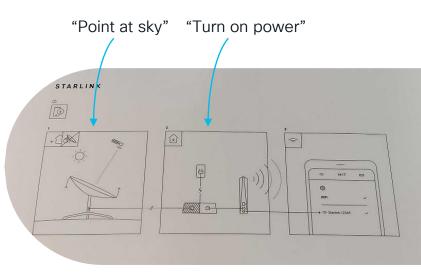
Real World Deployments

Dave Zacks Dave's Deployment & SD-WAN Demo

Oli Boehmer Residential Experience

lan Procyk Starlink in Construction, Disaster Response

Oli Boehmer LEOsat Programmability



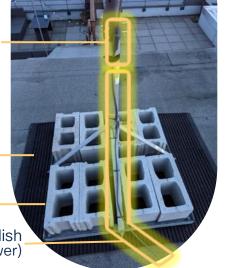
Dave's Deployment

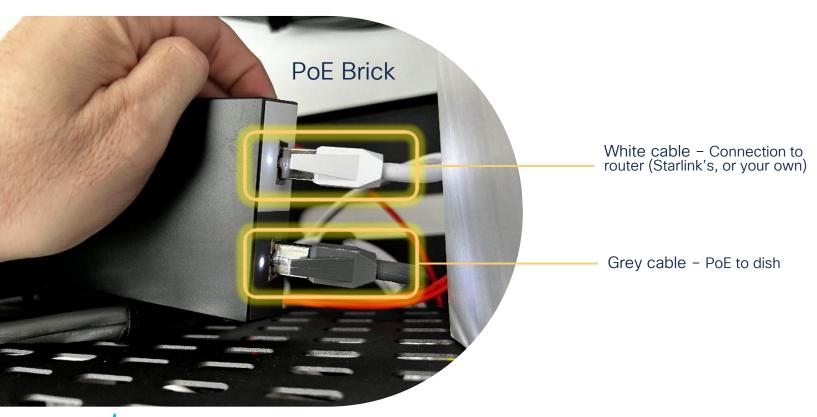
Installation Instructions

Pole adapter

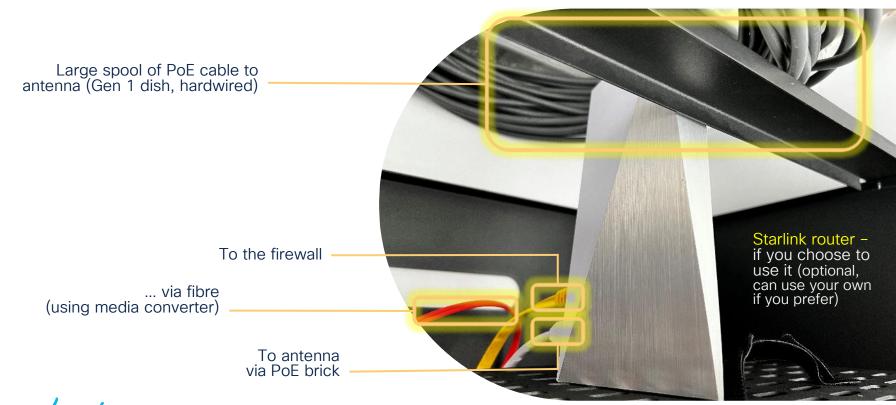
Of course, there is always more to it than that ...

Finished the initial installation as night fell in Vancouver, BC ...


3D view from roof


Thick mat (to protect roof decking)

Ballast (for wind)


PoE cable to dish (100W+ power)

Powering my home office

I have Gigabit via cable, with Starlink as my secondary / failover / load-share link. But I can make it my primary uplink anytime I want to play. ©

And I use Starlink as my primary uplink for many of my security camera feeds ...

Typical max speeds I would see ...

PING ms

39

Average speeds

Connections
Multi
The University of British
Columbia
Vancouver, BC
Change Server
SpaceX Starlink

HOW DOES THE CUSTOMER SERVICE OF

(†) UPLOAD Mbps

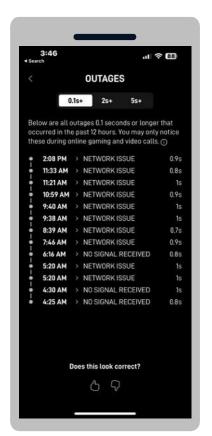
15.18

EXPECTATIONS?

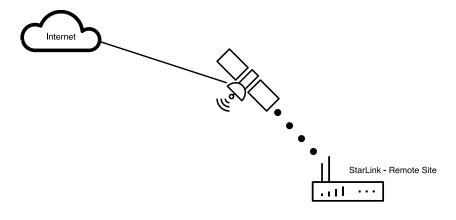
1 2 3 4 5

SPACEX STARLINK COMPARE WITH YOUR

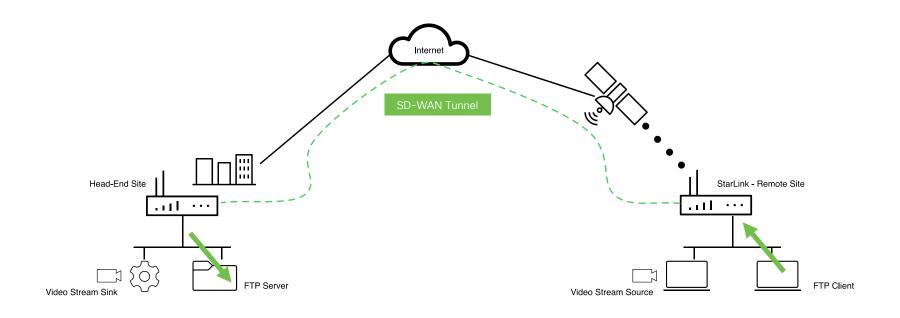
DOWNLOAD Mbps


103.26

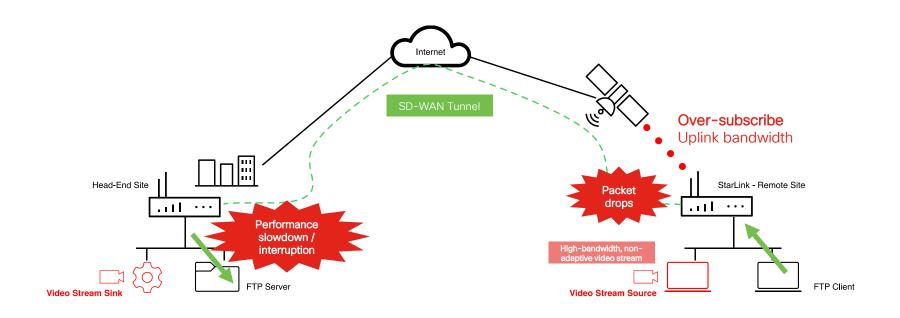
Starlink App



SD-WAN and Starlink

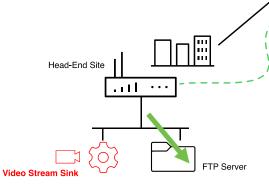


Starlink - SD-WAN Demo



Starlink - SD-WAN Demo

Starlink - SD-WAN Demo



Starlink - SD-WAN Demo

How FEC works in Cisco SD-WAN

Useful for occasional minor dropouts (example: satellite transitions, temporary interruptions, ...

For every 4 data packets, transmit an extra **parity packet**Any single packet loss within the group of four packets can be re-built dynamically from the other packets + parity data

Enable Adaptive FEC
(Forward Error Correction)
on SD-WAN Tunnel, for file transfer

fec-rx-data-pkts

Branch1_Starlink#

SD-WAN Tunne

Internet

Over-subscribe
Uplink bandwidth

StarLink - Remote Site

Branch1_Starlink#show sdwan tunnel statistics fec | s 192.168.166.88 170.203.216.152

fec-rx-parity-pkts 339128
fec-tx-data-pkts 328859
fec-tx-parity-pkts 82213
fec-reconstruct-pkts 16523
fec-capable true fec-dynamic false

tunnel stats ipsec 192.168.166.88 170.203.216.152 12386 6196

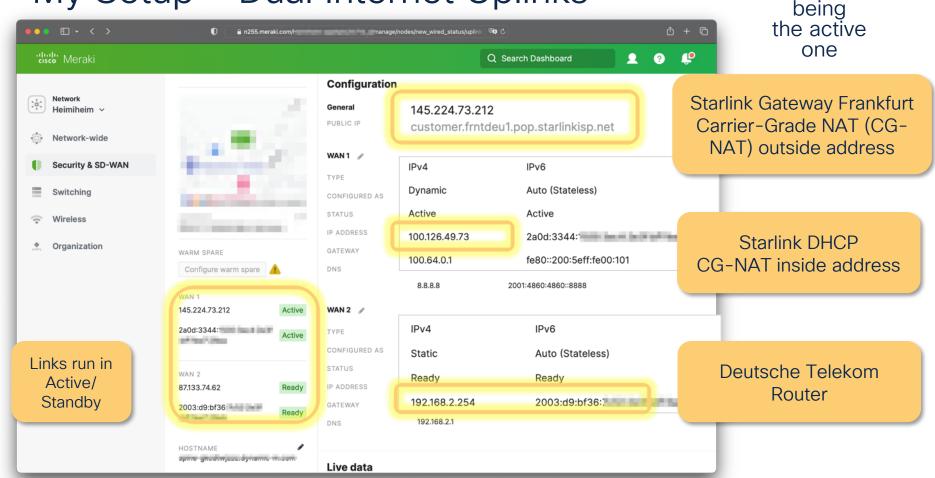
1354317

Can be "on-always", or operate as FEC-Adaptive which only kicks in on detecting packet loss

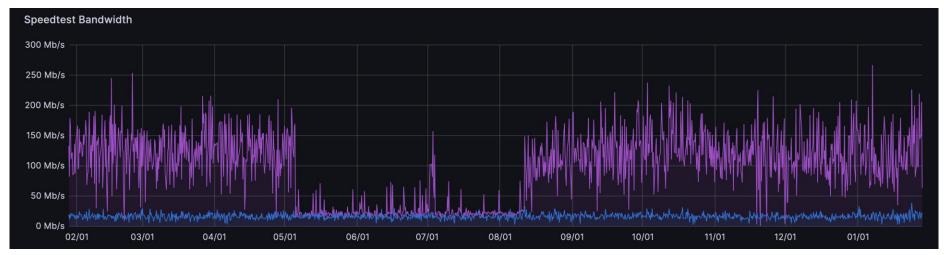
Starlink - SD-WAN Demo **How Packet Duplication** works in Cisco SD-WAN Designate all, or a portion, of traffic to duplicate **Useful for longer-term possible** Send copies of matching packets (with sequence numbers) issues, to protect the most over two separate tunnels important traffic flows Internet Receiving SD-WAN router forwards whichever packet arrives first, drops duplicate if it arrives later Over-subscribe Uplink bandwidth Head-End Site StarLink - Remote Site **Enable Packet Duplication** on second SD-WAN Tunnel, for file transfer FTP Client FTP Server Video Stream Source Video Stream Sin Demo Operates as "on-always", but can be of operation! © selective about what traffic is duplicated (via policy)

76

Oli's Deployment



Improving Connectivity (and Life!) in Rural Germany



My Setup - Dual Internet Uplinks

With Starlink

Throughput over the past ~12 months

min ^	max	avg	current
1.27 Mb/s	266 Mb/s	97.1 Mb/s	63.4 Mb/s
3.17 Mb/s	38.3 Mb/s	16.5 Mb/s	18.9 Mb/s

Excellent Latency (as expected)

LEO (green) shows more constant RTT vs. terrestrial link (orange)

Construction & Disaster Response Use Cases

In the Media...

TECH

CBS 8 San Diego using Starlink technology to steady TV live shots

CBS 8 San Diego deployed SpaceX Starlink technology to provide seamless connectivity to CBS 8 Studios for transfers, communication, and live television transmission.

Starlink wedge terminal feeds a Dejero link bonding Gateway

https://www.cbs8.com/article/tech/cbs-8-san-diego-using-starlink-to-steady-tv-live-shots/509-49844a2e-4ac2-4de3-be1c-8330449122a9

Trans Mountain Expansion Project

Gouvernement

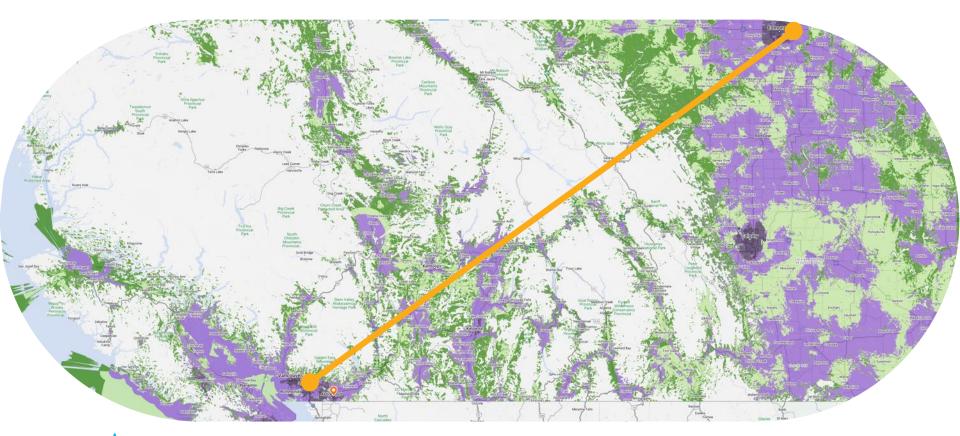
du Canada

Building the Trans Mountain Expansion Project

Pipeline construction is now underway, with <u>Trans Mountain Corporation (TMC)</u> anticipating that construction will be completed by late 2023.

The Trans Mountain Corporation (TMC) has hired over 13,500 people to work on sites in Alberta and British Columbia.

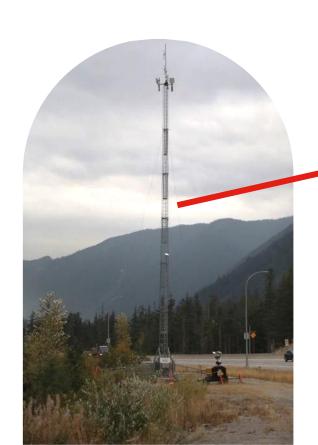
With a focus on Indigenous, local and regional workers, the project is providing good jobs for heavy equipment operators, trades people, environment and safety specialists, engineers and construction managers.


But How Do You Deal With The Canadian

Rockies?

Cellular Coverage Along The Route

Portable Towers with Starlink Keep Crews Connected

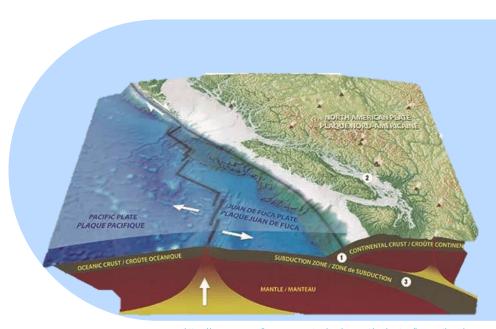

Fixed / Portable Communications Infrastructure

What's On The Tower?

- 1. Starlink backhaul
- 2. VHF Repeater
- 3. 2.4 & 5GHz Wi-Fi (Sectorized)

Radio Over LEOsat ...

System	CONTENTIONAL	CONVENTIONAL IP	SINGLE-SITE TRUNKING	MULTI-SITE TRUNKING	ENHANCED MULTI-SITE TRUNKING
Туре	CONVENTIONAL	NETWORK	NXDN: Type-D TRKG	NXDN: Type-C TRKG P25: PHASE 1/2 TRKG	NXDN: Gen2 P25: PHASE 2 TRKG
	(((•)))	(((())) ((()))	(((•)))	(((0))) (((0))) (P Network	(((())) (((())) (P Network
No. of Radios					
Trunking	N/A	N/A	DECENTRALIZED CONTROL	CENTRALIZED CONTROL	CENTRALIZED CONTROL WITH SERVER BASED ARCHITECTURE
No. of Sites	SINGLE	UP TO 16 (unicast) UP TO 48 (multicast)	SINGLE	UP TO 48	UP TO 1000
Advantages	COST & CAPACITY BASELINE	COST EFFECTIVE COVERAGE	COST EFFECTIVE CAPACITY	CAPACITY AND COVERAGE	CAPACITY, COVERAGE AND CONTROL



LEOsat in Disaster Response

In 1964 all we lost was telephone...

https://vancouver.ca/home-property-development/understanding-earthquakes.aspx

9.2 Magnitude 1964 Alaska Quake

https://upload.wikimedia.org/wikipedia/commons/4/4e/AlaskaQuake-FourthAve.jpg

Problem Statement

Reliable communications (voice/data) is the backbone of disaster response

Layer 1 issues will prevent fast restoration of many wireline services

Cellular communications impacted due to power and uplink fragility.

Over the last 10 years agencies have become dependent on cloud hosted services (mapping, e-mail, documentation, video-conferencing etc).

VSAT to the rescue?

VSAT to the rescue?

https://www.dishpointer.com

How LEOsats Benefit Public Safety

- Trivial to setup and operate
- Highly portable
- Able to work in mountainous terrain vs geo-stationary

Concerns

- Ease of access = lots of people = bandwidth contention
- Will my packets land outside the affected area?

https://www.telesat.com/wp-content/uploads/2020/07/teleport-calgary.jpg

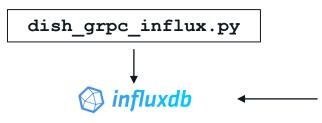
LEOsat Programmability

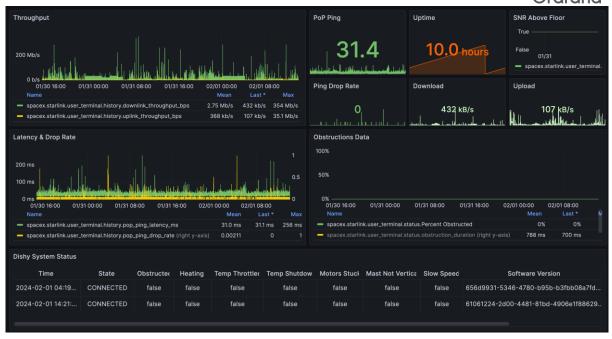
Telemetry and Starlink

There is an undocumented API, which is used by Starlink's mobile app

- Uses gRPC
 - Is not trivial to learn
 - Output is a binary and is not human readable

What if I don't want to learn how to interact with gRPC endpoints?


- gRPCurl << curl but for gRPC!
 - Output can be as simple as <u>plaintext in a JSON array</u>
 - grpcurl -plaintext -d '{"getStatus":{}}' \
 192.168.100.1:9200 SpaceX.API.Device.Device/Handle


Great example project: Sparky8512 Github - Starlink GRPC Tools

Sample Grafana Dashboard

Script: https://github.com/sparky8512/starlink-grpc-tools/blob/main/dish-grpc-influx.py

Dashboard: https://github.com/sponsianus/dishy_grafana/blob/main/grafana-

provisioning/dashboards/starlink/starlink.json

"It's not real unless I see it"

- most humans

How can I try this out?

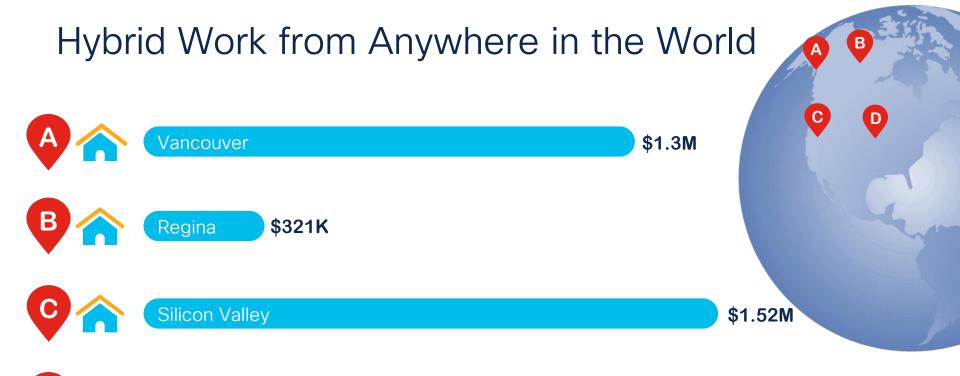
- 1. Have a Starlink unit
- 2. Try these projects out
- <u>aaburger85/node-red_starlink</u>
 - What I demo'd
- Sparky8512/Starlink-GRPC-tools
 - Comprehensive functions

LEOsat Future & Opportunities

LEOsats will Democratize Connectivity

LEOsats will enable mass-scale Digital Nomadism ...

Work from a low-cost location, with better quality of life



Photos by Brina Blum, Airfocus and Persnickety Prints on Unsplash

\$235K

Starlink and Microsoft Azure Bring You Azure Space

Microsoft teams up with SpaceX to launch Azure Space to bring cloud computing into the final frontier

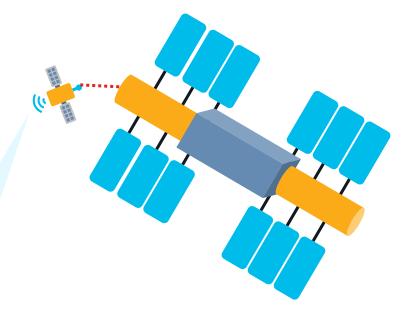
By Chelsea Gohd October 21, 2020

Azure Modular Data Centre

Self-contained

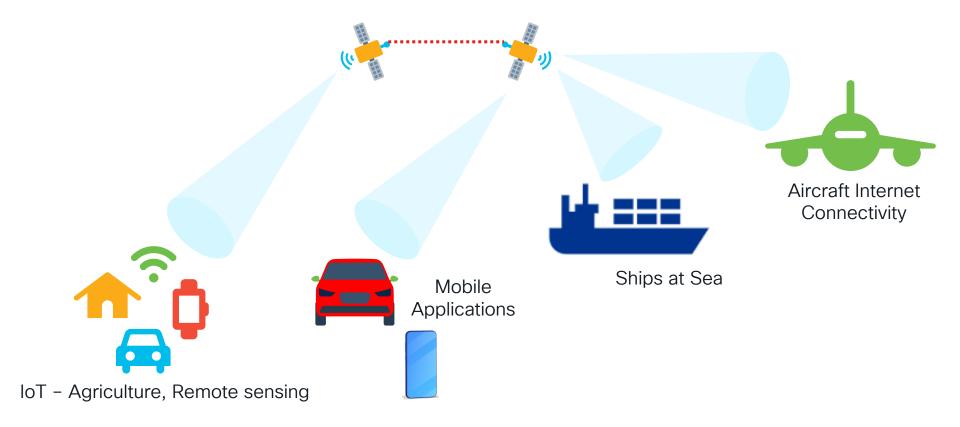
Deployable Anywhere

For remote connectivity or expansion of existing



Edge Computing in Space

https://www.ibm.com/cloud/blog/ibm-develops-a-unique-custom-edge-computing-solution-in-space



Possibility: Edge Compute on ISS

What goes up, doesn't necessarily have to come down...

The LEOsat Revolution - Unlimited Use Cases

The Beginning...

Space may be dark
but the future of LEO satellite.
communications is
bright

Thank you

