

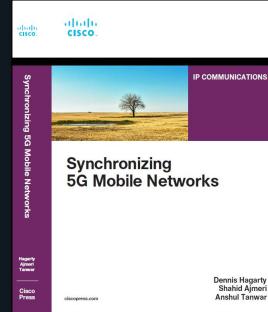
Synchronizing 5G Mobile Networks

Timing Assurance

Dennis Hagarty - Principal Engineer

Provider Connectivity

[linkedin.com/in/dennis-hagarty/](https://www.linkedin.com/in/dennis-hagarty/)


BRKSPG-3050

Agenda

cisco *Live!*

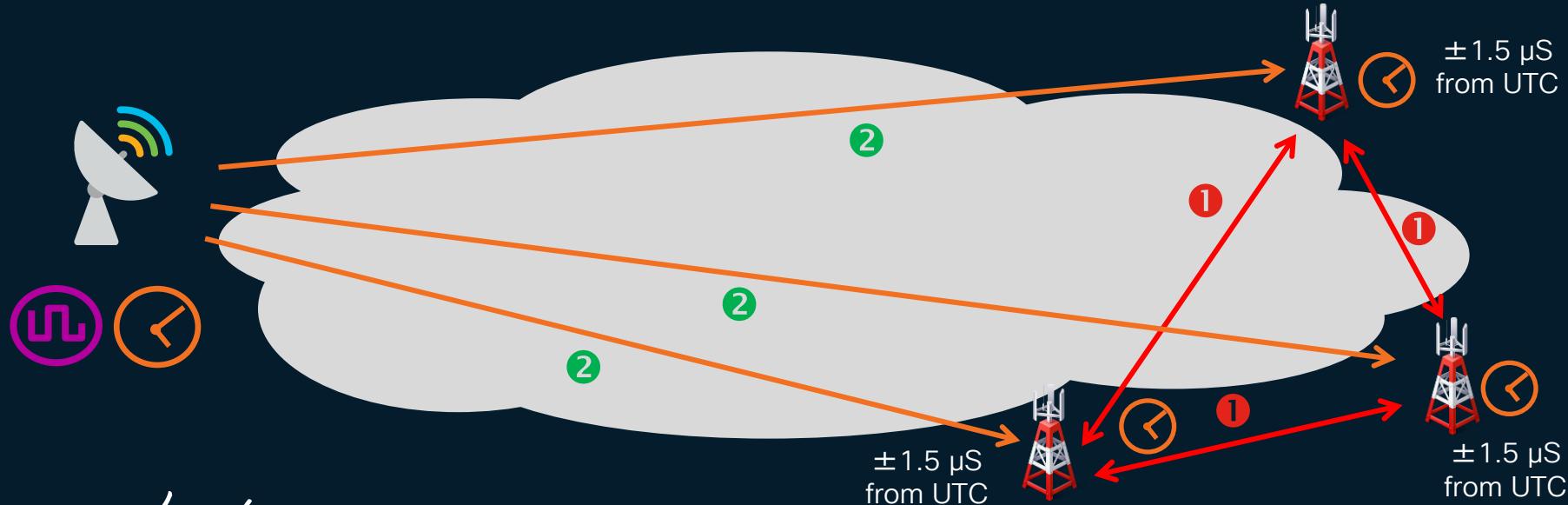
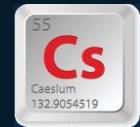
- Introduction
- Satellite-based PRTC & T-GM
- National Clocks
- New features for timing assurance
- Optics Testing Examples
- ITU-T Standards Update
- Conclusion and further info

Key Abbreviations

APTS	Assisted Partial Timing Support	NIS2	Network & Information Security 2 (directive)
(a)BMCA	(alternate) Best Master Clock Algorithm	ONMSA	Open Service Navigation Message Authent.
(a)BTCA	(alternate) Best TimeTransmitter Clock Algor.	(e) PRC	(enhanced) Primary Reference Clock (freq.)
C/A	Course/Acquisition – original GPS L1 signal	(e)PRTC	(enhanced) Primary Reference Time Clock
CEM	Circuit Emulation (TDM over packet)	PTP	Precision Time Protocol (1588)
CNI	Critical National Infrastructure	PTS	Partial Timing Support (PTP unaware)
C/N ₀	Carrier-to-Noise Density Ratio	SDH	Synchronous Digital Heirarchy
cTE	Constant Time Error	SP	(communications) Service Provider
dTE	Dynamic Time Error	SyncE	Synchronous Ethernet
EEC	Ethernet Equipment Clock (SyncE node)	T-BC	Telecom Boundary Clock (ITU-T)
eEEC	Enhanced EEC (with enhanced TLV)	T-GM	Telecom Grand Master (ITU-T)
ESMC	Ethernet Synchronization Message Channel	T-TC	Telecom Transparent Clock (ITU-T)
eSyncE	Enhanced SyncE	T-TSC	Telecom Time Slave Synchronous Clock (ITU-T)
FDD	Frequency Domain Duplex (radio)	TDM	Time Division Multiplexing
FTS	Full (on-path) Timing Support (PTP aware)	TDEV	Time Deviation
GNSS	Global Navigation Satellite System	TE	Time Error
MTIE	Maximum Time Interval Error	UTC	Universal Coordinated Time

Introduction

5G Changed Sync in MAJOR way



- Previous mobile networks used only **frequency** synchronization
 - Initially delivered using TDM and then later using SyncE/Ethernet and/or PTP
 - Circuit Emulation widely deployed in many industries (frequency timed with SyncE)
- 5G required **phase/time** Now many industries & use-cases use phase/time
- Combination of distributed GNSS & PTP+SyncE through transport network
 - Transport N/W may need mitigation to accurately carry PTP (full on-path support)
 - Critical National Infrastructure (CNI) relying on GNSS now a real problem
- Network-based time transfer: Precision Time Protocol (PTP)/IEEE 1588
 - Accuracy of 10's of nanoseconds (10^{-9}) Time Error over 10-15 hops
 - Combined with SyncE to carry frequency (for best-case performance)
 - Solution uses specialized hardware with careful network design

Phase Synchronization for 5G

Common
Reference
Time

- ① Requirement (TDD, 5G radio co-ordination): 3 μ s between base stations
- ② Implementation: $\pm 1.5 \mu$ s from a common reference time (normally UTC time)

Issues covered/not covered today...

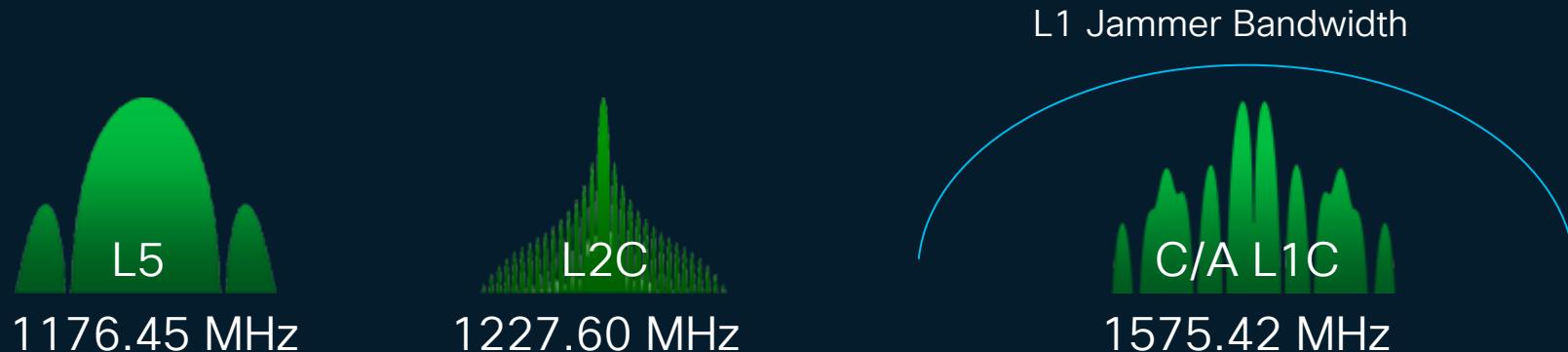
- Skipping the fundamentals of timing + sync with PTP and SyncE
- Sources of frequency & time; alternate sources; terrestrial time distribution
- New features being adopted
 - GNSS dual-band on Cisco 8000:
 - Improved CLI output to support dual-band receivers
 - Antijamming and anti-spoofing for PRTC-B receivers
 - White paper on PRTC-A versus PRTC-B
 - Passive Port Monitoring feature
 - Advanced Port Monitoring feature (G.8275.1 Annex G)
 - PTP and SyncE alignment feature
 - PTP performance statistics feature (G.8275 Annex F)

Satellite-based PRTC & T-GM

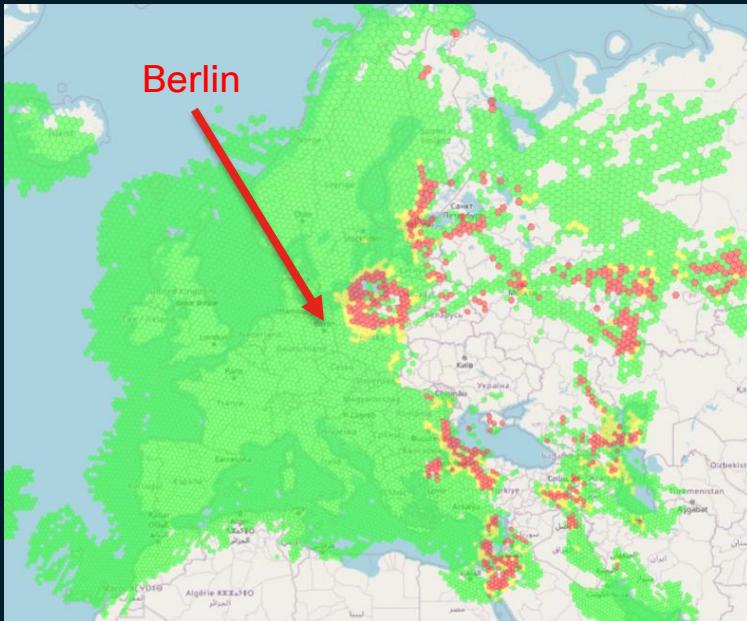
Deploying Satellite Systems

- Many GNSS transmit in several separate bands: for GPS, that's L1, L2, L5
 - L1 is the default/legacy band for GPS, other bands were military only
 - Later generations of satellites have introduced civilian signals in L2 and then L5
 - L2C civilian signal is pre-operational on 25 satellites in GPS (July 2023)
 - L5 (aviation band) is a more robust, higher power and better performing signal
 - Introducing new L1C signal to supplement the original L1 C/A (only 6 sats today)

1176.45 MHz


1227.60 MHz

1575.42 MHz

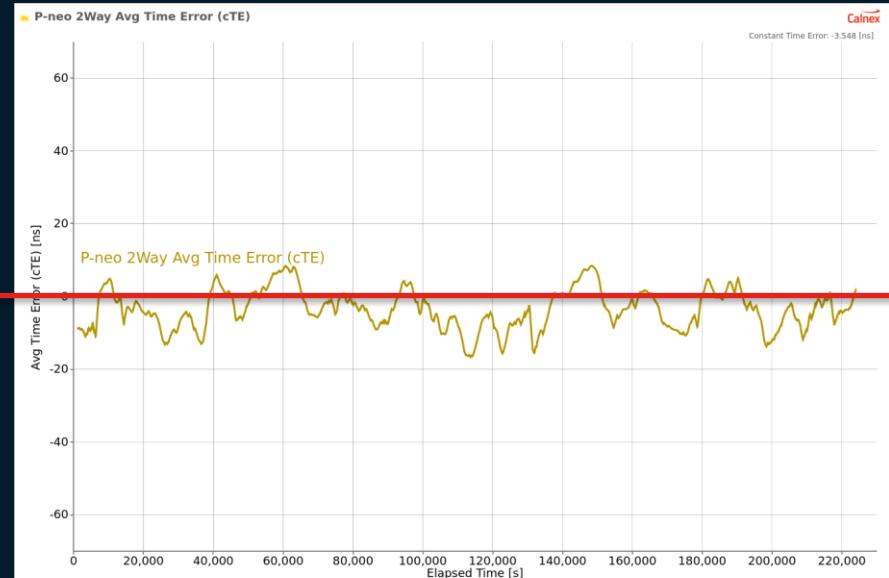

Deploying Satellite Systems

- Multiple bands can improve resistance to jamming/spoofing
- Spoofing multiple bands is hard, typically they spoof 1 band, jam others
- Adopting technology to improve resiliency and trust (authentication)
- GNSS receivers used for timing now adopting dual-band (Cisco 8K)

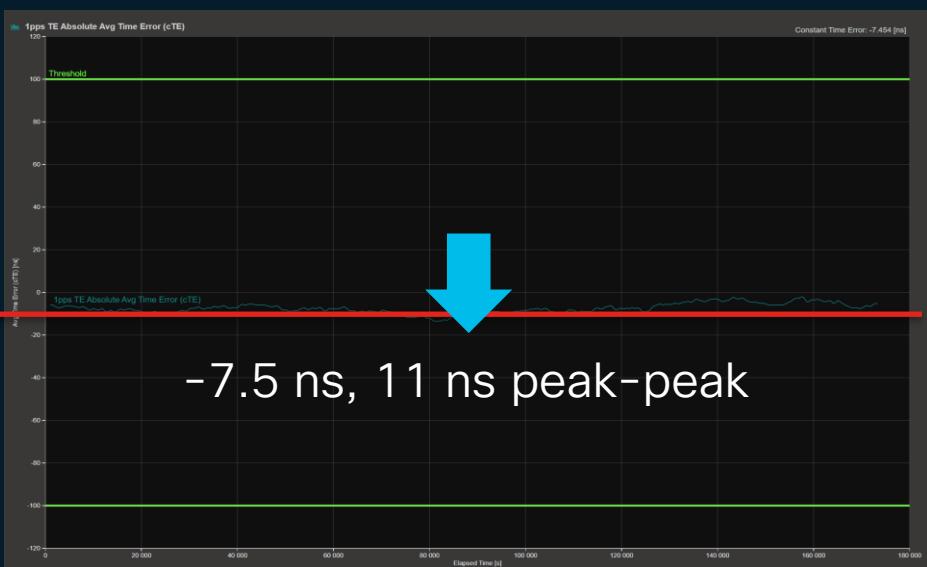
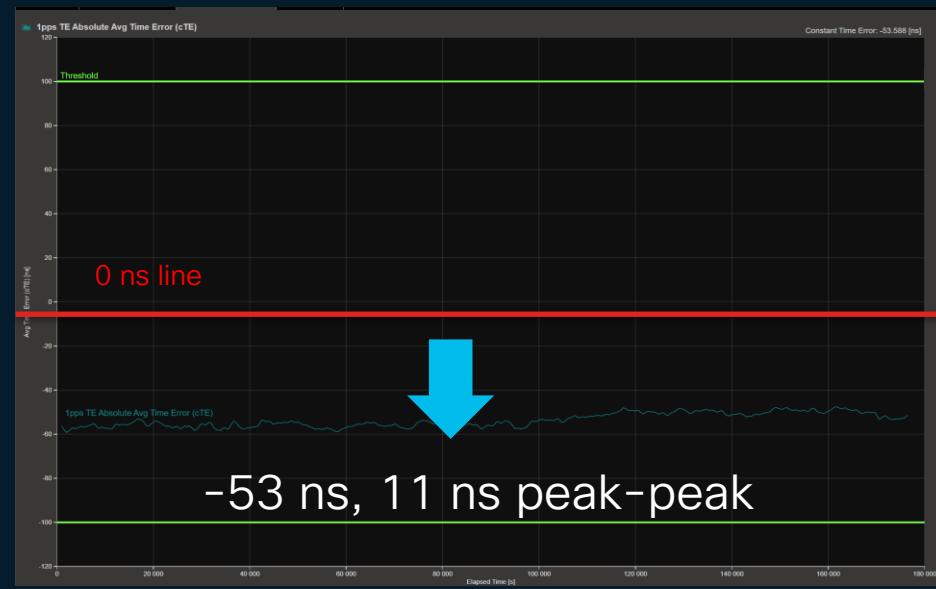
“Baltic Jammer” Update

- Jamming seems to come from Russian enclave of Kaliningrad

- Red spots show inaccurate fix in aircraft at altitude
- Covers much of the Baltic and also affects GNSS in half of Poland, Finland
- Impact on ground services not yet severe
- New: “circle spoofing” now applied to aircraft
- Need to plan for post-GNSS world
- Image source: gpsjam.org for Dec 1st


Deploying Satellite Systems

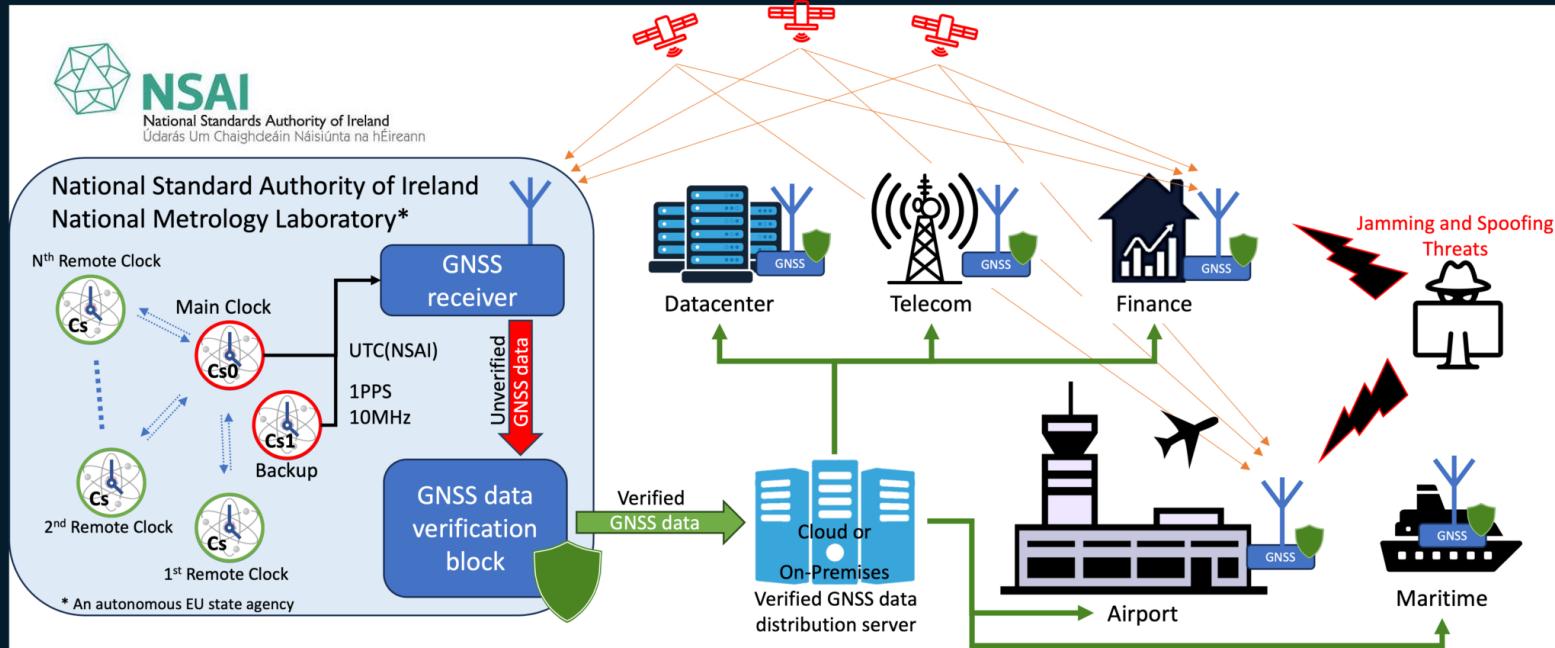
- Jamming and GNSS issues
 - Short interruptions are expected! Can you handle it?
 - Jamming is not a matter of IF, but a matter of WHEN and HOW LONG?
 - Regulators are taking a hard look at organizations' reliance on GNSS time
- Available/upcoming solutions to mitigate jamming/spoofing:
 - Multi-band and multi-constellation can help but are no guarantee!!!
 - Events like “Jammertest” in Norway help GNSS vendors improve performance
 - GPS III include “Chimera” authentication, Galileo has " OSNMA“ authentication
 - “Anti-jam” antennas reject/attenuate false signals (via adaptive/null steering)
 - Geographical redundancy: separating receivers (also for weather events)



PRTC-A versus PRTC-B Performance

- Cisco 8K: single-band on left, dual-band on right— ave. accuracy: -27 ns vs -4 ns
- Much less wander (@ constant temp) in the PRTC-B case: Pk-pk: 45 ns vs 25 ns

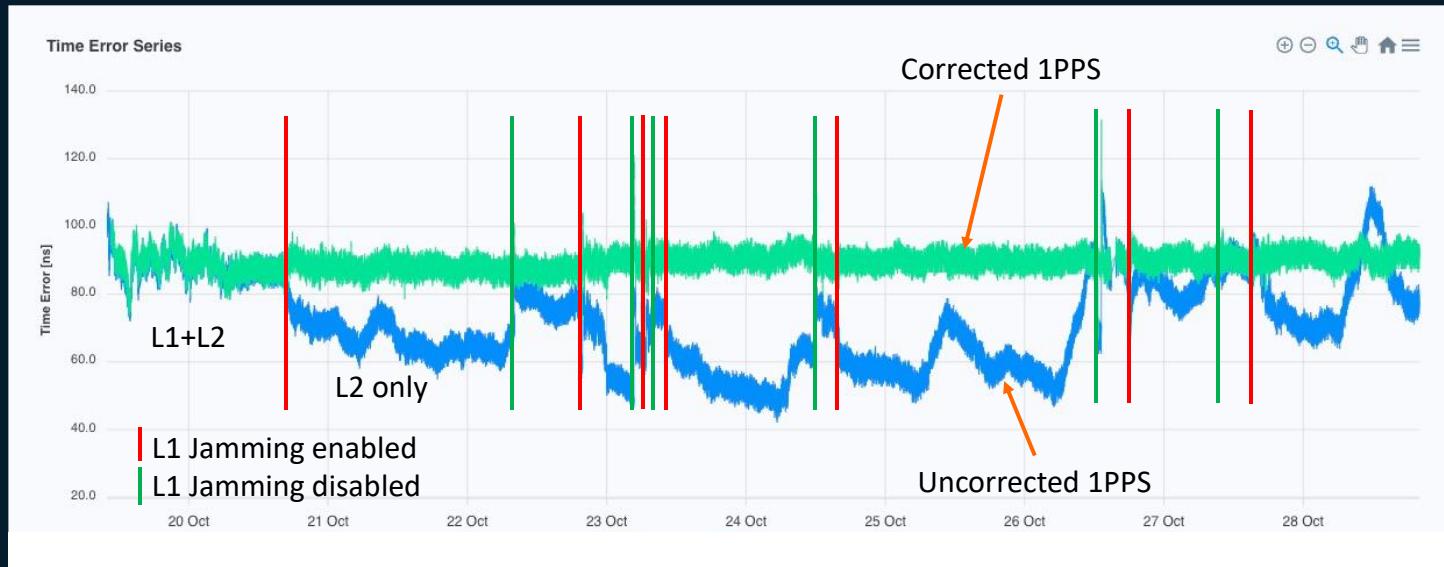
PRTC-A versus PRTC-B Performance

- PRTC-A (single band) on left, PRTC-B (dual-band) on right (with Cesium clock)
- Accuracy is -7.5 ns for PRTC-B, -53 for PRTC-A (both on Glandon)



NIS2 Directive & Verified GPS/GNSS Data Stream

- NSAI NML *Verified GPS/GNSS Data Stream* provides access to verified GNSS data distributed to customers using “out of band” methods
- Verified data stream provides verification for all constellations and all signals, so that the receivers can “sanity check” what they receive
- Enables exceptional resiliency against spoofing and GNSS satellite data errors, based on the National Timing Grid of Ireland (www.ntg.ie)
- Provides support for NIS2 Directive compliance for wider industry
- NSAI NML’s data validation service is available in EMEA
 - Discussing with other NMLs to extend the service coverage


Deploying Satellite Systems

- NSAI NML - Verified GNSS (GPS) Data Stream with EU wide coverage

Deploying Satellite Systems

- Innovators producing ways to use multiple bands to improve performance
- “Common view” technique using authenticated data from remote source...

National Clocks

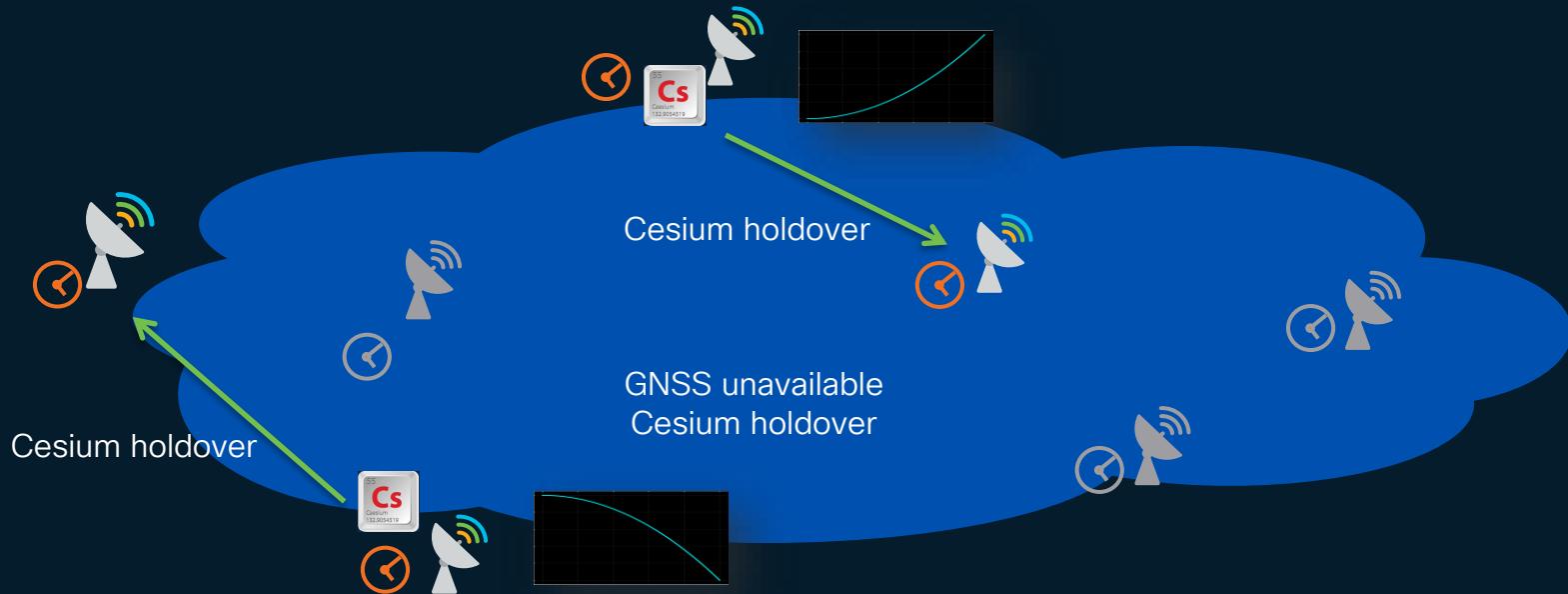
Timing as a (National) Service

- Regulators demanding critical national infrastructure free of GNSS
 - EU: *Critical Entities Resilience Directive* targets eleven sectors
 - Includes digital infrastructure, energy, finance, banking, water and transport
- Countries define National Time Standard for UTC time
 - Many countries already do this, known as UTC(k)
 - But connectivity to clocks at national physics laboratories is limited
 - What many countries do NOT do, is to distribute it widely
- Now building national timing distribution networks
 - EU: *Terrestrial Timing Backbone Service* for Complimentary (C-)PNT
 - Build POPs for user orgs to connect to – Q? How is this funded?
- National clock keeps time error low between organizations/operators

National Time as a Service

UTC
Reference
Time

- Many countries already have a time service to maintain local UTC source
- Distribution of that signal is typically limited to specialist users (labs, etc)



National Time as a Service

UTC
Reference
LOST

- With GNSS lost, Cesium provides holdover in well-designed networks
- However, Cesiums will slowly start to wander against each other & UTC

National Time as a Service

UTC
Reference
LOST

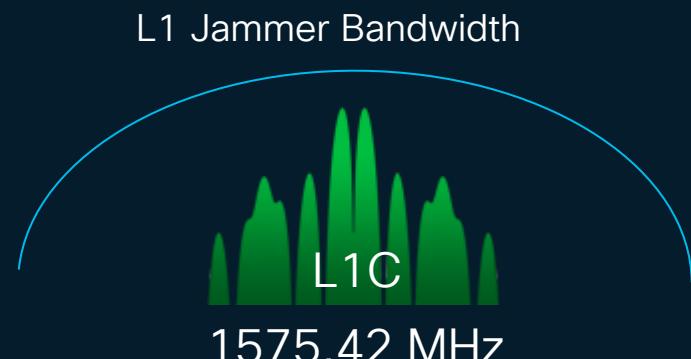
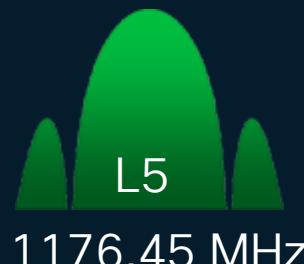
- The solution is a nation-wide interconnected Cesium clock network
- Users & service providers align their Cesium clocks to national clocks

New Features

New Features on Cisco SP Routers

- After deployment, hardest task is timing service assurance
- Developing a range of features to help perform this vital role
- Some are standards based, others are implementation improvements
- Helps to identify that a problem exists, without additional hardware
 - Ensure that time is internally consistent across the network

Feature: GNSS Dual-Band on Cisco 8000



GNSS Dual Band on Cisco 8000

- Dual band helps increase the accuracy of the receiver
 - Generates timestamps closer to UTC time
 - Reduces the diurnal wander typical of single-band GNSS
 - Better modeling of ionospheric effects
 - Increases holdover time since it starts holdover in more stable state
- Increases resilience against:
 - Changing ionospheric conditions
 - Bad space weather
 - Jamming and spoofing events

Improved: location services security resilience holdover

GNSS Dual Band on Cisco 8000

- GNSS systems transmit in several bands: for GPS, that's L1, L2, L5
 - L1 is the default/legacy band, other bands (L2) were military only
 - Later generations of satellites have introduced civilian signals in L2 and then L5
 - New L1C (GPS) signal is coming to update the original L1 C/A (6 satellites today)
 - Similar bands for other constellations
- GNSS receivers used for timing also adopting multiple bands (Cisco 8K)

GNSS Dual Band on Cisco 8000

- Cisco 8000 with GNSS receiver supports dual-band
 - GPS, GLONASS: L1/L2, Galileo: E1/E5b, Beidou: B1/B2
 - Accurate to UTC within 40 ns (-B) versus 100 ns (-A) (according to G.8272)
 - Enhancing CLI output to show bands received by the receiver
 - White paper on real-world performance: “PRTC-A versus PRTC-B” coming
- Antijamming and anti-spoofing reporting for PRTC-B receivers:
 - Receiver will alarm when it detects on-going jamming is in progress
 - Show command also outputs new information on spoofing state
 - Syslogs when jamming is triggered or cleared, or a spoofing event is detected
 - Allows more operational visibility for the customer

GNSS-receiver 0 location 0/0/CPU0 detected an apparent jamming event, mitigation in progress

Multi-band Information in *show gnss*

```
RP/0/RP0/CPU0:ios#sh gnss-receiver
```

Satellite Info:

CHN: Channel, AQUN: Aquisition, EPH: Ephemeris

PRN	CHN	AQUN	EPH	SV	Signal	Strength	Elevat'n	Azimuth	Signals
No.	No.	Flag	Flag	Type					
6	n/a	On	On	GPS		45.000	86.000	17.000	L1 C/A L2C
13	n/a	On	On	GPS		34.000	20.000	226.000	L1 C/A
17	n/a	On	On	GPS		43.000	25.000	30.000	L1 C/A L2C
24	n/a	On	On	GPS		38.000	22.000	310.000	L1 C/A L2C
30	n/a	On	On	GPS		41.000	28.000	160.000	L2C L1 C/A
2	n/a	On	On	QZSS		39.000	24.000	88.000	L1 C/A L2C
3	n/a	On	On	QZSS		39.000	25.000	52.000	L1 C/A L2C
7	n/a	On	On	QZSS		34.000	32.000	101.000	L1 C/A L2C
14	n/a	On	On	GLONASS		46.000	53.000	109.000	L1 OF L2 OF
15	n/a	On	On	GLONASS		45.000	53.000	5.000	L1 OF L2 OF
18	n/a	On	On	GLONASS		44.000	58.000	270.000	L1 OF L2 OF
19	n/a	On	On	GLONASS		32.000	26.000	228.000	L2 OF L1 OF

Multi-band Information in *show gnss*

```
RP/0/RP0/CPU0:ios(config)#gnss-receiver 0 location 0/RP0/CPU0
```

```
RP/0/RP0/CPU0:ios(config-gnss)#constellation galileo
```

```
RP/0/RP0/CPU0:ios(config-gnss)#commit
```

```
RP/0/RP0/CPU0:ios#sh gnss-receiver
```

Satellite Info:

CHN: Channel, AQUN: Aquisition, EPH: Ephemeris

PRN	CHN	AQUN	EPH	SV	Signal			
No.	No.	Flag	Flag	Type	Strength	Elevat'n	Azimuth	Signals
2	n/a	On	On	Galileo	42.000	36.000	332.000	E1 E5b
5	n/a	On	On	Galileo	37.000	10.000	176.000	E1 E5b
9	n/a	On	On	Galileo	36.000	6.000	127.000	E1 E5b
11	n/a	On	On	Galileo	38.000	27.000	26.000	E1 E5b
24	n/a	On	On	Galileo	41.000	31.000	130.000	E1 E5b
25	n/a	On	On	Galileo	43.000	76.000	63.000	E1 E5b
34	n/a	On	On	Galileo	42.000	36.000	248.000	E1 E5b
36	n/a	On	On	Galileo	42.000	62.000	328.000	E1 E5b

Multi-band Information in *show gnss*

```
RP/0/RP0/CPU0:ios(config)#gnss-receiver 0 location 0/RP0/CPU0
```

```
RP/0/RP0/CPU0:ios(config-gnss)#constellation beidou
```

```
RP/0/RP0/CPU0:ios(config-gnss)#commit
```

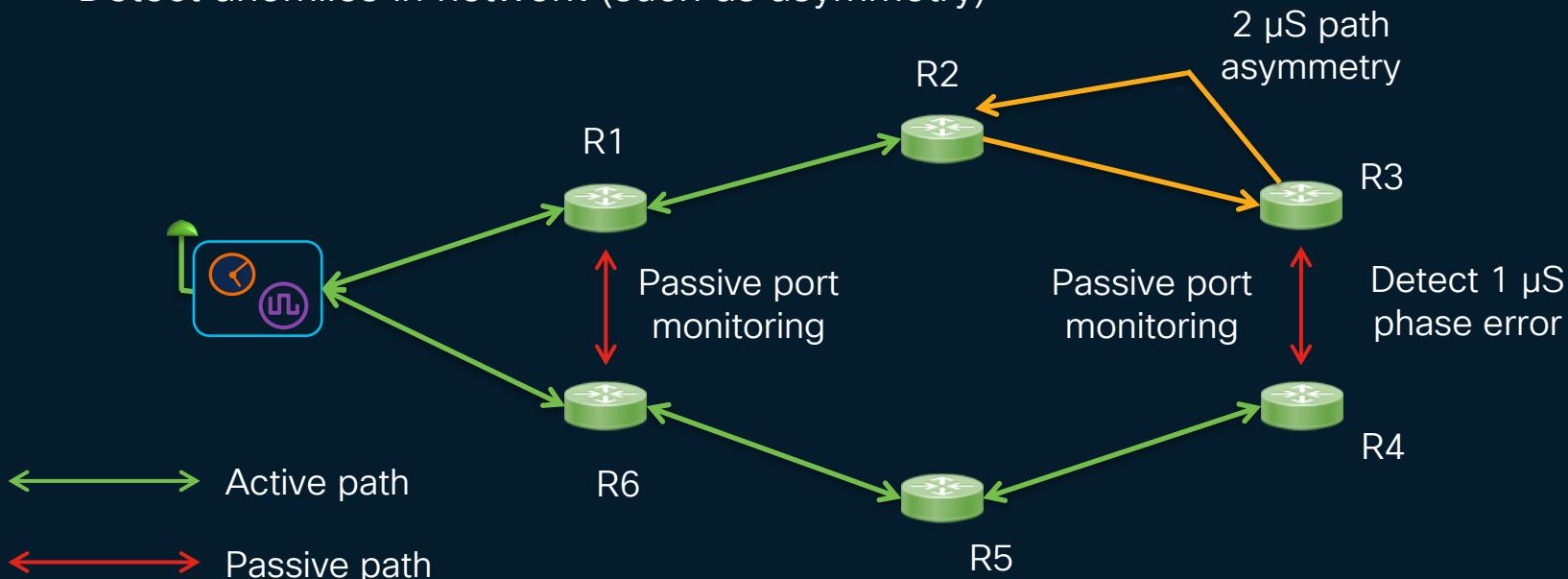
```
RP/0/RP0/CPU0:ios#sh gnss-receiver
```

Satellite Info:

CHN: Channel, AQUN: Aquisition, EPH: Ephemeris

PRN No.	CHN No.	AQUN Flag	EPH Flag	SV Type	Signal			
					Strength	Elevat'n	Azimuth	Signals
1	n/a	On	On	BeiDou	38.000	14.000	95.000	B1 B2
7	n/a	On	On	BeiDou	41.000	43.000	62.000	B2 B1
8	n/a	On	On	BeiDou	43.000	65.000	98.000	B2 B1
10	n/a	On	On	BeiDou	35.000	50.000	43.000	B2 B1
21	n/a	On	On	BeiDou	43.000	29.000	119.000	B1
24	n/a	On	On	BeiDou	47.000	67.000	202.000	B1
25	n/a	On	On	BeiDou	43.000	41.000	306.000	B1
26	n/a	On	On	BeiDou	42.000	23.000	158.000	B1

Feature: Passive Port Monitoring


Passive Port Monitoring

- PTP slave port locked to an upstream clock collects 4 timestamps
- PTP servo calculates the “offset from master” and “mean path delay”
- New: PTP recovers 4 timestamps on “passive” ports and calculates offset & delay
- Activated with *detect-ptsf-unusable* and *phase-difference-threshold-breach*
- Phase differences in *show ptp foreign-masters* & *show ptp platform servo sessions*
- Following data models are also enhanced:
 - Cisco-IOS-XR-ptp-cfg.yang
 - Cisco-IOS-XR-um-ptp-cfg.yang
- Syslog message when configured threshold is exceeded:

Phase difference for clock ACDE48FFFFE234567, steps removed 1, receiving-port 1, received on interface GigabitEthernet0/2/0/3 is 40ns, configured threshold is 30ns. Raising phase difference alarm.

Passive Port Monitoring

- Cross-validation of timing signals in rings/mesh topology
- Detect anomalies in network (such as asymmetry)

Passive Port Monitoring

- Output: *show ptp foreign-masters & show ptp platform servo sessions*

```
Router# show ptp platform servo sessions
```

Interface FourHundredGigE0_0_0_1:

Primary session: FALSE

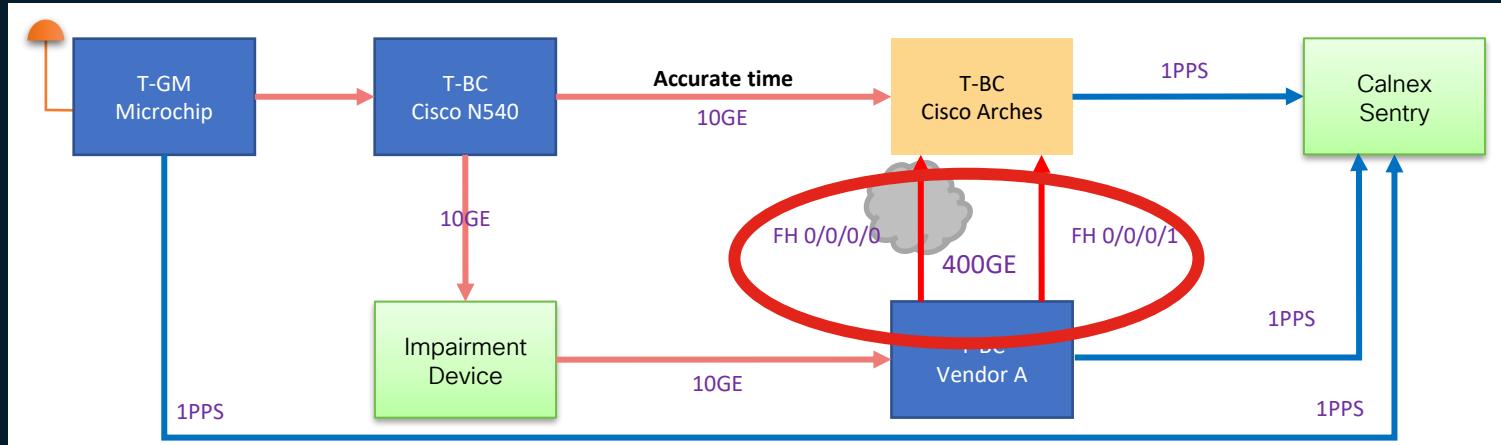
Clock-id: 0xfe050da8, Receiving port:2, Steps-removed:3

Servo-running: TRUE

Has frequency: TRUE, Has time: TRUE

Source-type: 0

Timescale: 0, asymmetry:0 **Phase-offset from PTP source: 632**


Previous Received Timestamp T1: 1709030957.503025147 T2: 1709030957.503030685 T3: 1709030957.461855393 T4: 1709030957.461859674

Last Received Timestamp T1: 1709030957.503025147 T2: 1709030957.503030685 T3: 1709030957.525861272 T4: 1709030957.525865546

Clock-offset: 0.108079 ppb

Passive Port Monitoring

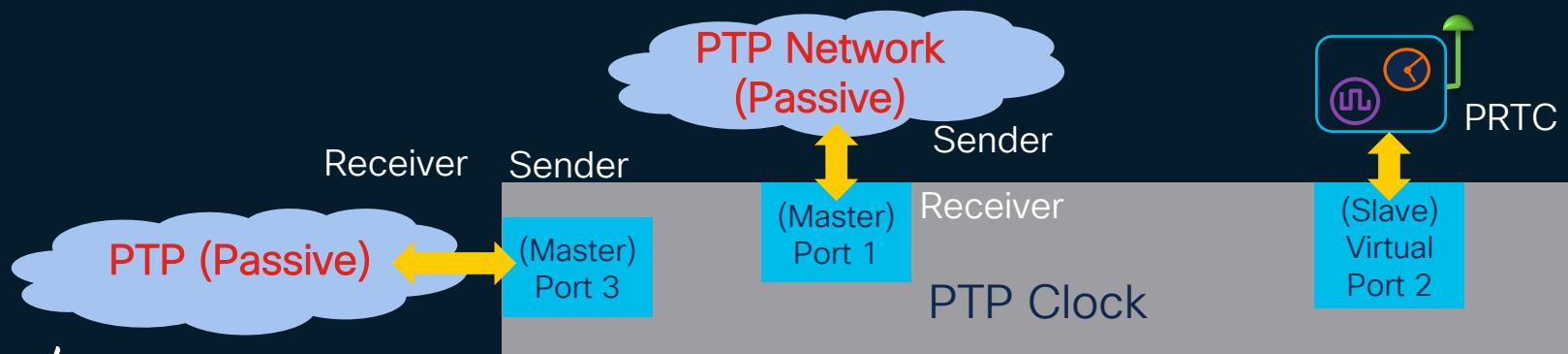
- Example of real-world example from EANTC interoperability testing (2024)
- Cisco 540 connected by 2 x 400GE coherent optics to “Vendor A”, 1 over DWDM
- Vendor “A” had not “tuned” their platform to compensate for this 400GE optic
- Arches has another 10GE connection to Cisco NCS540 with accurate time

Passive Port Monitoring

- Uncalibrated 400GE port on “Vendor A” introducing ~608 ns of time error

Interface	Type	State	Phase-offset	Clock-offset(ppb)	
====	====	=====	=====	=====	
FH_GigE0_0_0_1	Primary	Running	00000022	-0.253867	The slave port
TenGigE0_0_0_2	Monitored	Running	-0000608	-0.420705	This is accurate time
FH_GigE0_0_0_0	Monitored	Running	00000026	0.257291	

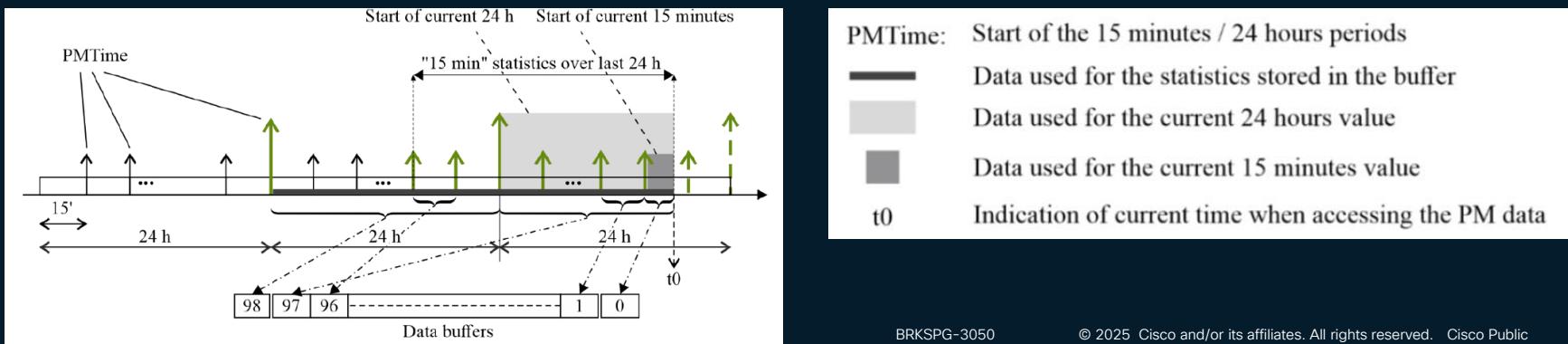
- Added 1220 ns of asymmetry to both the 400GE links


Interface	Type	State	Phase-offset	Clock-offset(ppb)	
====	====	=====	=====	=====	
FH_GigE0_0_0_1	Primary	Running	00000008	0.000005	All now approximately
TenGigE0_0_0_2	Monitored	Running	-0000014	-0.143197	agree with each other
FH_GigE0_0_0_0	Monitored	Running	-0000001	-0.149201	

Note: Output from *show ptpt platform servo sessions brief*

Feature: Advanced Port Monitoring

Advanced Port Monitoring and OAM


- Annex G (G.8275.1) added “Monitoring alternate timeTransmitter time”
 - Extends the basic passive port monitoring
 - Uses CLI: monitorReceiver, monitorSender & alternateMasterFlag fields
 - Extremely useful in rings and/or meshed networks
 - Also possible to monitor PTP time error via local GNSS + Virtual Port

Feature: PTP Performance Monitoring

PTP Performance Monitoring

- Annex F (G.8275) added “Performance Monitoring”
 - Collection of PTP performance data (based on Annex J of 1588-2019)
 - Collect forward/reverse path delay, mean path delay, offset from master
 - Also captures packet counters for PTP messages
 - Data stored in 15 minute buckets for up to 24 hours
 - Simplified data store in 3 minute buckets up to 1 hour

PTP Performance Monitoring

- Activated with the *performance-monitoring* command
 - *show ptp dataset performance* and *show ptp platform performance-counters*
- Yang models updated to allow access to data

PTP Performance Monitoring

```
Router# show ptp dataset performance clock
```

Clock ID aaaabbbecccc00, steps removed 1, receiving-port 2:

Start of time window: Wednesday, January 1, 2025 14:18:59

Measurement is not valid

Period is not complete

Measurement has been taken with reference to system clock

Master slave delay:

Average: 50ns

Min: 50ns

Max: 70ns

Std: 1ns

Slave master delay:

Average: 51ns

Min: 51ns

Max: 71ns

Std: 2ns

Mean path delay:

Average: 52ns

Min: 52ns

Max: 72ns

Std: 3ns

Offset from master:

Average: 53ns

Min: 53ns

Max: 73ns

Std: 4ns

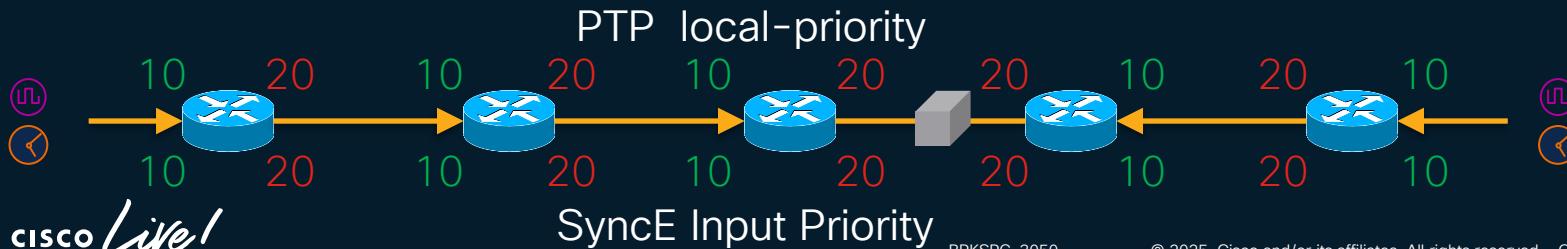
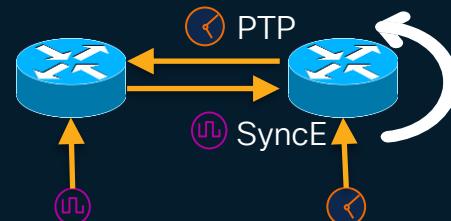
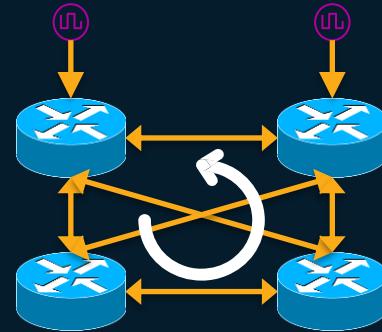
PTP Performance Monitoring

```
Router# show ptp platform performance-counters detail
```

```
PTP Current record index 15 min: 96
```

```
PTP Current record index 3 min: 119
```

```
PTP performance monitoring statistics:
```

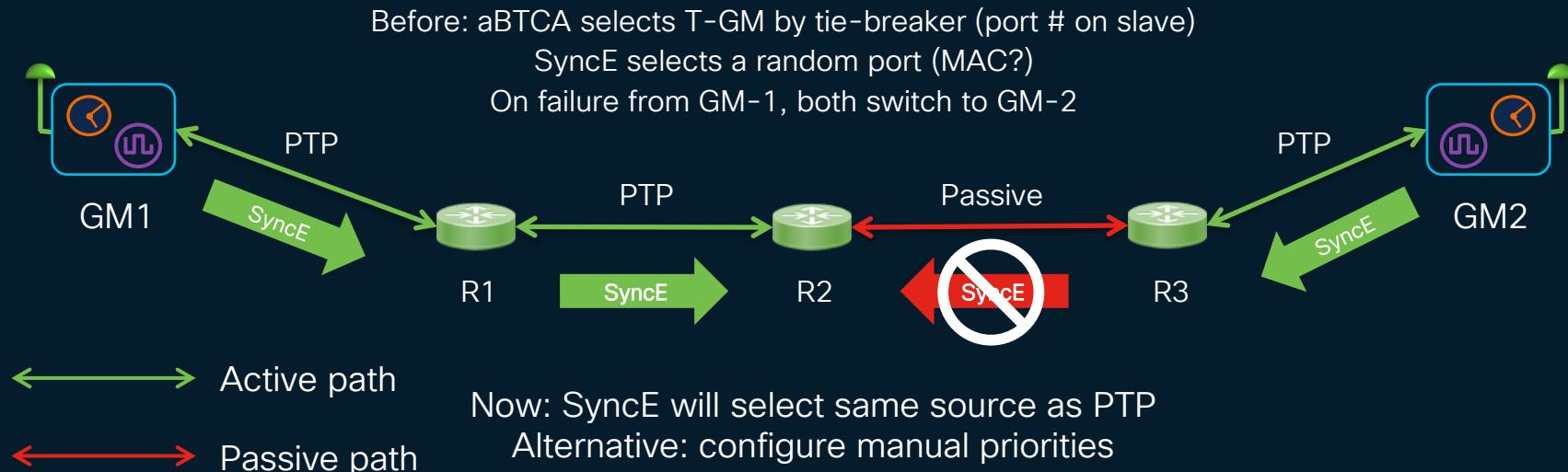



```
=====
15 min stats
[0] 12 December 2024 09:09:59 UTC 15 min statistics
```

Stat	Min(sec.nsec)	Max(sec.nsec)	Mean(sec.nsec)	Std deviation	Samples
Master-slave-delay	-000000000.15937	000000000.333	-000000000.1780	000000000.71191	154
Slave-master-delay	000000000.319	000000000.16593	000000000.2437	000000000.74103	154
mean-path-delay	000000000.322	000000000.334	000000000.327	000000000.4057	154
offset-from-master	-000000000.16263	000000000.6	-000000000.2108	000000000.72546	154

Feature: PTP and SyncE (path) Alignment

Avoiding Timing Loops (previously)

- Configuring too many redundant paths risks timing loops
- Symptom: PHASE-ALIGNED \Leftrightarrow FREQUENCY-LOCKED
- Rings are especially a problem, need to “break the ring”
- Giving SyncE to a node that provides PTP back is a loop!!
- Best practices BEFORE THIS FEATURE:
 - Make PTP and SyncE traceable back to the same clock source
 - Use PTP “local-priority” to mirror SyncE input priority

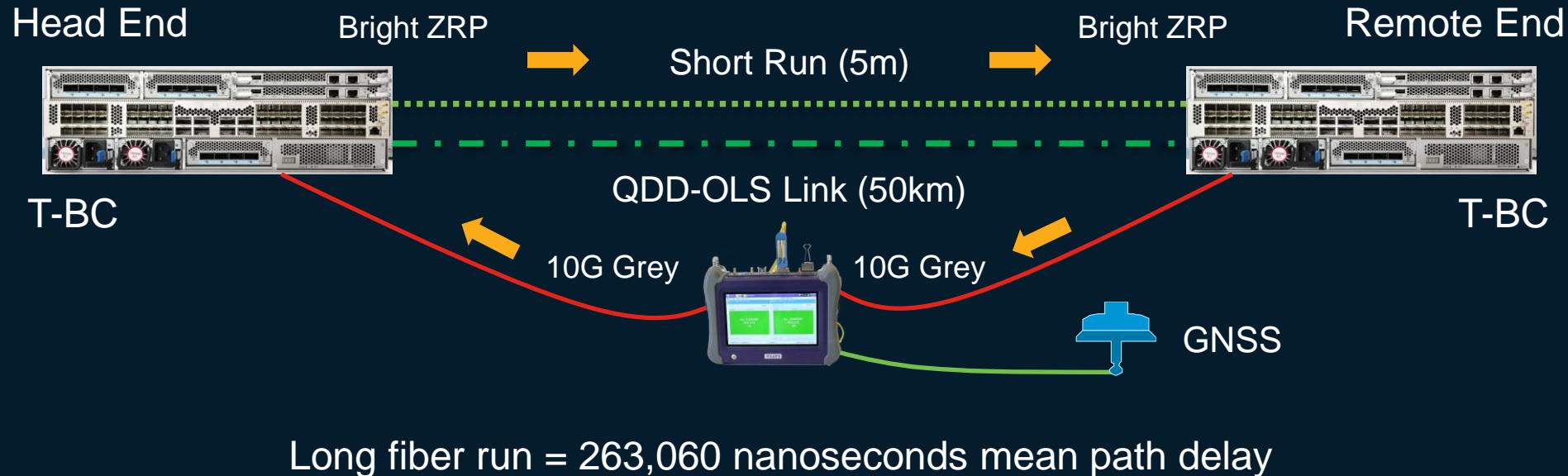


PTP and SyncE Alignment

- Problem: G.8275.1 uses aBMCA/aBTCA to select i/f to become slave port
- SyncE uses local priority and ESMC clock quality to select reference i/f
- Result: PTP and SyncE may come from different interfaces & PRTC sources
 - Problem: PTP and SyncE should trace to the same PRTC/T-GM
 - Having different sources can cause timing to “bounce”
- Solution: Feature to have the SyncE interface selection follow PTP’s lead
- Activated with: *synchronous-ethernet prefer-interface ptp-receiver*
- SyncE follows PTP interface change if ESMC QL & priority are equal to current i/f

PTP and SyncE Alignment

- Helps clocks in middle of a chain align their PTP and SyncE
 - Avoids a loop between the PTP and the SyncE


Optics Testing

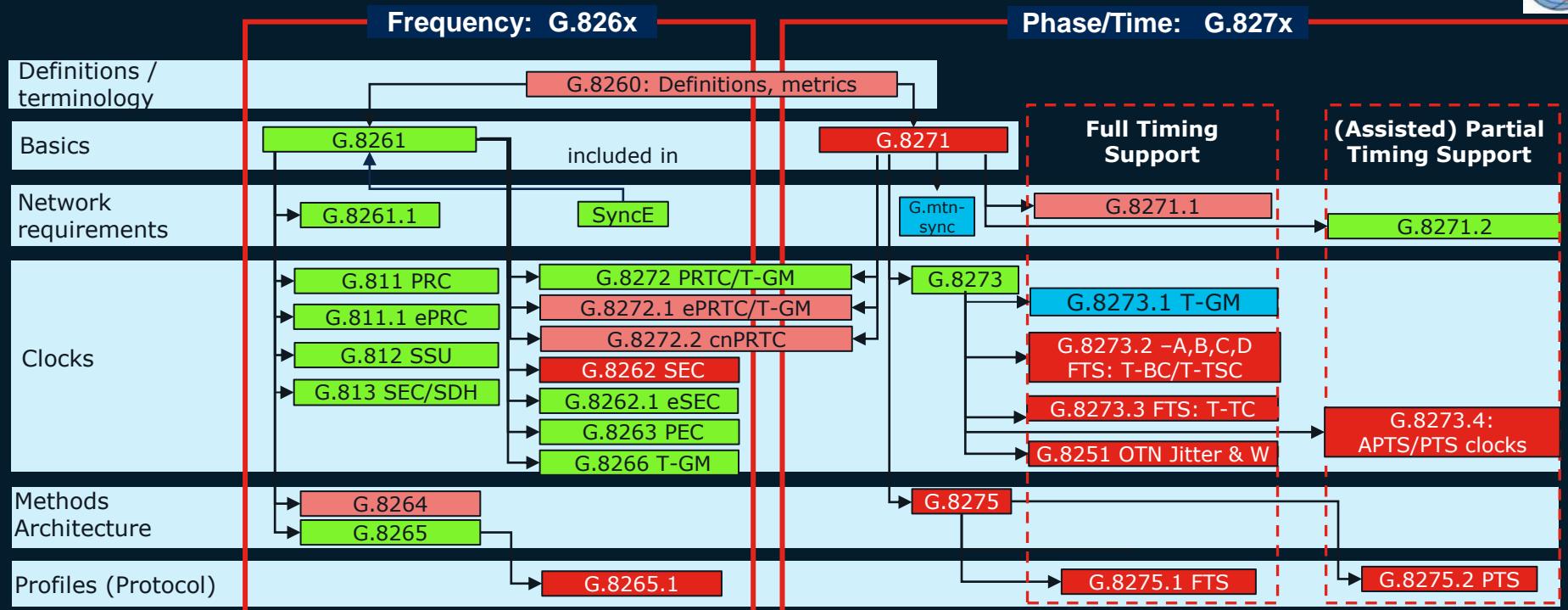
ZR+ Testing: Short run and 50km OLS fiber

- Sync testing for 400GE (@100GE) on “Bright ZR+” optics
 - DP04QSDD-HE0 = Cisco QSFP-DD 400G BRT ZRP Pluggable Optics Module
 - Wavelength=1546.901nm, DAC Rate = 1x1.50 (100GE)
 - NCS-57C3-MODS-SYS nodes running 24.3.1 at both ends
 - NC57-MPA-2D4H = 2X400G or 4X200/100G QSFP-DD MPA
 - ONS-QDD-OLS = QSFP-DD Pluggable Optical Line System
 - Enhanced SyncE and G.8275.1 PTP Telecom Profile
- Both short run (5 meters) and long-run (50km) fiber pairs
 - Short run removed everything except an attenuator (to reduce the power)
 - Also tested short run with 100G grey and 10G grey optics
- Measured with Viavi MTS5800-100G with timing module

ZR+ Testing: Short run and 50km OLS fiber

Also tested: 10G, 100G (grey) over 5m and 1G PTP (1510/1514) over both

ZR+ Testing: Short run and 50km results


Test Case	Fiber Length	Constant Time Error (cTE)	Max Time Error (TE)
10G grey optics (baseline)	5m	1 ns	8 ns
1G PTP 1510/1514	5m	-3 ns	8 ns
100G grey optics	5m	7 ns	16 ns
100G/400G ZR+	5m	-12 ns	20 ns
100G/400G ZR+	50km	3869 ns	3876 ns
1G PTP 1510/1514	50km	3881 ns	3887 ns

ZR+ Testing: Short run and 50km OLS fiber

- So, what are the lessons?
 - The 5m results are excellent, including for the ZR+ optic
 - The 50km results are terrible
 - Amplifier makes minimal difference, the QDD-OLS only adds 10-20 ns
 - In the end, problem isolated to fiber pair, turns out fibers were NOT the same!!
 - cTE generated when tested through 2 devices interconnected by coherent 100G is about 12 ns. Whether this makes an individual device “Class C” is up for debate, since there are 2 devices involved. However, the dTE_L MTIE and cTE would likely pass as “class C” when hooked up alone to a tester.
 - CHECK the topology before making any conclusions
- With increasing distance, the problem is likely to be the fiber not the optic

ITU-T Standards Update

ITU-T SG15 Question 13 Recommendations

Synch. Layer Functions G.781 G.781.1

Interfaces G.703

OAM G.Suppl.68 (SyncOAM)

Datacentres G.Suppl-DCSync

Others G.Supp.83 FTS TR GSTR-GNSS

G.Supp-ePTS G.Supp.65 Simulations

Legend:

Agreed	Existing recommendation
Work item: New rec.	Not released yet
G.xxx.y	Consented latest in July 2024
G.xxx.y	Consented latest in Feb 2024

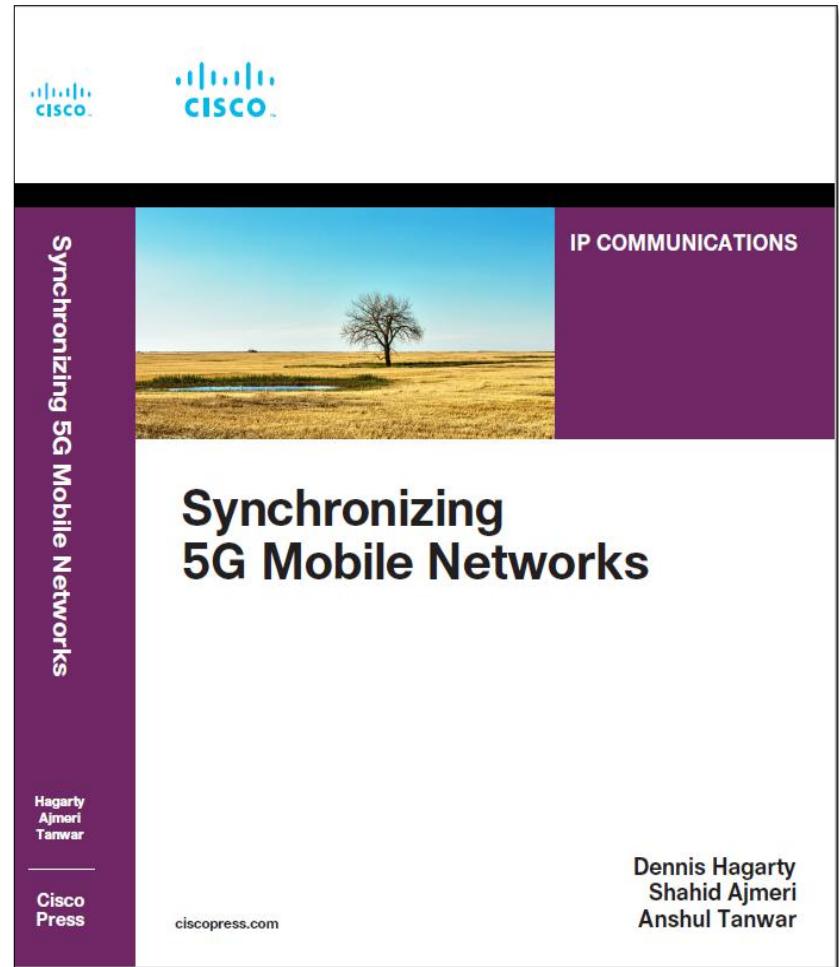
What's Happening in the Standards?

- ITU-T standards developments
 - Security options (inc 1588-2019 Accuracy TLV) in Appendix XIII G.8275 08/24
 - Monitoring (OAM) and YANG models for Telecom Profiles (G.7721.1)
 - ITU-T Yang models will be reflected in Cisco Yang sync models for Telecom Profiles
 - Work on supplement addressing timing in data centre (G Suppl.DCSync)
- IEEE standards developments
 - 1588a Amend. 3: PTP enhancements for aBMCA with “Enhanced Accuracy TLV”
 - 1588e (MIB + YANG model for PTP) <https://ieeexplore.ieee.org/document/10289672>
 - Left-overs from 1588-2019 (e.g. P1588d: GDOI Key Exchange for Security)
 - P1588.1 a “new” PTP profile for DC: Client-Server PTP (servers are stateless)
 - IEEE P1952: Resilient Positioning, Navigation, and Timing User Equipment

Conclusions

Synchronization Hot Topics

- DWDM and timing at higher bandwidth over long-distances
 - Optical systems
 - Fibre issues
- GNSS jamming and resilience of critical national infrastructure (CNI)
- Alternative sources of frequency and time
 - National clock
 - Timing as a Service (TAAS)
 - Alternatives for timing/sync signal distribution (eLORAN) not moving quickly
- Many of these SP issues are now shared by other industries
 - Transport, broadcasting, power grids, financial services, data centres, defence


Further Information: Conferences and Standards

- WSTS Workshop on Sync & Timing Systems, May 12-15, Savannah, Ga:
<https://wsts.atis.org/>
- ITSF International Timing & Sync Forum, Oct 27-31, Prague, CZ:
<https://itsf2025.executiveindustryevents.com/Event/index.php>
- ITU-T Study Group 15 Question 13:
<https://www.itu.int/en/ITU-T/studygroups/2025-2028/15/Pages/default.aspx>
- Next ITU-T Sync Plenary Meeting, 17-28 March 2025, Geneva:
<https://www.itu.int/en/ITU-T/studygroups/2025-2028/15/Pages/default.aspx>
- Next ITU-T Sync Interim Meeting, 8-12 June 2025, Ispra, Italy:
<https://www.itu.int/en/ITU-T/studygroups/2025-2028/15/Pages/default.aspx>

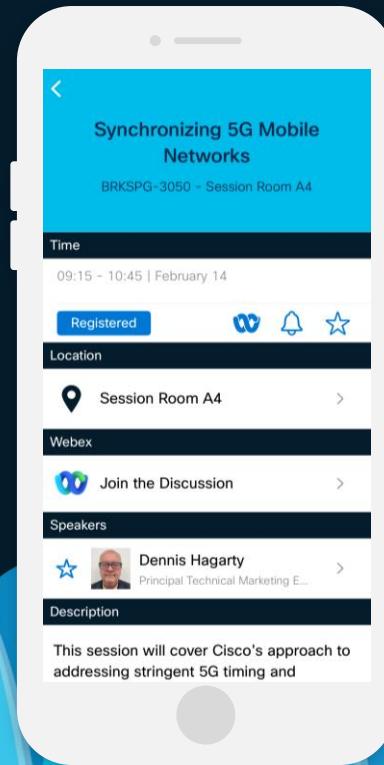
Further Information

“Synchronizing 5G Mobile Networks”

Publisher: Cisco Press
eBook & Print
Published: June 2021

Webex App

Questions?


Use the Webex app to chat with the speaker after the session

How

- 1 Find this session in the Cisco Events mobile app
- 2 Click “Join the Discussion”
- 3 Install the Webex app or go directly to the Webex space
- 4 Enter messages/questions in the Webex space

Webex spaces will be moderated by the speaker until February 28, 2025.

CISCO *Live!*

Fill Out Your Session Surveys

Participants who fill out a minimum of 4 session surveys and the overall event survey will get a unique Cisco Live t-shirt.

(from 11:30 on Thursday, while supplies last)

All surveys can be taken in the Cisco Events mobile app or by logging in to the Session Catalog and clicking the 'Participant Dashboard'

Content Catalog

A dark blue background featuring a series of overlapping, semi-transparent blue wave-like shapes that create a sense of depth and motion.

Continue your education

CISCO *Live!*

- Visit the On-Demand Library for more sessions at cisco.com/ciscolive.com/on-demand. Sessions from this event will be available from March 3.
- Look at previous Cisco Live sessions for different topics:
 - **BRKSPG-3050** Event: 2024 Amsterdam Synchronizing 5G Mobile Networks
 - **BRKSPG-2133** Event: 2024 Las Vegas Synchronizing 5G Mobile Networks
 - **BRKSPG-3050** Event: 2023 Amsterdam Synchronizing 5G Mobile Networks
 - **BRKSPG-3050** Event: 2023 Las Vegas Synchronizing 5G Mobile Networks

Thank you

cisco *Live!*

GO BEYOND