
LTRSPG-3918

A Cisco Solution for Multivendor

Telemetry Collection

Krishnan Thirukonda - Technical Marketing

Engineer

Nicola Martino - Technical Marketing Engineer

1

Index

Learning Objectives page 3

Lab Components page 5

Equipment/Application Details page 6

Task 1: Verify Setup page 8

Task 2: Create Collection Jobs using an automation tool page19

Task 3: Create Collection Jobs using Postman page 28

Task 4: Create Collection Jobs using Crosswork UI page 46

Task 5: Editing a gNMI collection job payload page 61

Task 6: Create a Collection job for TRAP page 68

Task 7: Create a Collection job for CLI page 73

Task 8: Implementing a simple Python consumer page 77

2

Learning Objectives
Upon completion of this lab, you will be able to:

⦁ Familiarize with Crosswork Data Gateway GUI

⦁ Understand supported Crosswork Data Gateway collection protocols for

Cisco and third-party vendors

⦁ Being able to use Crosswork to create collection jobs via its GUI and

visualize collected KPIs on Grafana

⦁ Being able to use Postman to create collection jobs leveraging Crosswork

API

⦁ Understand how to generate JSON payloads to create collection jobs

⦁ Understand Crosswork Data Gateway message definition and be able to

distinguish, within Data Gateway messages, the actual device payload from

the message header

Scenario
In this lab, you will practice with Telemetry collection capabilities of Crosswork

Data Gateway. Crosswork Data Gateway is an essential component of a larger

solution called Crosswork Network Controller, where it plays a centralized collector

function for real time data collection for multi-vendor network devices. Data

collection can use different methods like MDT, gNMI, SNMP, CLI and so on. Data

collection also extends to TRAP, SYSLOG and EDT network generated events.

Collected data is then securely delivered and consumed by the Crosswork

application running on the Crosswork Network Controller solution. Collected data

can also be delivered to external customer managed messaging buses, either Kafka

or gRPC servers where, then, customer target applications can connect and

retrieve data from.

This lab will be focusing on this latest case where Crosswork Data Gateway

collects telemetry data from the network and send it to an external Kafka server. To

3

that end, students will use Crosswork API to create collection jobs on Crosswork

Data Gateway. Lab will cover same use case while leveraging Crosswork UI rather

than its API, to achieve same target (this will be limited to CLI and SNMP collection

protocols). At the end of this lab, students will also be familiar with Crosswork Data

Gateway protobuf message structure and will be able to read it throughout all its

fields.

4

About Crosswork Network Controller Solution

Crosswork Data Gateway is part of a larger Cisco solution called Crosswork

Network Controller. The solution allows customers to deploy services faster and

enables intent-based network optimization mitigating network congestion issues.

Cisco Crosswork Network Controller has been shaped by the experience of helping

multiple tier-one service provider and large enterprise customers automate

everything from simple device turn-up to sophisticated full lifecycle service

management. Cisco’s Network Controller combines intent-based network

automation to deliver critical capabilities for service orchestration and fulfilment,

network optimization, service path computation, device deployment and

management, and fault remediation.

Cisco Crosswork Network Controller offers service providers a turnkey network

automation solution that delivers increased service agility, cost efficiency, and

optimization for faster time to customer value, improved end-user service

experience and lower operating cost.

Cisco Crosswork Network Controller is a microservices-based platform. The data

collection functionality has been separated out into its own VM and into its own

software package called Cisco Crosswork Data Gateway. Cisco Crosswork Data

Gateway gathers all the information from the monitored devices and forwards it to

Crosswork for analysis and processing. Crosswork Data Gateway can also be used

to send collected data to external customer-managed messaging buses such as

Kafka or gRPC servers.

Cisco Crosswork Data Gateway offloads voluminous data collection closer to the

devices while allowing target applications to scale independently. It enables service

providers to quickly program and deploy collectors and offers central visibility into

services collecting data and the type of data being collected.

The solution also uses Cisco Network Service Orchestrator (NSO) to deploy

configuration changes or create new

5

Lab Components

Component Details

⦁ Crosswork Platform Infrastructure 4.1

⦁ Crosswork Data Gateway 3.0

⦁ Grafana 7.5.5

⦁ InfluxDB 1.8.5

⦁ NSO 5.5.2.9

⦁ VIRL 1.6

⦁ Cisco XRv 9000 rel. 7.3.2

⦁ Cisco CRS16S rel. 6.6.3

⦁ Juniper vMX 21.1R1.11

⦁ TraGenSer 5.1

⦁ Demo Portal 2.0

6

7

Disclaimer

This lab is intended to familiarize with Crosswork Network Controller and Data

Gateway. Although part of this lab, the external Kafka, Grafana, InfluxDB and other

software components, are not delivered by Cisco as part of the product. Only

target for those components is to simulate a customer automated environment

where Grafana represents a potential target application consuming data collected

by Crosswork Data Gateway.

Other Crosswork Applications leverages their internal Kafka and directly consume

collected data (with a different set of use cases), but this is not covered in this lab

Equipment/Application Details

Application Description Address Username Passwor
d

dCloud Automation
UI

Pod for troubleshooting http://198.18.133.1:8000/ N/A N/A

Crosswork UI Crosswork Portal https://198.18.134.219:30603 admin C!sco12345

Crosswork SSH Crosswork VM 198.18.134.219 cw-admin cRo55work!

CDG SSH CDG VM 198.18.134.225 dg-admin cRo55work!

Grafana UI Grafana Portal http://198.18.134.26:3001 admin admin

Demo Portal Demo Portal http://198.18.134.26:7979/index.htm
l

Not required

App VM VM for python consumers ssh cisco@198.18.134.26 -p 20022 cisco cisco

Cisco nodes
TELNET

Node-1 to Node-8 198.19.1.1-8 cisco cisco

vMX node TELNET vmx99 198.19.1.99 cisco cisco

NSO UI Web UI for NSO http://198.18.134.28:8080 admin admin

NSO CLI Command line interface for
NSO

ssh admin@198.18.134.28 -p 2024 admin Admin

NSO Host NSO Host container ssh cisco@198.18.134.28 cisco C1sco12345

8

Get Started

Labs run on Cisco dCloud infrastructure on Cisco Data Centers distributed around

the globe. Every user will have a session assigned.

There are two options to access the lab:

⦁ (Preferred) Connect from the dCloud portal on https://dcloud.cisco.com

using your CCO account. You might need to switch to a different data center

depending on which one has been assigned to you.

Under My Hub -> Sessions, select View

Then select Workstation -> Remote Desktop

⦁ Directly VPN to the dCloud lab session via Cisco AnyConnect, then use your

Windows Remote Desktop client (RDP) using following IP and credentials

⦁ IP: 198.18.133.252, username: administrator, password: C1sco12345

In both cases you will reach the remote desktop where everything you need to

9

execute the lab has been preconfigured

Task 1: Verify Setup

In this task, user will review and verify the Crosswork and Grafana setup are correct

and prepare the lab environment to execute next scenarios properly. At the same

time, user will familiarize with Crosswork GUI and its components.

As mentioned before, Data Gateway instances, devices, credentials, and provider

profiles have been added by demo-automation. This configuration must be in the

correct state before we continue with subsequent tasks.

Step 1

In your workstation browser, select the Crosswork shortcut in the browser

bookmarks bar, or browse to https://crosswork.demo.dcloud.cisco.com:30603. Enter

username admin, password C!sco12345 and click Log In (username and password

might have been already populated for you).

10

Step 2

You land on the main Crosswork Network Controller dashboard. Here we have a

consolidated view on the status of what the Crosswork solution is managing.

NOTE: What you see here in terms of dashboard content and navigation menu,

depends on the solution components being installed. What you will see in your lab

might be different as different components might have been installed. The one

required to execute this lab are included.

The Crosswork Network Controller uses Cisco Smart licensing, and a reminder is displayed at top of the

page. The user may choose to remove it, clicking the X, but it will return for the next screen. This is no

impact on functionality or our demo. There is a 90 day evaluation period with full functionality.

Step 3

In the left-hand pane, navigate to Device Management > Network Devices.

11

12

Step 4

All devices in the table must have a Reachability State and an Operational State of

green.

Step 5

You can click the “i” icon close to the device IP to get more information about each

device.

13

14

(Optional) You can do same for the Juniper vmx99 and see modelling is similar to the Cisco nodes

Step 6

In the left-hand pane, navigate to Administration > Data Gateway Management.

You might need to slide the right bar down to see the whole navigation menu list.

15

16

Step 7

The Data Gateway Operational State must be Up. You may see some degradation

occurred during last 14 days in the Outage History column. That refers to past

status only. The only important status is the current one.

Step 8

In the left-hand pane, select Topology

17

18

Step 9

This shows the current network Topology view, with Inventory of devices and

device types on the right side

Step 10

During this lab, we will collect interface statistics from different devices using

different collection protocols as shown in following picture:

19

20

Step 11

In your workstation browser, open a new tab, then select the Grafana shortcut in

the browser bookmarks bar, or browse to http://198.18.134.26:3001.

Login with username admin, password admin.

TIP: Use TAB on the keyboard to move from username to password to Login

button

Click on one of the 2 save options (it doesn’t really matter)

Then select Skip when prompted to change the password.

21

Step 12

On the left-hand pane, navigate to Dashboards -> Manage

Step 13

Then select CDG Demo

22

23

Step 14

The CDG Demo Dashboard has 4 graphs. All graphs should have no data points at

this time.

Step 15

In your workstation browser, open a new tab and select the CDG Demo Portal

shortcut in the browser bookmarks bar, or browse to http://198.18.134.26:7979.

No password is required.

24

Step 16

On the left-hand pane, select Grafana Consumers, then select Create Topics on

the right side under All Consumers. On the bottom side of the page, verify all Kafka

topics get created.

Step 17

Still under All Consumers, now select Start Consumers

25

26

Step 18

Wait 5 seconds, then click Check Consumers. All consumers should be reported in

the running state at the bottom of the page.

This concludes task 1.

27

Task 2: Create Collection Jobs using an automation tool

This task focuses on creating collection jobs leveraging Crosswork API in an

automated way using an home-made tool with a graphical front end that simulates

a potential customer automation environment. Collection jobs will collect interface

traffic counters and graphically present them on Grafana, simulating a potential

customer target application. Metrics will be same for each node but collected using

a different protocol: MDT (via a native YANG data model), SNMP and gMNI (via an

OpenConfig YANG data model). Portal will interface (transparently to the user) with

Crosswork API to create collection jobs. During next task, user will have more

visibility to the underling API call and its payload.

Step 1

On the left-hand pane in the CDG Demo Portal, select CNC API. Then click Create

on the Create MDT Collection Job. Verify the UI returns (ACCEPTED, 200) in the

bottom pane.

28

Step 2

Navigate back to Crosswork (if necessary, log in again with username admin and

password C!sco12345) and navigate to Administration > Collection Jobs to check

the collection job we just created

Step 3

The table on the left side of the window lists all system defined collection jobs and

the user defined collection job just created. Our collection job will have

application1 in the App ID column and Node-4 in the Context ID column. Select

that entry fin the Collection Job list (You may have to click on the refresh button in

the left pane to see the new collection job in the list).

29

The Job detail on the right side of the window will show the status for each device

involved in the collection job. In this case Node-4 only (if you check other

collection jobs, you will see more devices). The collection Status should be

reported as Successful.

Note that being an MDT collection job, it might take some time to move to a

Successful state as it will require NSO to create required MDT configuration on

Node-4. In this case, reload the job list using the refresh button highlighted in red

untill state changes to Successful. Note that the Collection Jobs list on the left and

the Job Details on the right won’t refresh automatically and have different refresh

buttons.

Step 4

On your workstation desktop, launch the PuTTY shortcut, and login using IP

198.19.1.4, username cisco, password cisco

30

Step 5

Click on Accept if warned

31

Step 6

Issue the command show configuration commit change last 1.

The command output should show the MDT sensor path, subscription and

destination group, as shown below. This MDT configuration was automatically

pushed down by Cisco NSO triggered by the API call.

32

Step 7

Go back to Crosswork UI and click on the “i” icon close to the Sensor Data column

entry. The Sensor data details will show the same MDT Sensor Path shown in the

above CLI output. Click Cancel to exist the window.

Step 8

Now click on the signal bars icon close to the Sensor Data column entry. Note that

it can take up 15 – 20 seconds for the collection job metrics window to appear.

This window provides information related to the total number of received

messages, latency, and collection time. Click Cancel to exit the collection job

metrics window.

33

34

Step 9

Navigate back to the Grafana UI. Default time filter is set to Last 6 hours so your

graph might appear compressed. On the right side click the time filter picker and

select Last 5 minutes. Wait a few minutes and click on the refresh-button

highlighted in red below and verify that your MDT graph is being populated. You

may need to click on refresh button a few times to see the change.

Step 10

Navigate back to the CDG Demo Portal then click Create for Create SNMP

Collection Job and Create gNMI Collection Job. Verify that you see a status

message of (ACCEPTED, 200) for both operations in the bottom pane.

NOTE: Wait for the first Collection Job to prints the expected output on the on the

bottom pane, before proceeding with the second one

35

36

Step 11

Navigate back to the Crosswork and check collection job status. You may have to

click the Refresh icon to see the new jobs. They will both have application1 in the

App ID column and Node-5 and Node-8 in the Context ID column. Verify both are

showing green on the left pane.

Step 12

In the left-hand pane, select the Node-8 collection job and the Sensor Data

column contains an SNMP OID.

Step 13

In the left-pane, again select the Node-5 job. Check that the Sensor Data column

37

contains openconfig-interefaces. This indicates a YANG data model

38

Step 14

Click on Distribution

Step 15

In the left pane, select the Node-5 job. In our lab we just have one external

destination defined. One of the Data Gateway use cases is to act as single

collection point for multiple applications. The Data Gateway can send the same

collected data to multiple external destinations at the same time and those would

be reported here. Note that your Destination Name may vary from what is shown

below. The Kafka topic will also be shown.

39

Step 16

(Optional Step). Click the signal bars icon in the Sensor Data column (you might

need to enlarge the column to see the icon). Note that it will take about 15 – 20

seconds for the collection metrics dialog to appear. This will show collection

metrics on the distribution side as opposed to those seen before on the collection

side. Click Cancel to exit.

Step 17

Navigate back to the Grafana. Wait a few minutes and click on the refresh button

on the upper right-hand side. Verify that the gNMI graph for Node-5 and the SNMP

graph for Node-8 are now being populated. You may need to click the Refresh-

dashboard icon in the upper right-hand corner a few times before you see the

change.

40

This concludes task 2.

Task 3: Create Collection Jobs using Postman

In this task, user will interact directly with Crosswork API. Target will same as

previous task: collect interface traffic counters and graphically present them on

Grafana. This time user will be using Postman rather that the CDG Portal as API

client. Objective of this task is to practice with Crosswork API and their payload.

User will review the required payload in details.

During this task, we will be using 3 API endpoints:

⦁ /v1/nodes/query (GET method)

⦁ /v1/destinations/query (GET method)

⦁ /v1/collectionjob (PUT method)

First API returns all device details. One of those is the device uuid (unique internal

identifier), required parameter for the create collection job API call

Second API returns all Crosswork destinations (either internal or external Kafka or

gRPC servers) details. One of those is the destination uuid, also required for the

41

create collection job API call

Third API is the one creating collection jobs. This API requires an articulated

payload be used. This payload has multiple sections listed below:

We will expand them in the coming example.

NOTE: dCloud labs come with all API payload already populated. Some payload

parameters are static, other are dynamically generated by the system and are

different for each session. As a result, we must update their values. To that end,

first two API calls (GET nodes and GET destinations) will automatically set those

parameters required on the third call (using Postman tests and variables).

Payload Example:

The following graphic illustrates the collection job payload and highlights the most

important parameters.

42

⦁ The device_ids and destination_id (made of long HEX value strings),

uniquely identify nodes and external destinations (Kafka or gRPC servers)

within the system. device_ids can also be a tag to have device scope

changing dynamically rather be statically set.

⦁ The sensor_data value for both sensor_input_configs and

sensor_output_configs sections MUST match.

⦁ The destination section is identified by the Kafka or gRPC server

destination_id and a context_id.

⦁ The application_context section (composed of application_id and a

context_id) uniquely identifies every single collection job within the system.

43

Postman and provided CDG library

In this task, students will use Postman. Postman is a useful client for testing web

services and makes it easy to test, develop, and automate API execution. Provided

Postman library has all API commands to execute all lab tasks.

Authentication: Crosswork uses a two-step authentication process. In the first

authentication step, the client connects to Crosswork with a username and

password and Crosswork returns a ticket which, in turn, will be used by the client

to connect back to Crosswork to retrieve a JWT (Java Web Token) time-limited

token. This will be then used by all subsequent calls as part of the call headers.

Following illustrates those related API commands in the provided library

Then we have two commands to execute the first two API described at the

beginning of this task, to retrieve nodes and destination details.

44

Finally, Postman library has four commands available to create collection jobs on

different nodes using SNMP, MDT and gNMI as collection protocols.

Step 1

On the remote workstation, launch Postman.

Clink on Dismiss if asked to upgrade

Step 2

On the left side of the Postman UI, there’s a list of API collections. Expand the one

named Crosswork-CDG3.0b and click Get Ticket. Then click Send on the right

side of the window. Make sure a ticket is generated and visible in the result section

highlighted below.

45

46

Step 3

Click on the Get Token command. Then Click on Send on the right side of the

window. Make sure a token is generated and visible in the result section here

highlighted in red.

Step 4

If you completed task 2, you should have three user defined collections jobs

running. Let's use Postman to delete them all. One by one, click the Delete

Collection Job - Node-8, Delete Collection Job - Node-5, and Delete Collection

Job - Node-4 and click Send on all commands. Verify that “requested_result”:

“ACCEPTED” is returned in the result section highlighted in red below.

47

48

Step 5

In Crosswork, navigate to Administration -> Collection Jobs.

Step 6

Verify that previous collection jobs have been removed from the job list. If the page

was already open (as in our example), content wouldn’t be automatically refreshed.

You may have to click refresh (in red below).

49

50

Step 7

Go back to Postman UI. Click on the Get Nodes command. Then click on Send on

the right side of the window. Verify output similar to the one below is generated,

and no error is returned.

Step 8

Click on the “eye” icon on the top-right of the window, then scroll down the

variable list till you see node8_uuid as sown in the picture. You should see current

value being populated with device uuid for all nodes.

51

52

Step 9

Click anywhere in the result (bottom) frame and press CTRL-F. The search text-

field appears. Type Node-8 in the field. Postman will automatically go to the

section in the result output where Node-8 is returned. Look at the uuid shown there

and compare its value with the one shown on the variable list seen before. They

must match. No need to check all nodes, just Node-8 or any other node_uuid

present in the variable list will be fine.

(Optional) User may want to review the whole command result

Step 10

Click Get Destinations. Then click Send. Verify that the output is similar to what is

shown below, with no errors returned.

53

54

Step 11

Click on the “eye” icon on the top-right of the window, then scroll down the

variable list till you see kafka_uuid as sown in the picture. You should see current

value being populated with kafka uuid.

Step 12

Click anywhere in the result (bottom) frame and press CTRL-F. The search text-

field appears. Type EXT in the field. Postman will automatically go to the section in

the result output where EXT_Kafka is returned. Look at the uuid shown there and

compare its value with the one shown on the variable list seen before. They must

match.

55

56

Step 13

Select one API command from the Add Collection Job list then select the Body

tab. This tab provides access to the API payload content. User can notice the

device_ids section is using a Postman variable rather than its actual value.

(Optional) User may want to scroll down and review the whole payload content and

all its sections details.

Step 14

Click Send. Verify “requested_result”: “ACCEPTED” is returned in the result

section here in red.

57

Step 15

Repeat previous two steps for all remaining commands in the Add Collection Job

list

58

It worth to highlight in the payload body for Add gNMI Collection Job – Node-5

and Add gNMI Collection Job - vMX, the gNMI sensor for the Cisco and Juniper

devices is exactly the same. The only difference is the selected device’s interface.

For these collection jobs, we have been using an OpenConfig data model

(openconfig-interfaces). This enables customers to use Crosswork API,

independently from the vendor. OpenConfig data model support may change based

on the platform and software version as well.

59

Step 16

Navigate back to the Crosswork UI and navigate to Administration > Collection

Jobs to check collection jobs just created. If collection job list was already open,

click the refresh button to update the list. Verify the above collection jobs have

been created. Those will have application1 in the App ID column and Node-4,

Node-5, Node-8 and vMX in the Context ID column. Verify all are reported with

status Successful on the list.

Step 17

In the left pane, select one of those collection jobs just created and click the “i”

icon close to “Config Details”

60

61

Step 18

The Collection Job Config Details opens. Expand View and select Text

Step 19

A payload similar to the one used in Postman will appear here. Review content as

needed, then click on Cancel.

62

Step 20

Navigate back to Grafana. Wait a few minutes and click the refresh button in the

upper right-hand corner of the window. Verify that all graphs are being populated.

You may have to click the refresh button a few times to see the change.

63

64

Data Gateway Messages

The Data Gateway message format follows a protobuf proto definition. The Data

Gateway proto can be compiled using multiple programming languages or

customer choice.

The Data Gateway proto is required to parse messages that the Data Gateway

posts on the Kafka or gRPC messaging bus.

Here an extract:

65

Now we will take a closer look on the actual messages in our lab.

66

Step 21

Navigate to the CDG Demo Portal, click Grafana Consumers in the left pane, and

then click one of the three Consumer Log buttons from the three available. You

may play with the number of lines to extend or reduce log output. In the following

case, we selected the gNMI Consumer Log with the default 1000 lines. You can

move the center bar up to extend the log view.

Step 22

The consumer log contains both Data Gateway messages and some notes on the

parsed data before storing counters on the InfluxDB. Consumer process adds a line

with “CDG Message” string at the beginning of each message in the log. Press

CTRL+ F and enter Message in the search field. This moves you to the first CDG

message in the log.

67

68

Message Examples

The actual message payload included in the Data Gateway message starts with the

line data_gpbkv

69

This concludes task 3.

Task 4: Create Collection Jobs using Crosswork UI

Crosswork Data Gateway provides an option to create collection jobs for external

destination directly from its GUI. Currently, this is limited to CLI or SNMP protocols

only. The objective for this task is to practice with this feature and create a

collection job for external destination using SNMP as collection protocol.

If you ran the whole task 3, you should have four user created collections jobs

running. Let’s delete them again, this time using Crosswork UI.

Step 1
Go back to the Crosswork UI and navigate to Administration > Collection Jobs.

One by one, select the entry for the jobs with application1 in the App ID column

and Node-4, Node-5, Node-8 and vMX in the Context ID column, and click the

70

delete icon.

Step 2
Click Delete on the confirmation dialog.

71

Step 3
Click on the refresh icon as you may end up with the list not updated (like in the

following snapshot) and a collection job might be pending with Deleting state.

Step 4
Now click Add Job (+).

72

73

Step 5
In the Application ID and Context ID, type application1 (no spaces) and Node-8,

respectively. Select SNMP form the Collector Type pull-down menu. Then click

Next.

Step 6
Click the Select Device Manually radio button, then select Node-8 from the

available devices. Click Next.

74

75

Step 7
Select EXT_Kafka from the Select Data Destination pull-down menu. Then click

add (+).

Step 8

Make the following entries:

⦁ Collection Cadence: leave default 60 secs.

⦁ OID: 1.3.6.1.2.1.31.1.1 (you can copy paste from here)

⦁ Operation Type: Select TABLE from the operation pull-down menu.

⦁ Topic: ifxtable (you can copy paste from here)

Then click Save

76

77

Step 9
In this exercise we want a one SNMP operation limit. So just click Next.

Step 10
Review the Confirm dialog then click on Create Collection

78

79

Step 11
Refresh the job list. Verify the created collection job is reported as Successful.

Step 12
(Optional step) Navigate back to Grafana and click on the Refresh icon. Verify

SNMP graph is being populated.

80

This concludes task 4.

81

Task 5: Editing a gNMI collection job payload

If you reviewed past collection jobs payloads, you have seen input sensors for

SNMP and MDT collection jobs are made by a simple SNMP OID or MDT sensor

path. When using gNMI, input sensor is a JSON object made of a hierarchical

sequence of name/value pairs and key filters.

In this task, we will start from a collection job payload partially populated with

dummy values for the input and output sensor configs sections

We will update it to collect “1 minute CPU counter” KPI and use it on Node-5. To

that end, we will be using Cisco-IOS-XR-wdsysmon-fd-oper YANG data model

and the Xpath highlighted below

82

83

Following rule will be used to map it to API payload:

Step 1
On the Crosswork GUI, select the two collection jobs created in previous tasks,

then click on the Delete

The Health Insight collection job (created in Task 5) will have capp-hi as App ID

Use the refresh button to verify collection jobs have been deleted

84

Step 2

Navigate back to the CDG Demo Portal then click Test Topic Messages, enter test

in the topic name field then click on Start Simple Consumer. Verify that you see a

status message of “Starting Simple Consumer for topic test Consumer” in the

bottom pane.

As opposed to previous used consumers, this one doesn’t perform any data

parsing nor stores any data in the InfluxDB. It’s simply a Kafka consumer script

whom target is just to write on a log file Crosswork Data Gateway messages from

topic test

85

Step 3
On the CDG Portal, click on Check Simple Consumer. Verify Simple consumer for

topic test is running as shown below.

Step 4
Navigate back to Postman client, expand the Crosswork-CDG CL22 HOL folder,

then select Add gNMI Collection Job - Task6 then select Body. Scroll down till the

end. We left the whole sensor path string where you can copy/paste from, to

facilitate this exercise. Remember to remove that line before clicking Send

86

Step 5
Update the gnmi_sensor section in the API payload, as follows:

This needs to be done on “both” sensor_input_configs and

sensor_output_configs sections (collapsed in following picture to fit the Postman

87

pane)

Name/values pairs in the tree are separated by a comma (make sure last one

doesn’t have it)

JSON format errors will be highlighted in red, both online and on the right bar

88

Step 6
Once all looks good and no errors are highlighted, click on the Send. Verify that

requested_result: ACCEPTED is returned in the result section as highlighted

below.

Step 7

In Crosswork, navigate to Administration -> Collection Jobs. Verify the collection

job gets created and is reported in the collection job list with Successful State

89

90

Step 8
Go back on the CDG Portal, enter test in the topic name field on the second

textfield as shown in the picture, leave the default 100 lines, then click on Topic

Output. Slide the centre bar up to enlarge the bottom pane. Verify the one minute

CPU counter is present in the gNMI update section as shown below.

This concludes task 5.

91

Task 6: Create a Collection job for TRAP

Although not strictly related to telemetry collection, in this task we will use

Crosswork Data Gateway to collect device TRAP and send them to the External

Kafka server. Crosswork Data Gateway capabilities extend the telemetry area and

can also be used as common collector for collecting and forwarding device events

(SYSLOG or TRAP).

Step 1

On Crosswork GUI, select the collection Job created in previous task, then click

Delete

Use the refresh button to verify collection jobs have been deleted. In this task we

will reusing topic test, so we need to make sure previous job stops sending

messages to same.

92

Step 2
On Postman client select Add TRAP Collection Job – Task7, select Body and click

Send. Verify that requested_result: ACCEPTED is returned in the result section as

highlighted below.

You may notice the new sensor_data in the API call payload

Where the trap_sensor has “*” and cadence is set to 0. Crosswork Data Gateway

has filter options for TRAP like a given TRAP OID or a complete MIB. In this case,

setting “*” means any TRAP and no filter at all. Cadence is set to 0 as there is no

timer for TRAP. Once a device sends a TRAP, Crosswork Data Gateway will

93

process it.

94

Step 3

In Crosswork, navigate to Administration -> Collection Jobs. Verify the TRAP

collection job gets created and is reported in the collection job list

Collection Job will stay in Degraded Status and Job Details will report collection in

Unknown state for Node-5. This is expected as no TRAP arrived yet. We need to

generate a TRAP on Node-5 to see collection job changing its status.

Step 4

On your workstation desktop, launch the PuTTY shortcut, and login using IP

198.19.1.5, username cisco, password cisco

95

Step 5

Click on Accept if warned

96

Step 6

Issue the command sequence as follow:

conf t

(config)# interface gigabitEthernet 0/0/0/0

(config-if)# shut

(config-if)# commit

97

Step 7
On Crosswork GUI, click on the refresh button highlighted in red. Verify the TRAP

collection job now is in status Successful and Job details has collection for

Node-5 in Successful state as well

Step 8
Go back on the CDG Portal, enter test in the topic name field, leave the default 100

lines then click on Topic Output. Slide the centre bar up to enlarge the bottom

pane. Verify the gigabitEthernet interface down TRAP is visualised as shown here.

98

This concludes task 6.

Task 7: Create a Collection job for CLI

With task #7, you have been completing the most valuable tasks from this lab. If

time permits and you are eager to learn more, feel free to move on with Task #8

and Task #9

There are multiple ways of collecting telemetry data. With previous tasks, we have

seen how to accomplish with this requirement leveraging widely used protocols

such as SNMP, MDT (Cisco only) and gNMI. There might be cases where a given

counter is not available with those protocols or the amount of traffic generated by

the device to return a single KPI would be excessive if compared with the use case

to be implemented. Or simply customer is interested on another use cases like

retrieving device inventory data by CLI.

Crosswork Data Gateway collection jobs can also be used to run “show” CLI

commands. API payload already include a predefined show command. Feel free to

change it as you like as it won’t impact task execution (just remember to update

both input and output sensor sections).

Unfortunately, consumer log won’t be completely visible on the Demo Portal as

special characters in Data Gateway message prevents displaying the message

payload. We will connect directly to the VM where consumers are running and

99

check logs manually

Step 1
On Postman client select Add CLI Collection Job , select Body, eventually change

show command then click on Send. Verify that requested_result: ACCEPTED is

returned in the result section as highlighted below.

100

Step 2
On Crosswork GUI, click on the refresh button highlighted. Verify the CLI collection

job now is in status Successful and Job details has collection for Node-5 in

Successful state as well

Step 3

On your workstation desktop, launch the PuTTY shortcut, and login using IP

198.18.134.26, and port 20022 (not the default 22).

101

Step 4

Click on Accept if warned

102

Use username cisco, password cisco to login

103

Step 5

Enlarge the Putty window then issue following command:

tail -100 /tmp/simple_consumer_test.log

TIP: press tab after tail -f /tmp/si to autocomplete log filename

Device session, with both executed command and the device reply, will be show in

the “string_value” parameter (we will analyse further in next task)

(NOTE: If you check with the CDG Demo Portal, using the test consumer, message

payload will be shown empty)

This concludes task 7.

104

Task 8: Implementing a simple consumer in Python

In this task we will see how to use Python to read Cisco Data Gateway messages

from the Kafka server and extract message payload. We will leverage the protoc

message definition shown on Task #3.

This task requires basic knowledge of vi editor and Python

Step 1

On the CDG Portal click Kill All Simple Consumers. Verify that you see a status

message of “Killed 1 process” in the bottom pane.

105

Step 2

On Putty terminal (you open on previous task), create a new python file using the vi

editor (ex: vi test.py). You can create it on the cisco home folder or under /tmp

Copy/paste from below (use mouse right-click to paste on the terminal):

import sys
import json
sys.path.append('/home/cisco/CDG/python/dg_proto_200/')
import telemetry_pb2
from kafka import KafkaConsumer
import xml.etree.ElementTree as ET

consumer = KafkaConsumer(group_id='simple',bootstrap_servers='198.18.134.26:9092',
auto_offset_reset='latest')
consumer.subscribe('test')

for message in consumer:
 cdg_message=message.value
 envelope = telemetry_pb2.Telemetry()
 envelope.ParseFromString(cdg_message)
 print(envelope)

and save

106

Step 3

Execute the python script (ex: python test.py). Script output will show same device

session as shown on previous task. It will show Cisco Data gateway message

header and the actual device session message in the string_value filed (it may take

up to 60 secs to update)

Step 4

Now we want to remove the Cisco Data gateway message header and extract the

session content only.

From the proto message definition on Task3 you may remember the Telemetry

message made of repeated TelemetryFiled “data_gpbkv”. It will be basically an

array of device messages

107

108

Step 5

We need to extract data_gpbkv (just first one) and, from there, only print the

string_value parameter seen before.

Terminate script execution with Ctrl-C.

Open the python script again and:

⦁ Comment line

print(envelope)

⦁ Add lines:

device_message=envelope.data_gpbkv[0]

print(device_message.string_value)

Save it

109

Step 6
Execute same python script again (it may take up to 60 secs to update). This time

script output will only show the session with Cisco data Gateway in XML format,

made of two elements you can recognize by the XML tag

<iosRequest> and <iosResult>

Step 7
Having time, you can further play with the output.

As said before, this task target was to show how to “consume” CDG messages

from the Kafka server and extract message payload using python. All steps run

here applies to all protocols (gNMI, SNMP, MDT, etc). Further output parsing would

then depend on the specific protocol being used.

Following two steps apply to CLI only and can be used to extract the <iosResult>

only (it will be the second element in the XML tree hierarchy).

Terminate script execution with Ctrl-C.

Open the python script again and:

Comment line

print(device_message.string_value)

110

Add lines:

root = ET.fromstring(device_message.string_value)

print(root[1].text)

Save it

111

Step 8
Execute same python script again. This time script output will show the device reply

only (<iosResult>)

This concludes task 8.

112

