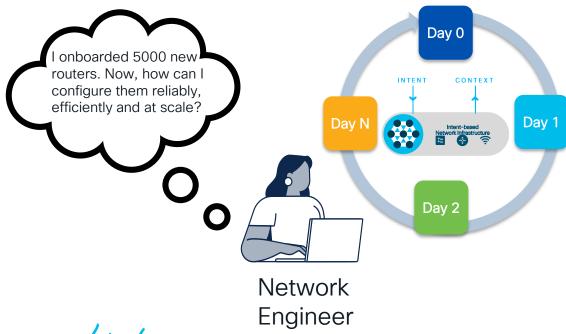
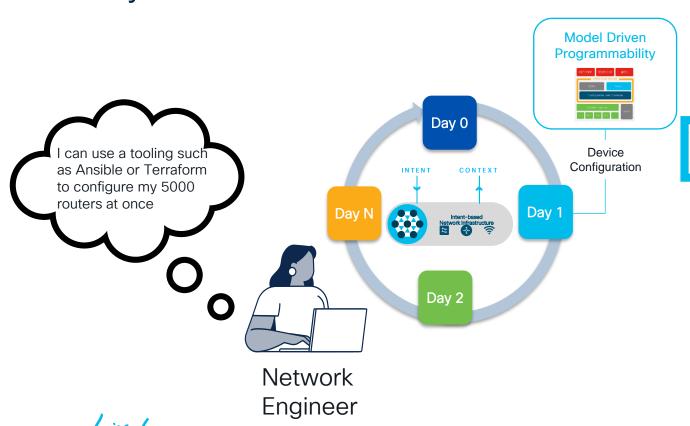

# Let's go cisco live!



# Automate Cisco IOS XE Device Configuration Using Terraform


Story DeWeese, Technical Marketing @StoryDeWeese






- Terraform
- Use Cases & Demos
- Resources

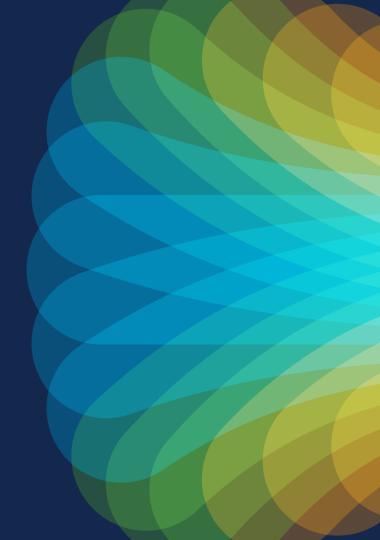
# Cisco IOS XE Programmability & Automation Lifecycle



# Cisco IOS XE Programmability & Automation Lifecycle



Network Configuration Protocol (NETCONF), RESTCONF, gNMI


YANG "native" Data Models, OpenConfig,

YANG Suite, Terraform, Ansible, pyATS tooling

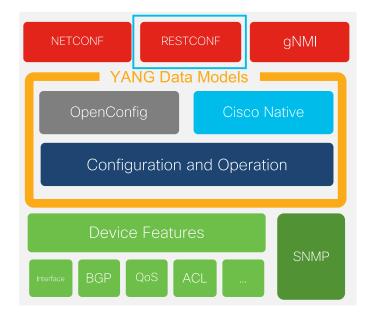
# IOS XE Programmability & Automation Lifecycle

**Network Configuration Protocol** Pre-boot Execution Provisionina **Model Driven** (NETCONF), RESTCONF, gNMI Environment (iPXE) Automation **Programmability** Device Onboarding YANG Data Models, OpenConfig, Zero Touch Provisioning and YANG Suite tooling python' Day 0 VM Automation Terraform, Ansible, pyATS Device Configuration INTENT CONTEXT Day 1 Day N gNOI cert/os/reset proto Device Optimization Guest Shell + NETCONF TIG\_MDT container + examples Day 2 YANG On-Change support **Model Driven** CentOS 8 Python 3 Software Image **Telemetry** Management qRPC Dial-Out + DNS + TLS Application Hosting with Docker Device Monitoring qNMI/NETCONF Dial-In CLI to XML

# Terraform



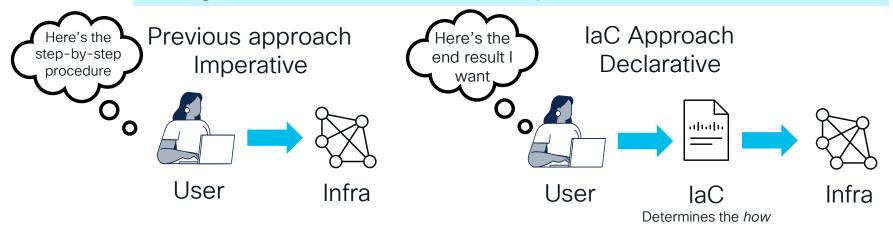



## Terraform is...



Infrastructure as Code (IaC) Software Tool providing a consistent CLI workflow to manage hundreds of cloud services. Terraform codifies cloud APIs into declarative configuration files.

- Cloud Native Tooling circa 2014 from HashiCorp
- Agentless, single binary file
- Zero server-side dependencies


#### Terraform uses the RESTCONF API





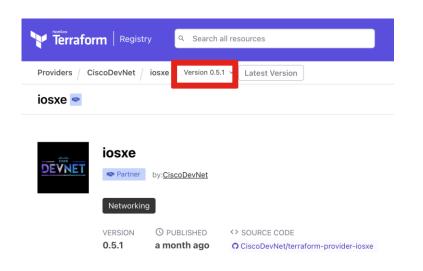
## What's IaC?

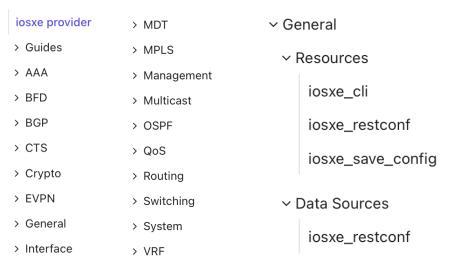
Infrastructure as Code (IaC) is the process of managing changes through code, rather than a manual process



Learn more about IaC here:

https://developer.cisco.com/iac/#:~:text=Adopting%20Infrastructure%20as%20Code%20allows,data%20center%20to%20the%20edge





## **IOS XE Terraform Provider**

#### Documentation and details about the provider are available on the Hashicorp Registry

https://registry.terraform.io/providers/CiscoDevNet/iosxe/latest

Source code is in the GitHub Repository: <a href="https://github.com/CiscoDevNet/terraform-provider-iosxe/">https://github.com/CiscoDevNet/terraform-provider-iosxe/</a>







# Terraform resource utilizing the CLI RPC

https://registry.terraform.io/providers/CiscoDevNet/iosxe/latest/docs/resources/cli

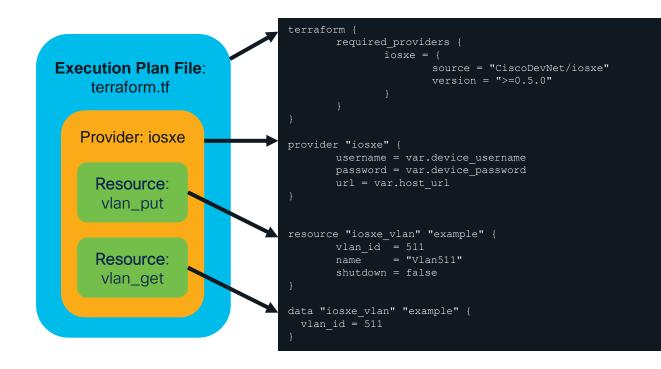
#### iosxe\_cli (Resource)

This resources is used to configure arbitrary CLI commands. This should be considered a last resort in case YANG models are not available, as it cannot read the state and therefore cannot reconcile changes.

#### **Example Usage**

```
resource "iosxe_cli" "example" {
  cli = <<-EOT
  interface Loopback123
  description configured-via-restconf-cli
  EOT
}</pre>
```




# Terraform Terminology

### Terraform uses an execution plan file with a provider and resource definitions

An **execution plan file** defines the provider and resources. It is written in HashiCorp Configuration Language (HCL), similar to JSON, and stored with a .tf extension

A **<u>provider</u>** is a plugin to make a collection of resources accessible

A <u>resource</u> (or infrastructure resource) describes one or more infrastructure objects managed by Terraform. With the IOS XE Terraform provider, resources can be considered the same as a configurable feature





## CLI to YANG

This new CLI addition to "show run | format" brings additional visibility into the YANG modelled configuration, either for NETCONF with XML or JSON with RESTCONF Easily convert CLI into YANG to re-use in tooling, scripts, and automation and orchestration systems

```
show run | format netconf-xml
show run | format restconf-json
```

```
C9300#
C9300#show run | i netconf-yang
netconf-yang
C9300#
```

Requires netconf-yang Data Model Interfaces to be enabled CLIs with corresponding native YANG and modeled in show run are returned

Use Cases & Demos



# Terraform for Model Driven Telemetry

Enable gRPC Dial-Out telemetry subscriptions for the POE and Basic Device Monitoring use cases

#### Lab Guide Steps:

- 1. Introduction
- 2. IOS XE CLI pre-req
- 3. Terraform Install & headers, device variables
- 4. Variables and config for MDT subscription
- 5. Terraform configuration for device monitoring
- 6. TF Workflow: init, plan, apply & destroy
- Validation with TF and CLI
- 8. Conclusion

https://registry.terraform.io/providers/CiscoDevNet/iosxe/latest/docs/resources/mdt\_subscription https://registry.terraform.io/providers/CiscoDevNet/iosxe/latest/docs/data-sources/mdt\_subscription https://github.com/jeremycohoe/cisco-ios-xe-panda-lab-terraform

```
iosxe mdt subscription (Resource)
This resource can manage the MDT Subscription configuration
Example Usage
 resource "iosxe_mdt_subscription" "example" {
   subscription id
                           = "yang-notif-native"
    encodina
                           = "encode-kyapb'
    source_vrf
                           = "Mgmt-vrf"
    source address
                           = "1.2.3.4"
    update policy on change = true
    filter_xpath
                           = "/ios-events-ios-xe-oper
    receivers = [
       address = "5.6.7.8"
       protocol = "grpc-tcp"
```

# DEMO – install docker container and use Terraform files to configure telemetry subscriptions

```
auto@pod27-xelab: ~
× auto@pod27-xelab: ~ (ssh)
auto@pod27-xelab:~$
auto@pod27-xelab:~$ docker images
REPOSITORY TAG
                          IMAGE ID
                                      CREATED SIZE
auto@pod27-xelab:~$
auto@pod27-xelab:~$ docker ps
CONTAINER ID IMAGE
                            COMMAND
                                        CREATED
                                                  STATUS
                                                               PORTS
                                                                           NAMES
auto@pod27-xelab:~$
auto@pod27-xelab:~$
c9300-pod27# sh run | s tel
telemetry ietf subscription 6041337
encodina encode-kvapb
filter xpath /process-cpu-ios-xe-oper:cpu-usage/cpu-utilization/five-seconds
stream yang-push
update-policy periodic 30000
receiver ip address 10.1.1.3 57500 protocol grpc-tcp
c9300-pod27#
c9300-pod27#
Oct 16 21:55:56.082: %HA_EM-6-LOG: catchall: show running-config \sqcap
```



# Use the Docker Container with the Terraform files included!

- Ensure Docker is installed
- 2. Run the following commands
  - 1. docker pull jeremycohoe/tig\_mdt
  - 2. docker run -ti -p 3000:3000 -p 57500:57500 jeremycohoe/tig\_mdt
- 3. Identify the container ID
  - 1. docker ps

```
sdeweese@SDEWEESE-M-C20V ~ % docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS

RAMES

Z88fa40fd38b jeremycohoe/tig_mdt "/start -d" 43 seconds ago Up 42 seconds 0.0.0.0:3000->3000/tcp, 0.0.0.0:57500->57500/tcp inspiring_gould
```

- Enter into the container
  - 1. docker exec -it CONTAINER ID /bin/bash
    - 1. Note: replace CONTAINER\_ID with the ID found in step 3
- 5. Navigate to the correct folder
  - 1. cd
  - 2. cd cisco-ios-xe-panda-lab-terraform
- Modify the device credentials in the header.tf file

```
provider "iosxe" {

username = "admin" ← replace with Cisco IOS XE device username

password = "XXXXXXXXX" ← replace with Cisco IOS XE device password

url = "https://your-switch-hostname-or-ip" ← replace with Cisco IOS XE device hostname or I
}
```

7. Configure the Cisco IOS XE device using Terraform



-M-C20V ~ % docker exec -it 288fa40fd38b /bin/bash

fa40fd38b:~# cd cisco-ios-xe-panda-lab-terraform

# Resources



# dCloud Programmability

https://dcloud.cisco.com

"Cisco Catalyst 9000 IOS XE Programmability & Automation Lab v1"

https://dcloud2.cisco.com/demo/catalyst-9000-ios-xe-programmability-automation-lab-v1

#### Use Cases:

#### EVPN:

Ansible with CLI deployment of EVPN solutions EVPN management over RESTCONF/YANG with

Declarative EVPN fabric management with Terraform

#### Model Driven Telemetry

Telemetry configuration with CLI and YANG Suite Collection with TIG\_MDT container and tooling

#### YANG Programmability

YANG Suite tooling and integrations to YANG API's Ansible integrations

#### Tooling and Integrations

YANG Suite

- NETCONF/RESTCONF/gNMI API
  - Ansible integration
- NETCONF/gNMI Dial-In Telemetry
- gRPC Dial-Out Telemetry receiver

#### Telemetry

- TIG stack in Docker
- Grafana dashboard for device health

#### Postman / RESTCONE

**FVPN** fabric API calls

#### Terraform/RESTCONF

Declarative EVPN fabric management

#### Ansible

EVPN solution enablement using CLI

#### Ubuntu VM Details:

Syslog receiver from all switches TFTP config backup

#### See slide

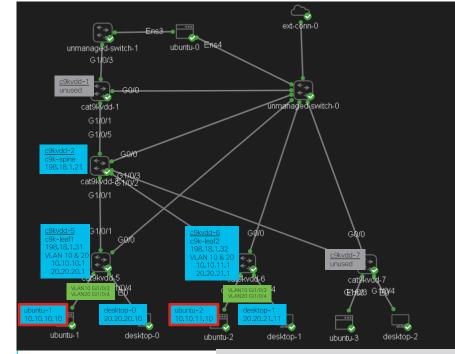
#### Windows VM Details

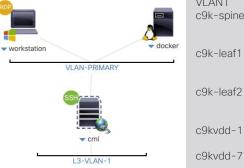
VS Code

Terraform @ folder Ansible @ folder

Chrome browser

YANG Suite. Grafana


Bash/PS/Cmd shells


SSH into C9K or Ubuntu

Postman

Workspace for EVPN

3x C9K Virtual VM's





VI AN1 c9k-spine

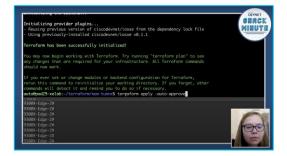
IP: 198.18.1.21

developer / C1sco12345 c9k-leaf1

IP: 198 18 1 31

developer / C1sco12345

IP: 198.18.1.32


developer / C1sco12345

c9kvdd-1 - unconfigured

c9kvdd-7 - unconfigured

## Blog and Resources: Terraform

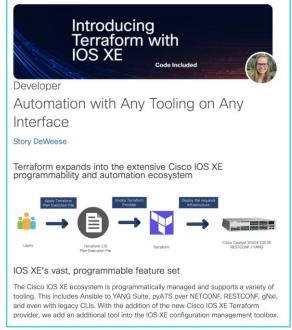
https://github.com/CiscoDevNet/terraform-provider-iosxe/ https://registry.terraform.io/search/providers?namespace=CiscoDevNet



Demo Create a Crypto Tunnel Video: https://www.youtube.com/watch?v=bPS0bhPacDw



Intro to IOS XE Terraform Provider Video: https://www.youtube.com/watch?v=GEY\_hyXimbA




Crypto IPsec Live Stream with DevRel: https://www.youtube.com/watch?v=WkgDIE0HpXs



https://eurl.io/#PtsT8eJFl





https://blogs.cisco.com/developer/terraformiosxe01



# Cisco Catalyst IOS XE Programmability Sessions at Cisco Live Europe Amsterdam 2024

Monday Feb 5

Tuesday Feb 6

Wednesday Feb 7

Thursday Feb 8

Friday Feb 9

#### 11AM DEVLIT-2083:

Automate Cisco IOS XE Device Configuration Using Terraform (Story)

1:30PM CISCOU-1024:

Model Driven Telemetry with Cisco IOS XE made Simple (Jeremy)

3:30PM DEVLIT-1965:

Automation using multiple API's in the IOS XE Device Programmability Lab (Jeremy)

Session Levels:
Beginner
Intermediate

11:30AM DEVNET-1441:

Catalyst 9000 Virtual topology simulation and configuration management solutions (Ama+Jeremy)

11:30AM DEVLIT-2787:

Explore and visualize YANG models with YANG Suite (Story)

1:30PM DEVWKS-2270:

Implementing Cisco IOS XE Model Driven Telemetry with Telegraf, InfluxDB, and Grafana (Jeremy)

1:30PM CISCOU-2013:

Explore Cisco IOS XE Automation Tooling and Use Cases (Story)

4:30PM DEVLIT-2062:

Getting Started with Secure Zero Touch Provisioning (Story) 1:30PM DEVNET-2464:

How to Become a Cisco IOS XE Terraform Expert (Story)

4:30PM CISCOU-2021:

gNMI Oh My! Automation with the gRPC microservices on IOS XE (Jeremy) 2:30PM BRKOPS-2455:

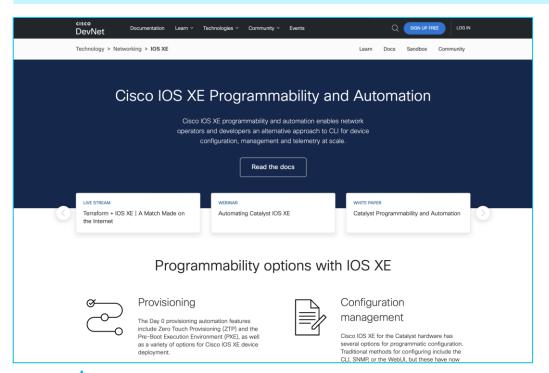
Infrastructure as Code with Cisco Catalyst 9000 Virtual (Ama+Jeremy)

2:30PM DEVNET-1468:

Programmability, Automation Model Driven Telemetry on Cisco IOS XE with a dash of YANG Suite (Story)



Learn more about sessions this week and on-demand: https://blogs.cisco.com/developer/i


osxeciscoliveemea2024



DEVLIT-2083

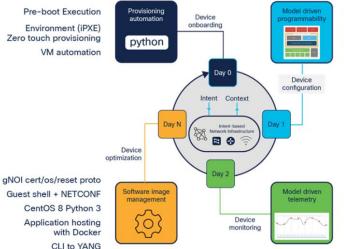
## Cisco DevNet Site

The one-stop-shop for Cisco IOS XE Programmability resources including videos, white papers, labs and more!






https://developer.cisco.com/iosxe/




## White Paper - API



Products & Services / Switches / Campus LAN Switches - Access / Cisco Catalyst 9300 Series Switches /

## Catalyst Programmability and Automation



Network Configuration Protocol (NETCONF), RESTCONF, gNMI YANG data models,

OpenConfig, and YANG Suite tooling

Terraform, Ansible, pyATS

TIG\_MDT container + examples YANG On-Change support gRPC Dial-Out + DNS + TLS gNMI/NETCONF Dial-In

 $Website: {\tt https://www.cisco.com/c/en/us/products/collateral/switches/catalyst-9300-series-switches/nb-06-catalyst-programmability-automation-wp.html} {\tt https://www.cisco.com/c/en/us/products/collateral/switches/catalyst-9300-series-switches/nb-06-catalyst-programmability-automation-wp.html} {\tt https://www.cisco.com/c/en/us/products/collateral/switches/catalyst-9300-series-switches/nb-06-catalyst-programmability-automation-wp.html} {\tt https://www.cisco.com/c/en/us/products/collateral/switches/catalyst-9300-series-switches/nb-06-catalyst-programmability-automation-wp.html} {\tt https://www.cisco.com/c/en/us/products/collateral/switches/catalyst-9300-series-switches/nb-06-catalyst-programmability-automation-wp.html} {\tt https://www.cisco.com/c/en/us/products/collateral/switches/nb-06-catalyst-programmability-automation-wp.html} {\tt https://www.cisco.com/c/en/us/products/collateral/switches/nb-06-catalyst-products/collateral/switches/nb-06-catalyst-products/collateral/switches/nb-06-catalyst-products/collateral/switc$ 

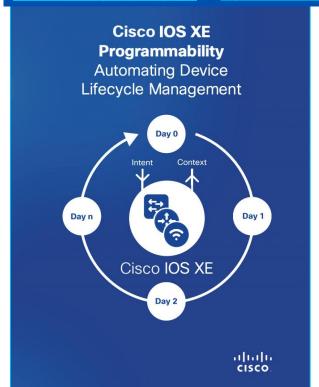
PDF: <a href="https://www.cisco.com/c/en/us/products/collateral/switches/catalyst-9300-series-switches/nb-06-catalyst-programmability-automation-wp.pdf">https://www.cisco.com/c/en/us/products/collateral/switches/catalyst-9300-series-switches/nb-06-catalyst-programmability-automation-wp.pdf</a>

MDT White Paper coming soon!










http://cs.co/apiwppdf



# Cisco IOS XE Programmability - Booksprint Book

http://cs.co/programmabilitybook OR https://www.cisco.com/c/dam/en/us/products/collateral/enterprise-networks/nb-06-ios-xe-prog-ebook-cte-en.pdf



| Table of Contents |              |                                           |               |                                     |
|-------------------|--------------|-------------------------------------------|---------------|-------------------------------------|
|                   |              | Authors                                   | Telemetry     |                                     |
|                   |              | Acknowledgments                           |               | Overview                            |
|                   |              | About this Book                           |               | Operational Data                    |
|                   | Introduction |                                           |               | Flow Data                           |
|                   |              | Why Programmability Matters               |               | Use Cases                           |
|                   |              | Lifecycle of Network Device Operations    |               | Subscription Tools                  |
|                   |              | Use Cases                                 |               | Data Collectors                     |
|                   |              | Operational Approaches                    | Python        |                                     |
|                   |              | Next Steps                                |               | Overview                            |
|                   | General Con  | cepts                                     |               | Python WebUI Sandbox                |
|                   |              | Cisco IOS XE                              |               | On-Box Python                       |
|                   |              | What is Programmability?                  |               | Advanced On-Box Python              |
|                   |              | Application Programming Interfaces (APIs) |               | Common Issues                       |
|                   |              | Programming Languages                     | Guest Shell   |                                     |
|                   |              | Structured Data                           |               | Introduction                        |
|                   |              | Data Encoding Formats                     |               | Security                            |
|                   | Day 0 Device | e Onboarding                              |               | Confuration and Updates             |
|                   |              | Introduction                              |               | Resource Allocation                 |
|                   |              | Zero-Touch Provisioning (ZTP) Scenarios   |               | Use Cases                           |
|                   |              | Basic ZTP Workow                          |               | Next Steps                          |
|                   |              | Advanced ZTP Workows                      | Application F |                                     |
|                   |              | Considerations                            |               | Introduction                        |
|                   |              | Next Steps                                |               | Cisco Application-Hosting Framework |
|                   | YANG         |                                           |               | Containers and Virtual Machines     |
|                   |              | Overview                                  |               | Use Case                            |
|                   |              | YANG Concepts                             |               | Next Steps                          |
|                   |              | YANG Native vs Open Data Models           | Controllers   |                                     |
|                   |              | YANG Data Model Highlights                |               | Introduction                        |
|                   |              | YANG Tools                                |               | Common Controllers                  |
|                   | Network Dev  |                                           |               | Why Use a Controller?               |
|                   |              | Overview                                  | DevOps and    |                                     |
|                   |              | NETCONF                                   |               | Introduction                        |
|                   |              | RESTCONF                                  |               | Continuous Integration and Delivery |
|                   |              | Comparison of NETCONF and                 |               | DevOps Tools                        |
|                   | RESTCONF     |                                           |               | Next Steps                          |
|                   |              | Next Steps                                | Appendices    |                                     |
|                   |              |                                           |               | Additional Resources                |
|                   |              |                                           |               | Acronyms                            |

# Programmability Configuration Guide

#### **Book Table of Contents**

Preface

New and Changed Information

✓ <u>Provisioning</u>

Zero-Touch Provisioning

**IPXE** 

→ Shells and Scripting

Guest Shell

Python API

EEM Python Module

✓ Model-Driven Programmability

**NETCONF Protocol** 

RESTCONF Protocol

NETCONF and RESTCONF Service-Level ACLs

gNMI Protocol

gRPC Network Operations Interface

Model Based AAA

Model-Driven Telemetry

In-Service Model Update

Application Hosting

Application Hosting

∨ OpenFlow

OpenFlow

High Availability in OpenFlow Mode



https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/prog/configuration/1713/b\_1713\_programmability\_cg.html





# Thank you



