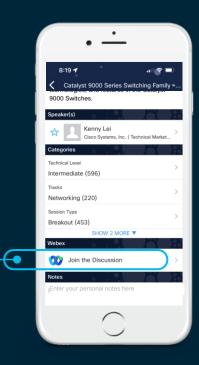
cisco Live!

Detecting, Alerting, Identifying and Preventing SAN Congestion

Congestion Best Practices

Paresh Gupta
Technical Leader, Technical Marketing Engineering, Cisco
@reach2paresh
BRKDCN-3241

Cisco Webex App


Questions?

Use Cisco Webex App to chat with the speaker after the session

How

- 1 Find this session in the Cisco Live Mobile App
- 2 Click "Join the Discussion"
- 3 Install the Webex App or go directly to the Webex space
- 4 Enter messages/questions in the Webex space

Webex spaces will be moderated by the speaker until June 17, 2022.

https://ciscolive.ciscoevents.com/ciscolivebot/#BRKDCN-3241

SAN Congestion & Slow Drain - Overview

Detection

Troubleshooting

Prevention

in 2.5µs

TxWait, slowportmonitor, Automatic alerting using port-monitor Detailed tools

NDFC
Slow drain analysis *
Long term trending and seasonality of congestion events

*Slow-drain Analysis is renamed to Congestion Analysis in NDFC 12.1.1e in 1 ms

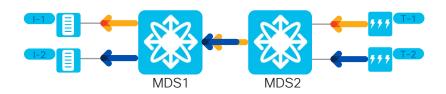
DIRL*
FPIN
Congestion Isolation
No-credit-drop timeout

* Cisco Innovation

SAN Congestion Management - Recommendations

Reactive

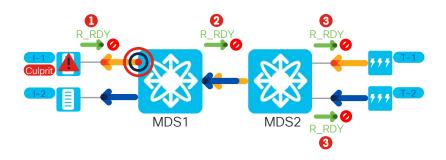
- NDFC/DCNM Slow-drain
 Analysis* Maintains historic
 trends and seasonality of
 congestion metrics from
 switchports. Must be enabled
 manually.
- MDS collects TxWait, Datarate and other metrics by default
- Important for troubleshooting


Proactive

- MDS port-monitor (PMon) –
 Monitors congestion events at a
 low granularity. Generates
 alerts and takes automated
 actions when thresholds
 exceeds.
- A proper PMon policy must be configured manually.
- Important for proactive alerting and congestion prevention using DIRL.

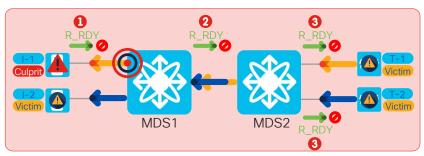
Predictive

- SAN Analytics and SAN Insights
- Collects I/O performance metrics to get visibility into application traffic patterns.
- Important for predicting the underlying root cause of congestion and predicting the ports where congestion is more likely than other ports in a fabric.
- Refer to BRKDCN-3645

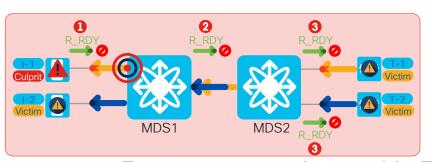


BRKDCN-3241

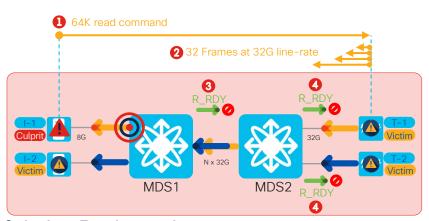
Slow Drain


Tx B2B credit starvation

Slow Drain


Tx B2B credit starvation

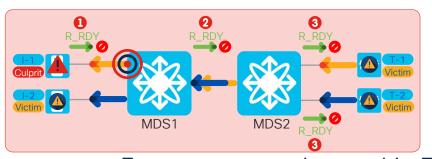
Frames are not dropped in FC fabric. Rather, they consume switch buffers causing a fabric-wide congestion


Slow Drain

Tx B2B credit starvation

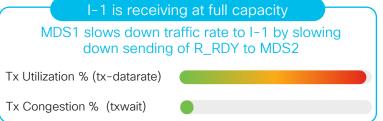
Over-utilization

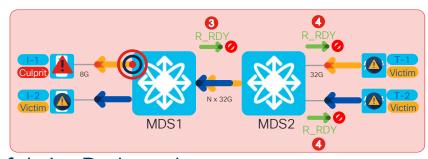
Receive data rate on ISL port is faster than the host port speed



Frames are not dropped in FC fabric. Rather, they consume switch buffers causing a fabric-wide congestion

Slow Drain


Tx B2B credit starvation



Over-utilization

Receive data rate on ISL port is faster than the host port speed

Frames are not dropped in FC fabric. Rather, they consume switch buffers causing a fabric-wide congestion

Understanding TxWait

• TxWait is an ASIC counter that increments by 1 when a port is unable to transmit a queued frame for 2.5 microseconds due to Tx B2B credit unavailability

```
mds9710-1# show interface fc1/1 counters | inclue ignore-case wait 26009409536 2.5us TxWait due to lack of transmit credits
```

- Convert TxWait to seconds by (TxWait * 2.5) / 1000000
- In the above output, 26009409536 * 2.5/1000000 = 65,023 seconds
 - MDS was not able to transmit for 65,023 seconds since the counter was last cleared
- MDS enriches the raw TxWait counter:
 - For storing on switch OBFL (On-board Failure Logging (Buffer)) for troubleshooting
 - For automated alerting and actions by port-monitor (PMon)
 - Export via SNMP or NX-API to remote systems like NDFC/DCNM slow drain analysis

TxWait history on MDS

- TxWait delta value is logged periodically(20 seconds) into OBFL, if delta value >=100ms.
- Displays TxWait time in 2.5µs ticks as well as in seconds.
- Congestion value is displayed in percentage over period of 20 seconds.
- Timestamp of event occurrence also recorded.

```
MDS9706-C# sh logging onboard txwait
Notes:
     - Sampling period is 20 seconds
     - Only txwait delta >= 100 ms are logged
  Interface | Virtual Link | Delta TxWait Time
                                                      Congestion | Timestamp
                             2.5us ticks | seconds
    fc1/15
              None
                                86510
                                                            1 응
                                                                    Thu Feb 10 15:11:42 2022
    fc1/15
                                46459
                                                            0 응
                                                                   Thu Feb 10 15:11:22 2022
            | None
    fc1/15
                              1129160
                                                           14%
                                                                   Sat Oct 16 00:09:52 2021
              None
    fc1/15
              None
                                658894
                                                            8용
                                                                    Tue Oct 12 02:18:50 2021 |
```


Tx-datarate - Port Traffic

- Pmon on MDS measures datarate in percent utilization. For example,
 - Tx-datarate: tx utilization > 80% (*) continuously for 10 seconds (*)
 - Tx-datarate-burst: 5 (*) times in 10 seconds (*) tx utilization > 90% (*) continuously for 1 second

Fibre Channel speeds	Baud rate (GBd)	Bit Rate (Gbps)	Data rate (MB/s)
1GFC	1.0625	1.0625	100
2GFC	2.125	2.125	200
4GFC	4.25	4.25	400
8GFC	8.5	8.5	800
16GFC	14.025	14.025	1600
32GFC	28.025	28.025	3200
64GFC	28.900	57.8	6400

- Important: Max datarate of FC interfaces is lower than the used notation
 - What's the % utilization of 25Gbps a on 32GFC port? (Wrong: 25/32 = 78%. Correct: 25/28 = 89%)
 - Use correct max bit-rate when DIYing link-utilization calculation or using 3rd party monitoring apps

For all practical purposes, due to longer polling intervals in production environments, treat any occurrence of high utilization the same as over-utilization, which may cause congestion

Tx-datarate history on MDS

High-utilization events are stored on the switch

MDS9706-C# show logging onboard datarate									
I	Interface	1	Speed	1	Alarm-types	1	Rate Times	stamp	
- ا	fc1/13	1	4G		TX_DATARATE_BURST_FALLING	 	0@0% Fri Apr 29 16:	:41:06 2022	
ı	fc1/13	1	4G	-1	TX DATARATE FALLING	1	63% Fri Apr 29 16	5:40:56 2022	
١	fc1/13	1	4G	-1	TX_DATARATE_RISING	1	98% Fri Apr 29 16	5:34:03 2022	
١	fc1/13	1	4G	-1	TX_DATARATE_BURST_RISING	1	6098% Fri Apr 29 10	5:34:00 2022	
ı	fc1/13	1	4G	-1	TX_DATARATE_BURST_FALLING	1	0@0% Fri Apr 29 16:	:33:04 2022	
١	fc1/13	1	4G		TX_DATARATE_FALLING	-	54% Fri Apr 29 16	5:32:53 2022	
ı	fc1/13	1	4G	-1	TX_DATARATE_RISING	1	98% Fri Apr 29 16	5:25:41 2022	

TX_DATARATE_RISING it started at 10 seconds prior to when it was recorded 16:25:31and ended 10 seconds prior to when the TX_DATARATE_FALLING was recorded 16:32:43. There was high utilization for 7 min 12 seconds.

Automated Alerting and Congestion Prevention

Port-monitor (PMon) on Cisco MDS

PMon monitors each switchport at a low granularity (as low as 1 second). When threshold exceed, PMon automatically takes actions like generating alerts, shutting down (errdisable) ports, flapping the port, isolating the port, or DIRL.

How to configure PMon?

- Start by enabling PMon for sending alerts
- Refine the thresholds over weeks/months. Solve the real culprits. Avoid too many alerts.
- 3. Finally, enable actions, such as congestion prevention using DIRL
- 4. Go to step 2

Sample PMon policies: https://www.cisco.com/c/en/us/support/docs/storage-networking/mds-9000-nx-os-software-release-62/200102-Sample-MDS-port-monitor-policy-for-alert.html

PMon Policy on MDS

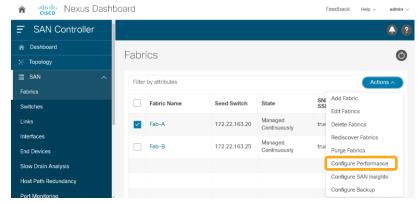
port-monitor name fabricmon_edge_policy
logical-type edge
counter txwait poll-interval 1 delta rising-threshold 30 event 4 falling-threshold 10 event 4 alerts syslog rmon portguard DIRL
counter tx-datarate poll-interval 10 delta rising-threshold 80 event 4 falling-threshold 70 event 4 alerts syslog rmon obfl portguard DIRL
counter tx-datarate-burst poll-interval 10 delta rising-threshold 5 event 4 falling-threshold 1 event 4 alerts syslog rmon obfl datarate 90

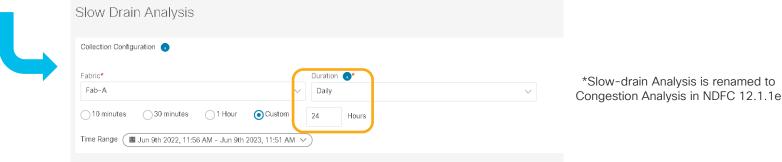
Show port-monitor

Policy Name : fabricmon_edge_policy

Admin status : Not Active
Oper status : Not Active
Port type : All Edge Ports

Counter	Threshold	Interval	l Warning		Thresholds		1	Rising/Falling actions			Congestion-signal	
	Type 	(Secs) 	Threshold	Alerts	Rising	Falling	Event		PortGuard	Warning	Alarm	
ink Loss	Delta	30	none	 n/a	 5	1	4	syslog,rmon	FPIN	n/a	n/a	
ync Loss	Delta	30	none	n/a	5	1	4	syslog,rmon	FPIN	n/a	n/a	
ignal Loss	Delta	30	none	n/a	5	1	4	syslog,rmon	FPIN	n/a	n/a	
nvalid Words	Delta	30	none	n/a	1	0	4	syslog,rmon	FPIN	n/a	n/a	
nvalid CRC's	Delta	30	none	n/a	5	1	4	syslog,rmon	FPIN	n/a	n/a	
tate Change	Delta	60	none	n/a	5	1 0	4	syslog,rmon	none	n/a	n/a	
C Discards	Delta	60	none	n/a	200	10	4	syslog,rmon	none	n/a	n/a	
R RX	Delta	60	none	n/a	5	1	4	syslog,rmon	none	n/a	n/a	
R TX	Delta	60	none	n/a	5	1	4	syslog,rmon	none	n/a	n/a	
imeout Discards	Delta	60	none	n/a	200	10	4	syslog,rmon	none	n/a	n/a	
redit Loss Reco	Delta	1	none	n/a	1	1 0	4	syslog,rmon	none	n/a	n/a	
Credit Not Available	Delta	1	none	n/a	10%	0%	4	syslog,rmon	none	n/a	n/a	
X Datarate	Delta	10	none	n/a	80%	70%	4	syslog,rmon,obfl	none	n/a	n/a	
K Datarate	Delta	10	none	n/a	80%	70%	4	syslog,rmon,obfl	DIRL	n/a	n/a	
K-Slowport-Oper-Delay	Absolute	1	none	n/a	50ms	Oms	4	syslog,rmon	none	n/a	n/a	
KWait	Delta	1	none	n/a	30%	10%	4	syslog,rmon	DIRL	40%	60%	
K Datarate Burst	Delta	10	none	n/a	5090%	1090%	4	syslog,rmon,obfl	none	n/a	n/a	
nput Errors	Delta	I 60	l none	n/a	1 5	1	1 4	syslog,rmon	l none	n/a	n/a	

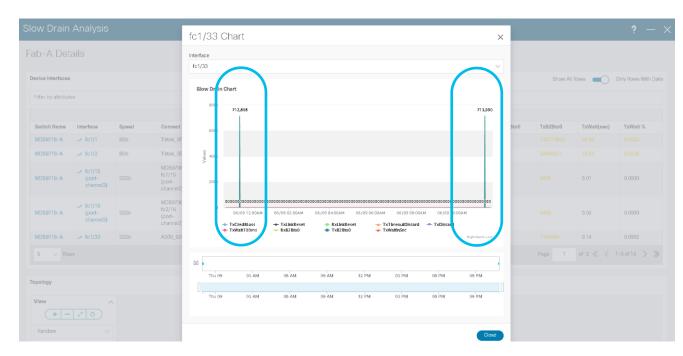

On falling threshold portguard actions FPIN, DIRL, Cong-Isolate-Recover will initiate auto recovery of ports.


NDFC Congestion/Slow-drain Analysis

Best Practice - Run in always-on mode.

Slow-drain analysis is not enabled by default

- After adding a new fabric:
 - · Enable performance monitoring
 - Schedule to run slow drain analysis daily for 24 hours.


DCNM/NDFC slow-drain analysis has minimal/negligible effect on the switches

NDFC Congestion/Slow-drain Analysis

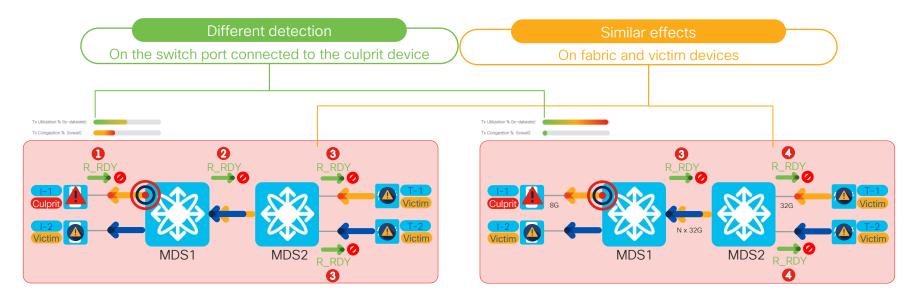
Always-on, historical view with trending and seasonality

- fc1/33 is congested in Tx direction
- TxWait increases but not all the time. Only two spikes in last 12 hours.
- Next Steps -
 - Correlate with host and app. Does it correlate with a cron job on the host?
 - Look at SAN Insights metrics to find the root cause.

SAN Congestion

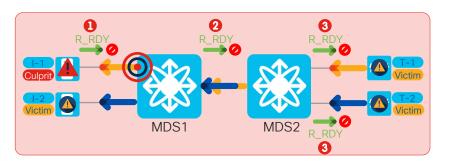
including Slow Drain and Over-Utilization

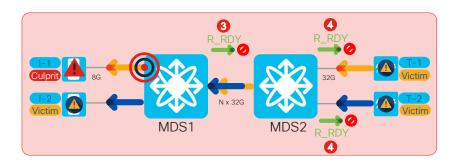
We talked about Detection and Alerting


Now, let's talk about Prevention

SAN Congestion Innovation on Cisco MDS

Different detection


On the switch port connected to the culprit device


Similar effects

On fabric and victim devices

Same Root Cause

The culprit device is receiving more than it can ingest

Different Detection, Similar Effect, Same Root Cause

Different detection

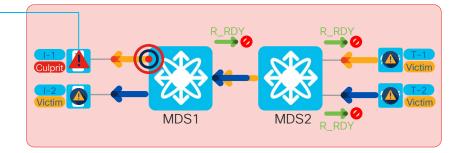
On the switch port connected to the culprit device

Similar effects

On fabric and victim devices

Same Root Cause

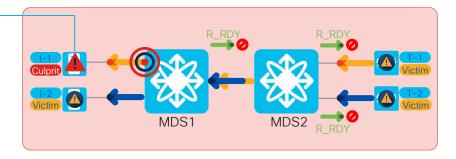
The culprit device is receiving more than it can ingest



The Root Cause of SAN Congestion

The Root Cause

I-1 is receiving more than it can ingest


The Root Cause of SAN Congestion

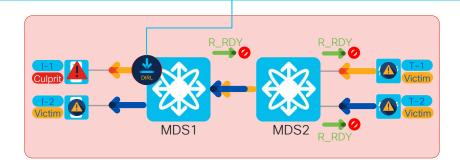
The Root Cause

I-1 is receiving more than it can ingest

Why is I-1 receiving more than it can ingest?

...because I-1 is asking for it.

The Solution

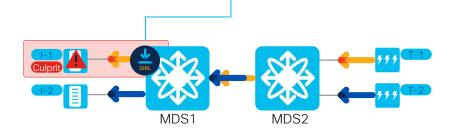

Cisco Dynamic Ingress Rate Limiting

I-1 is asking for more than it can ingest

DIRL limits I-1's asking rate to reduce its receiving rate

DIRL dynamically changes I-1's asking rate to adapt to its traffic profile

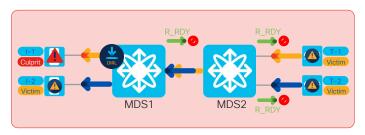
The Solution


Cisco Dynamic Ingress Rate Limiting

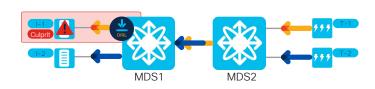
I-1 is asking for more than it can ingest

DIRL limits I-1's asking rate to reduce its receiving rate

DIRL dynamically changes I-1's asking rate to adapt to its traffic profile



DIRL prevents SAN Congestion due to slow-drain and over-utilization.



Cisco Dynamic Ingress Rate Limiting

Without Cisco DIRL

With Cisco DIRL

Cisco Dynamic Ingress Rate Limiting

End-device independent

Upgrading of end-devices is not needed

Adaptive

DIRL dynamically adjusts as per the traffic profile of the host

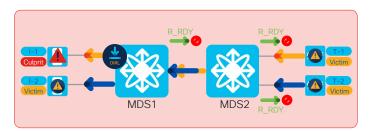
No side effects

Rate limits congested hosts only. Other noncongested hosts and storage ports are not impacted

Easy adoption

DIRL is available on MDS switches after a software-only upgrade.

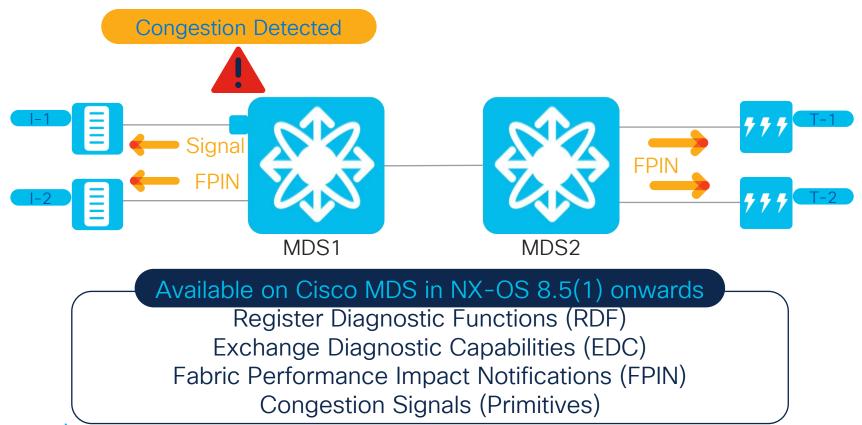
Affordable No additional license


No additional license needed

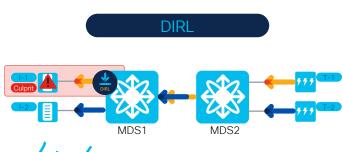
Topology independent

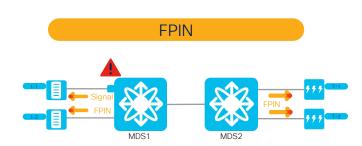
DIRL works in edge-core, edge-core-edge, or collapsed core (single switch fabric) topologies

Without Cisco DIRL

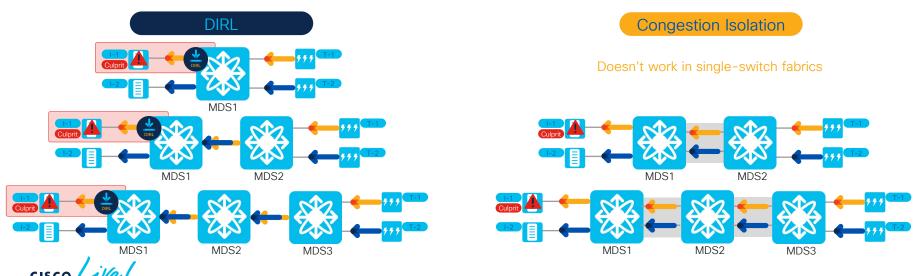


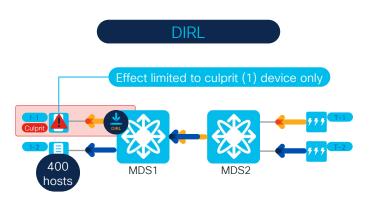
With Cisco DIRL

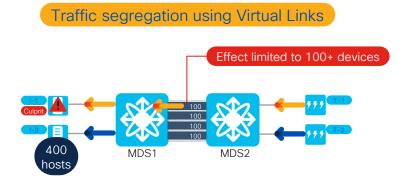



Notifications and Signals in Fibre Channel

DIRL vs FPIN

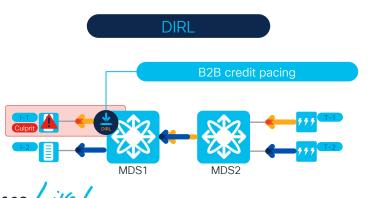

- DIRL helps today. FPIN readiness will take a few years.
 - DIRL is available on existing MDS switch after a software-only upgrade, without any dependency on end devices
 - Although FPIN is supported on MDS switches, action is dependent on the end devices
- DIRL is affordable
 - DIRL and FPIN work on existing MDS switches and don't need an additional license
 - Must upgrade end-devices to benefit from FPIN
- In the future, when you are ready for FPIN, DIRL will continue to be a complementary technology
 - What if a few devices don't react to FPIN and still cause congestion? DIRL within MDS switches will be the protection

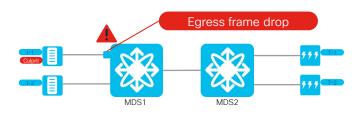

DIRL vs Congestion Isolation


- DIRL is topology independent (shown on this slide)
 - DIRL works in edge-core, edge-core-edge, or collapsed core (single switch fabric) topologies
 - Congestion isolation works by isolating the traffic on ISLs thus it doesn't work in single-switch fabrics.
- DIRL confines congestion to the culprit host only (shown on next slide)
 - DIRL rate-limits the traffic from a congested host without any side effects on storage ports
 - Congestion Isolation confines the effect to the culprit hosts, storage ports that communicate with the culprit host, and all other hosts that communicate with the affected storage ports

DIRL vs Traffic Segregation using Virtual Links

- DIRL is topology independent (shown on previous slide)
 - DIRL works in edge-core, edge-core-edge, or collapsed core (single switch fabric) topologies
 - Virtual links need ISLs, and hence they are of no use in single-switch fabrics
- DIRL confines congestion to the culprit host only (shown on this slide)
 - · DIRL rate-limits the traffic from a congested host without any side effects on storage ports
 - Virtual links confines the effect to the culprit hosts, storage ports that communicate with the culprit host, and all other hosts that communicate with the affected storage ports



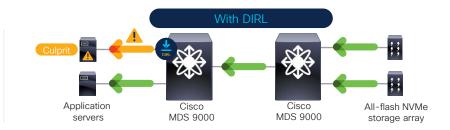


DIRL vs no-credit-drop timeout

- DIRL doesn't drop any frames
 - DIRL limits the traffic from a congested hosts by B2B credit pacing, without dropping any frames
 - No-credit-drop timeout drops frames going to a congested host
- DIRL is more granular
 - DIRL works using TxWait which detects congestion at a granularity of 2.5 microseconds
 - No-credit-drop uses a granularity of 1 ms

No-credit-drop timeout

BRKDCN-3241


Prevent SAN Congestion and Slow Drain

Limit the culprit devices using

Cisco Dynamic Ingress Rate Limiting

to accelerate the performance of all-flash NVMe storage arrays

End-device independent Upgrading of end-devices is not needed

Adaptive

DIRL dynamically adjusts as per the traffic profile of the host

No side effects

Rate limits congested hosts only. Other noncongested hosts and storage ports are not impacted

Easy adoption

DIRL is available on MDS switches after a software-only upgrade.

Affordable No additional license needed

Topology independent

DIRL works in edge-core, edge-core-edge, or collapsed core (single switch fabric) topologies

SAN Congestion Management - Recommendations

- Schedule NDFC/DCNM Slow-drain Analysis to run daily for 24 hours.
- Important for troubleshooting

Proactive

- Configure MDS portmonitor (PMon) for automated alerts and actions.
- Important for congestion prevention using DIRL.

Predictive

- Enable SAN Analytics and SAN Insights for getting visibility into application I/O traffic patterns.
- Important for finding the underlying root cause and predicting congestion

Technical Session Surveys

- Attendees who fill out a minimum of four session surveys and the overall event survey will get Cisco Live branded socks!
- Attendees will also earn 100 points in the Cisco Live Game for every survey completed.
- These points help you get on the leaderboard and increase your chances of winning daily and grand prizes.

Continue your education

- Visit the Cisco Showcase for related demos
- Book your one-on-one Meet the Engineer meeting
- Attend the interactive education with DevNet, Capture the Flag, and Walk-in Labs
- Visit the On-Demand Library for more sessions at www.CiscoLive.com/on-demand

Cisco Learning and Certifications

From technology training and team development to Cisco certifications and learning plans, let us help you empower your business and career. www.cisco.com/go/certs

(CLCs) are prepaid training vouchers redeemed directly with Cisco.

Learn

Train

Certify

Cisco U.

IT learning hub that guides teams and learners toward their goals

Cisco Digital Learning

Subscription-based product, technology. and certification training

Cisco Modeling Labs

Network simulation platform for design, testing, and troubleshooting

Cisco Learning Network

Resource community portal for certifications and learning

Cisco Training Bootcamps

Intensive team & individual automation and technology training programs

Cisco Learning Partner Program

Authorized training partners supporting Cisco technology and career certifications

Cisco Instructor-led and Virtual Instructor-led training

Accelerated curriculum of product, technology, and certification courses

Cisco Certifications and **Specialist Certifications**

Award-winning certification program empowers students and IT Professionals to advance their technical careers

Cisco Guided Study Groups

180-day certification prep program with learning and support

Cisco Continuina **Education Program**

Recertification training options for Cisco certified individuals

Here at the event? Visit us at The Learning and Certifications lounge at the World of Solutions

Related sessions

Session ID	Title	Time and Venue	Speaker
BRKDCN- 3241	Detecting, Alerting, Identifying and Proactively Preventing SAN Congestion	Thursday, Jun 16, 8:00 AM - 8:45 AM PDT Level 2, Lagoon B	Paresh Gupta
BRKDCN- 3645	SAN Insights - Real-time and always-on NVMe visibility at scale	Wednesday, Jun 15, 10:30 AM - 11:15 AM PDT Level 2, Lagoon H	Paresh Gupta
BRKDCN- 3812	Dos and Don'ts of Deploying NVMe Over Fabrics	Tuesday, Jun 14, 2:30 PM - 3:15 PM PDT Level 2, Lagoon H	Kamal Bakshi
PSODCN- 2355	Real-time NVMe and SCSI visibility using Cisco SAN Analytics	Wednesday, Jun 15, 2:00 PM - 2:30 PM PD1 Level 3, South Seas H	Kiran Ranabhor
BRKDCN- 2489	IP Fabric for Storage Networks Best Practice and Design	Wednesday, Jun 15, 4:00 PM - 4:45 PM PD1 Level 3, South Seas D	Nemanja Kamenica
BRKDCN- 1119	Introduction to NDFC: Simplifying Management of Your Data Center	Monday, Jun 13, 9:30 AM - 10:15 AM PDT Level 2, Lagoon G	Parth Patel

Thank you

cisco Live!

