

#CiscoLive

Architecting Next Generation Wireless Network with Catalyst Wi-Fi 6E Access Points

Anand Gurumurthy

BRKEWN-2024

#CiscoLive

Cisco Webex App

Questions?

Use Cisco Webex App to chat with the speaker after the session

How

- **1** Find this session in the Cisco Live Mobile App
- 2 Click "Join the Discussion"
- 3 Install the Webex App or go directly to the Webex space
- 4 Enter messages/questions in the Webex space

Webex spaces will be moderated by the speaker until June 17, 2022.

https://ciscolive.ciscoevents.com/ciscolivebot/#BRKEWN-2024

cisco / ille

Agenda

- Why Wi-Fi 6E?
- 6 GHz Around the world
- Device Classes and Regulations
- 6 GHz AP Discovery
- Security in Wi-Fi 6E World
- Client Interoperability
- Catalyst Wi-FI 6E Access Points
- Migration and Deployment

Wi-Fi Evolution

- 20 years of constant evolution with faster speeds and density
- Shared spectrum in two bands 2.4 GHz and 5 GHz

cisco / ille

20 MHz

2.4 GHz Band

Wi-Fi 1

1999

11B

OPSK

Why is Wi-Fi Bad?

cisco live!

6

Why is Wi-Fi Bad ?

Before Wi-Fi - 6E

Wi-Fi 6 and 6GHz are friends!

cisco ile

Wi-Fi 6E – 6GHz Around the World

cisco live!

Global availability of 6 GHz band for Wi-Fi (https://www.wi-fi.org/countries-enabling-wi-fi-6e)

cisco live!

The new 6 GHz band – Channel Numbering

cisco ivel

6 GHz – New Device Classes

Regulations vary by country

External(SP)/Outdoor Antenna Wi-Fi 6E Status

AFC approval is in-progress only in North America

The new power levels

59 M	25 64 Hz M	25 65 Hz M	25 68 Hz M	375 71 Hz M	25 Hz
Standard Power (indoor-outdoor)	36 dBm EIRP with AFC (500 MHz)	Fre	36 dBm EIRP with AFC (350 MHz)	trol	
Low Power (indoor)	5 dBm / MHz (Max EIRP – 30 dBM)				
Very Low-Power Devices (indoor-outdoor)	(under evaluation) -8 dBm / MHz			•	
Clients	6 dB lower than the AP (LPI: 24 dBM, SP : 30 dBM) ◀				
	U-NII-5	U-NII-6	U-NII-7	U-NII-8	

cisco ile

Low-Power Access Points (indoor)

6 GHz power is measured as **Power Spectral Density (PSD)** a Maximum of 5 dBm/MHz is permitted for LPI

5 dBm = 3.162278 mW

3.162278 mW x 20 MHz = 63.24556 mW = 18 dBm 3.162278 mW x 40 MHz = 126.4911 mW = 21 dBm

Client power also has a PSD rule of 6 dB less than the AP's max EIRP

Note: Indoor AP's with an external antenna, must operate under the Standard Power rules, LPI only applies to I models

Channel BW	AP EIRP	Client EIRP
20 MHz	18 dBm	12 dBm
40 MHz	21 dBm	15 dBm
80 MHz	24 dBm	18 dBm
160 MHz	27 dBm	21 dBm

cisco / illo

Bonded Channels and Noise 5 GHz vs 6 GHz

- A wider channel creates more noise
- Increased noise decreases SNR
- In 5 GHz, every doubling of a channel width • takes a corresponding 3 dB hit in SNR,
- A 3 dB reduction in SNR is equivalent to a 3 dB decrease in the RSSI performance wise
- Wi-Fi 6 E power rules in PSD of 5 dBm/MHz increases the EIRP as the channel gets wider
- This off-sets the corresponding SNR loss •
- Comparing Effective EIRP 6 GHz favors wider channels

802.11a/n/ac/ax

	Effective EIRP Remains Constant in 6 GHz						
Channel Width	20 MHz	40 MHz	80 MHz	160 MHz			
5 GHz, U-NII-1	23 dBm	20 dBm	17 dBm	14 dBm			
6 GHz. U-NII-5 (PSD - 5 dBm/MHz)	18 dBm	21 dBm	24 dBm	27 dBm			
Noise Floor		+3 dB	+6 dB	+9 dB			
Effective EIRP (6GHz, U-NII-5)	18 dBm	18 dBm	18 dBm	18 dBm			

Automatic Frequency Co-ordination

FCC's Universal Licensing System:

https://wireless2.fcc.gov/UIsApp/UIsSearch/searchGeographic.jsp

Automated Frequency Coordination (AFC):

Central database of frequencies, which are available in the AP's same geographical location, and where the AP does not risk to interfere with other systems (e.g. fixed satellites)

Wi-Fi 6E – Protocol Optimizations.

cisco live!

Wi-Fi 6E Beacon Changes Legacy HT/VHT Information Element Removed

Comparison of Wi-Fi 6 and Wi-FI 6E Beacon Frame

Reduced Beacon Size

cisco ile

Multiple BSSID

- Capability originally specified in 802.11v
- Combines multiple SSID information in a single beacon frame

• Mandated in Wi-Fi 6E

cisco Live!

Wi-Fi 6E – AP Discovery

cisco live!

AP Discovery by Wireless Clients – Legacy Methods

Hunt and seek method to scan Basic Service Sets or for APs

Why won't Legacy Scanning Methods scale in 6 GHz ?

- A Whopping 59 x 20 MHz Channels!
- Wi-FI Clients can send only Probe Requests on 20 MHz Channels
- 6 seconds to passive scan all 59 channels.

Wi-Fi 6E - New AP Discovery Mechanisms

Out of Band

Reduced Neighbor Report

Co-located Discovery

In Band

Passive Scan:

Fast Link Setup (FILS) Discovery Frames Unsolicited Probe Response Frames

Active Scan:

Preferred Scanning Channels (PSC)

Reduced Neighbor Report

Co-located "Neighbor" 6 GHz radio information in Beacon and Probe Response of 2.4 and 5 GHz radios.

Wi-Fi 6E Inband AP Discovery

cisco Live!

Fast Initial Link Setup (FILS)

- Part of IEEE 802.11ai Standard
- Addresses Improvement in :
 - Network and BSS Discovery
 - Authentication and Association
 - DHCP and IP address setup

DISTRIBUTION SYSTEM

802.11ax in 6 GHz adopted FILS Discovery Frame to speed up AP

FILS Discovery Frames helps AP Discovery Faster

SMALLER BEACONS THAT IS TRANSMITTED MORE FREQUENTLY (APPROX. 20 MSEC), CONSUMES LESS AIR TIME. CONTAINS INFORMATION FOR THE CLIENT TO DECIDE ON THE AP TO CONNECT (SHORT SSID, CHANNEL, TBTT ETC)

REDUCES PROBE REQUEST OVERHEAD

Reduces Air Time Utilization by Management Frames

cisco / ille

Fast Initial Link Setup (FILS) Discovery Frames

FILS Discovery Frame – Packet Capture

wlan.fixed.publicact == 0x22							Expression
No. Time Source	Destination Pr	rotocol Lengt Signal stre l	nfo				
1 16:57:45.318 68:7d:b4:5e: 2 16:57:45.339 68:7d:b4:5e:	6f:41 ff:ff:ff:ff:ff:ff 8 6f:41 ff:ff:ff:ff:ff:ff 8	02.11 154 -43dBm / 02.11 680 -43dBm E	Action, SN=3947, Beacon frame. SN=	Flags=C 3948. Flags=	C. BI=100. S	SSID=wap3-owe.	SSID=wpa3-SuiteB-GCMP2
3 16:57:45.359 68:7d:	b4:5e:5f:41 ff:ff	f:ff:ff:ff:ff	802.11	154 -43dBm	Action,	SN=3949,	Flags=C
4 16:57:45.379 68:7d	b4:5e:5f:41 ff:ff	f:ff:ff:ff:ff	802.11	154 -43dBm	Action,	SN=3950,	Flags=C
5 16:57:45.399 68:7d	b4:5e:5f:41 ff:ff	f:ff:ff:ff:ff	802.11	154 -43dBm	Action,	SN=3951,	Flags=C
6 16:57:45.420 68:7d	b4:5e:5f:41 ff:ff	f:ff:ff:ff:ff	802.11	154 -43dBm	Action,	SN=3952,	Flags=C
10:37:43-482 06:7(41)4456: 10:57:45.522 68:7(4)4456: 11:6:57:45.524 68:7(4)4456: 13:16:57:45.544 68:7(4)4456: 13:16:57:45.544 68:7(4)4456: 14:16:57:45.544 68:7(4)4456: 15:45:46:46:7(4)456: 15:45:45:46:46:7(4)456: 14:16:17:45:46:46:7(4)45:45: 14:16:17:45:46:46:7(4)45:45: 14:16:17:45:46:46:7(4)45:45: 14:16:17:45:46:46:7(4)45:45: 14:16:17:45:46:46:7(4)45:45: 14:16:17:46:46:7(4)45:45: 14:16:16:16:16:16:16:16:16:16:16:16:16:16:	Titl friffiffiffiff Titl friffiffiffiffiff Still Indicator: 1 Presence Indicator: 0 Sence Indicator: 0 Presence Indicator: 1 Sence Indicator: 0 e e e e	2:11 154 -4308m / 22:11 154 -4308m / 23:11 154 -4308m / 24:11 1	Action, SN=3956, Action, SN=3956, Jaccon frame, SN= Jaccon frame, SN= Action, SN=3950, Action, SN=3950, Action, SN=3950, Action CN=3964 Ce 0	Flags=C Flags=C Flags=C 3958, Flags=C Flags=C flags=C	C, BI=100, S	SSID=wap3-owe,	SSID=wpa3-sae
FD Capability: 4704	104000						
	y: 0						
0.00 000	anatina Ohanaal Widtha O						

Broadcast Action Frames

Contains Short SSID, Channel, TBTT etc

Transmitted every 20 msec

cisco

Unsolicited Broadcast Probe Response

Reduces Probe Request Overhead

Broadcast probe response every 20 msec Contains detailed information as a Beacon

Helps Avoid Probe Storm

Unsolicited Broadcast Probe Response – Packet Capture

A	ply a display filter	<ctrl-></ctrl->					Expression +
No.	Time	Source	Destination	Pro	Broadca	ist _{st}	re Info
	1 16:36:27.556	68:7d:b4:5e:d2:f8	ff:ff:ff:ff:ff:ff			JOURN	Beacon frame, SN=2635, Flags=C, BI=100, SSID=wpa3-sae, SSID=GCMP256, SSID=wpa
	2 16:36:27.577	68:7d:b4:5e:d2:f8	ff:ff:ff:ff:ff:	802.11	550 -	36dBm	Probe Response, SN=2636, Flags=C, BI=100, SSID=wpa3-sae, SSID=GCMP256, SSID=w
	3 16:36:27.597	68:7d:b4:5e:d2:f8	ff:ff:ff:ff:ff	802.11	. 550 -	36dBm	Probe Response, SN=2637, Flags=C, BI=100, SSID=wpa3-sae, SSID=GCMP256, SSID=w
	4 10:30:27.018	68:70:D4:5e:02:18	TT:TT:TT:TT:TT:TT	802.11	. 550 -	360BM	Probe Response, SN=2638, Flags=, BL=100, SSID=wp3-Sae, SSID=GCMP256, SSID=W
	7 659	68:7d:h4:5e:d2:f8	ff.ff.ff.ff.ff.ff	802.11	599 -	36dBm	Probe Response, SN=2639, Flags
Sent	every 20 ms 7,679	68:7d:b4:5e:d2:f8	ff:ff:ff:ff:ff:ff	802.11	550 -	36dBm	Probe Response, SN=2641, Flags=C, BI=100, SSID=wpa3-sae, SSID=GCMP256, SSID=w.
	8 16:36:27.700	68:7d:b4:5e:d2:f8	ff:ff:ff:ff:ff	802.11	550 -	36dBm	Probe Response, SN=2642, Flags=C, BI=100, SSID=wpa3-sae, SSID=GCMP256, SSID=w
	9 16:36:27.720	68:7d:b4:5e:d2:f8	ff:ff:ff:ff:ff	802.11	550 -	36dBm	Probe Response, SN=2643, Flags=C, BI=100, SSID=wpa3-sae, SSID=GCMP256, SSID=w
	10 16:36:27.741	68:7d:b4:5e:d2:f8	ff:ff:ff:ff:ff:ff	802.11	. 550 -	36dBm	Probe Response, SN=2644, Flags=C, BI=100, SSID=wpa3-sae, SSID=6CMP256, SSID=w
	11 10:30:27.701	68:70:04:50:d2:18	ff:ff:ff:ff:ff:ff	802.11	550	26dBm	Beacon Trame, SN=2040, Flags=, BI=100, SSID=Wpa3-Sae, SSID=00MP250, SSID=Wpa Brobo Response SN=2046, Flags=
	13 16:36:27 802	68:7d:h4:5e:d2:f8	ff·ff·ff·ff·ff	802.11	550 -	36dBm	Probe Response, SN-2040, Flags= C BT=100, SSID=wpa3-sae, SSID=COM256, SSID=w.
	14 16:36:27.822	68:7d:b4:5e:d2:f8	ff:ff:ff:ff:ff:ff	802.11	550 -	36dBm	Probe Response, SN=2648, Flags=C, BI=100, SSID=wpa3-sae, SSID=GCMP256, SSID=w
	15 16:36:27.843	68:7d:b4:5e:d2:f8	ff:ff:ff:ff:ff	802.11	550 -	36dBm	Probe Response, SN=2649, Flags=C, BI=100, SSID=wpa3-sae, SSID=GCMP256, SSID=w
	16 16:36:27.863	68:7d:b4:5e:d2:f8	ff:ff:ff:ff:ff	802.11	. 599 -	36dBm	Beacon frame, SN=2650, Flags=C, BI=100, SSID=wpa3-sae, SSID=GCMP256, SSID=wpa…
▶ Fr	ame 2: 550 bytes o	on wire (4400 bits)	, 550 bytes captured	(4400	bits) or	inter	face 0
Ra	diotap Header v0,	Length 56					
80	2.11 radio informa	tion					
	E 802.11 Probe Re	sponse, ⊢iags:					
· 10	Fixed narameters	(12 hvtes)					
÷	Tagged parameters	(454 bytes)					
	Tag: SSID para	mèter sét: ẃpa3-sa@	9				
	Tag: Supported	Rates and BSS Memb	bership Selectors 6.0)(B), 9,	12.0(B), 18,	24(B), 36, 48, 54, [Mbit/sec]
	Tag: Country I	nformation: Country	/ Code US, Environmer	nt Unkno	own (0x0	4)	
	Tag: Power Con Tag: TBC Report	t Transmit Dower: ?	22 Link Margin: A				
	Tag: Free Report	Supported Rates and	d BSS Membershin Sele	ectors F	SS requ	ires s	upport for direct bashing to elements in SAE. [Mbit/sec]
	Tag: QBSS Load	Element 802.11e CO	CA Version		oo roqu	1.00 0	apport for alloce menting to clemente in one, [neithere]
	▶ Tağ: Multiple	BSSID					
	Tag: RM Enable	d Capabilities (5 d	octets)				
	Tag: Extended	Capabilities (11 oc	ctets)				
	Ext Tag: HE Ca Ext Tag: HE On	pablilles (IEEE Std 9	CO 802.11ax/D2.0)				
	Fixt Tag: 66Hz	Band Canabilities	502.11ax/D2.0)				
	▶ Ext Tag: Spati	al Reuse Parameter	Set				
	▶ Ext Tag: MU ED	CA Parameter Set					
	Tag: Vendor Sp	ecific: (null): WMM	1/WME: Parameter Eler	nent			
	Iag: Vendor Sp Tag: Vendor Sp	ecific: (null): Unk	known				
_	rag: venuor sp	ectife: (HUTT)					

Transmitted every 20ms

Broadcast frames

Carry Multiple BSSID

Contains all information needed for association

cisco / ile

New Probe Restrictions in 6 GHz Band

Clients cannot do blind probing. (Broadcast destination address using Wildcard SSID and BSSID not allowed)

Clients must wait at least the duration of minimum probe delay interval (approx. 20 msec)

Probe responses are always broadcast.

Broadcast probe requests and probes with wildcard SSID create probe storm and impacts performance

Preferred Scanning Channels (PSC)

- Every fourth 20MHz channel designated for active probing by Wi-Fi 6E Clients; restricts scanning to 15 channels, instead of 59.
- PSC channels serve as the primary channel for channel bonding in 80 MHz

Key Takeaways

cisco live!

Wi-Fi 6E – Security

cisco life!

Wi-Fi 6E Security

6GHz WLAN Design Considerations

6GHz SSID Requirements

- WPA3 L2 Security: OWE, SAE or 802.1x-SHA256
- Protected Management Frame (PMF) enabled
- Any other L2 security method is not allowed – no mixed mode possible

What options would you have?

- 1. "ALL-IN" option: Reconfigure the existing WLAN to WPA3, one SSID for all radio policies (2.4/5/6 GHz) Most unlikely
- 2. "One SSID" option: Configure multiple WLANs with the same SSID name, different security settings Most conservative
- 3. "Multiple SSIDs" option: Redesign your SSIDs, adding specific SSID/WLAN with specific security settings Most flexible

Most likely your current SSID configuration would prevent it from being broadcasted on 6GHz Note: as 17.9.1, there is a limit of 8 SSIDs broadcasted on 6GHz radio

Opportunistic Wireless Encryption (OWE) Simultaneous Authentication of Equals (SAE) Secure Hash Algorithm (SHA) 256 bit

Wi-Fi 6E Security Deployment Considerations

- Layers of Wi-Fi Security
 - Clients with WPA2/WPA/Open continue to operate in 2.4 and 5 GHz bands.
 - · 6 GHz operates exclusively with WPA3 and Enhanced Open Security
- Use of different SSIDs for 6 GHz band

```
2.4 & 5 GHz Bands

SSID: employees

(WPA2-Enterprise)

SSID: guest

(WPA2-Personal)
```



```
SSID: employees-wpa3
 (WPA3-Enterprise)
SSID: guest-wpa3
 (WPA3-Personal/H2E *)
```

*Note: Only H2E is the supported SAE in 6GHz Band

Wi-Fi 6E/WPA3 Client Security Matrix

Protocol	Encryption	АКМ	Intel AX210	Qualcomm HSPv2 WCN6855	Samsung /Google Android
OWE	AES-CCMP128	OWE	Supported	Supported	Supported
SAE	AES-CCMP128	SAE 6GHz: H2E Only	Supported: H2E only SAE-FT: Windows does not support. SAE-FT: Linux supports it. (No limitation on AX210)	Supported	Supported: H2E only SAE-FT: Galaxy S21 Ultra, Galaxy Z Fold 3 has capable to support, but currently it is disabled. Can be enabled by usermode fw on protos only.

Note: Client Security Matrix with AP Mode as Local

cisco ile

Wi-Fi 6E/WPA3 Client Security Matrix

Protocol	Encryption	AKM	EAP Method	FT-OTA	FT-ODS	Adaptive	Intel AX210	Qualcomm HSPv2 WCN6855	Samsung / Google Android
Enterprise	AES-CCMP128	802.1x- SHA256	PEAP/FAST/TLS	Supported	Supported	Supported	Supported: SHA256 & FT-OTA Not- Supported: <u>EAP-</u> <u>FAST</u> , FT-ODS,	Supported	Supported: SHA256 & FT-OTA Not-Supported: EAP- FAST Not-Supported: FT- ODS
Enterprise	GCMP128	SuiteB- 1X	PEAP/FAST/TLS			Not Supported	Not-Supported	Not- Supported	Not-Supported
Enterprise	GCMP256	SuiteB- 192	TLS				Supported: GCMP256 Not- Supported: <u>EAP-</u> <u>FAST</u> & FT(both FT- OTA & FT-ODS)	Supported: GCMP256	Supported: GCMP256 & FT-OTA Not-Supported: FT- ODS

Note: Client Security Matrix with AP Mode as Local

cisco live!

Wi-Fi 6E – Client Eco System

cisco live!

cisco livel

Catalyst Wi-Fi 6E Access Points

Cisco Wi-Fi innovations For every major change in WLAN over the last 20+ years

Common Hardware

One Product – Two personas

DNA Persona C9800 & DNAC Stack

Meraki **Persona** MR Dashboard Stack

Cisco Wi-Fi 6E Portfolio Common Platforms will have CW PIDs

MR and C series APs are not convertible

Cisco Catalyst Wireless 6E Access Points

Conversion overview

Call Meraki Support (Needs license)

cisco / ile

Wi-Fi 6E Migration and Deployment Guidelines & Pointers

Deploying and Migrating to Wi-Fi 6E Recommendations, Tips and Tricks

By Simone Arena

cisco

BRKEWN-2038 Wi-Fi 6E is Here! Are you	Power Considerations	Migrating to 6GHz	BRKEWN-3005 Cisco Catalyst Wi-Fl, Understanding Wi-Fi 6/6E
Ready ? June 14 th - 10.30 A.M By Simone Arena	Recommendation: 802.3bt (UPoE) is the suggested power input used. Top of Mind: For Brownfield, c areas per AP is now 1,500-2,00		and Beyond June 13 th - 2:30 P.M By Jim Florwick
mGig Switching	Note: CW LP APs have full radio capability with at power. 802.3at (PoE+) and 802.3af (PoE) are also supported by Catalyst Access Points.	Legacy clients must still be considered. Shorter Distance = Better Data Rate	
Recommendation: To use mGig switch			
with 5 Gbps capability Better user experiences with		Security Requirements	Standard Power AP
speeds beyond 1 Gbps on Cat 6/6A Cables. Cat 5e supports upto 2.5 Gbps	BRKEWN-2038 Wi-Fi 6E is Here! Are you Ready ?	Mandatory: WPA3 is required for Wi-Fi 6E Networks to be enabled.	Note: Only US and Canada has the authorized the use of SP APs and needs AFC
BRKEWN-2038 Wi-Fi 6E is Here! Are you	June 14 th - 10.30 A.M By Simone Arena	WPA3 was not required for prior Wi-Fi generations; hence, must be top of mind.	AFC Certification is not yet available. Note: Other countries have not yet authorized the use of SP APs

Note: AP Device Pack is not available for IOS XE 17.6, 17.7+ is needed to adopt 6 GHz

Backup Slides

PDKE

cisco live!

Wi-Fi 6E 6GHz Restrictions

6 GHz LPI operation: US/Canada and EU

US and Canada

<u>"Access points</u> operating under the provisions of paragraphs (a)(5)* and (a)(6) of this section must employ a permanently attached integrated antenna."

FCC 15.407(a)(9) *Indoor access point operating in the 5.925-7.125 GHz band...5 dBm/MHz/30 dBm EIRP (LPI operation)

"Low-Power Indoor Access Point--limited to indoor use. Must not have a weatherized enclosure..."

FCC 987594 DO3 U-NII 6 GHz Q&A v01 p.1

Indoor access point: An access point operating in locations completely enclosed by walls and a ceiling. Indoor access points: have a permanent antenna; ...and do not have a weatherized enclosure.

Canada RSS-248 Section 3, p2

European Union/CEPT nations

LPI WAS/RLAN devices shall comply with the.. conditions below: Category of device: An LPI access point or bridge that is supplied power from a wired connection, has an integrated antenna and is not battery powered.

CEPT report 75 A1.2 Table 1

LPI AP/bridge sub-category devices shall be designed with one or more integral antenna(s) as a fixed part of the equipment, i.e., without externally accessible connectors to prevent the connection of another antenna by a user.

ETSI EN 303 687 V0.0.14 (draft) 4.3.9.2.2

F. Anderson 14 Feb 2022

Wi-FI 6E WLAN Configuration – Example 1

_ . _ . _ .

CISCO

Add a separate WLAN with different SSID name for WPA3 and broadcast it in all bands. Leave the existing WLAN/SSID untouched.

Legacy SSID	General Security Advanced Profile Name* merred Radio Policy () SSD* internal Global Status VALAN D* 10 Status Status ISMARD Status Broadcast SSD ISMARD Status 2.4 Girl VALEND Status Broadcast SSD ISMARD Status	Ormania Security Advanced Layer2 Layer3 AA • WAA Static WEP None MCC Pittering • None Lobby Admin Access • Static WEP None WAA Parameters • WAA2 • Pairsy • Fairsy Main • Contraction • Contractin and tractions and tractin and tractions and tracti	 Existing WPA/WPA2 SSID in 2.4 and 5GHz for legacy clients
New SSID	General Socurity Advanced Profile Name* Internal-WPA3 Radio Policy ① SSD* Internal-WPA3 Contract for action WLAN ID* 1 Status Evalue 0 Straus Evalue 0 Of Gitz What Evalue 0 Broadcast SSD Evalue 0 5 Gitz Status 2.4 Gitz Status 2.4 Gitz Status Status Evalue 0 Status Contract for action	Layer2 Layer3 AA WM4 + WM2 WM2 + WM3 Static WBP Nore MC Fitning	 Dedicated SSID for WPA3 capable clients in all bands. This is the SSID for 6GHz

Wi-FI 6E WLAN Configuration – Example 2

Redesign the WLANs, reserving each band for a specific device/use case

Wi-FI 6E WLAN Design Considerations

- Cleanest option from a client compatibility point of view
- More secure options as clients can adopt WPA3 security
- WPA3 clients can roam across different bands

- Additional SSIDs to manage and broadcast
- Need to manage additional SSID profiles on clients

Catalyst AP to Switch connection

AP negotiates power, speed and duplex at boot time via CDP/LLDP

MGig switchport is recommended as Wi-Fi 6/6E speed may exceed 1 Gbps

Cabling: Cat 6/6A recommended. Cat 5e can support up to 5Gbps

Apply the recommended switchport settings for AP in Local or Flex mode

AP Power Consumption

PoE Power Negotiation happens at boot time through CDP/LLDP

Power allocation is what you need to consider for power budget

Actual Power consumption is dependent on the AP operation

cisco ile

Networking Wi-Fi 6/6E

Learn from experts on wireless topics such as WiFi6 an WiFi6E standards enhancements. You will understand what you need to know about designing for 6GHz, migrating from AireOS to Catalyst 9800, and what you need to know about 5G and WiFi6E coexistence.

June 15 | 10:30 a.m. BRKEWN-1742 7 Ways to Fail - on Wi-Fi 6(E)

START

June 14 | 10:30 a.m. BRKEWN-2038 Wi-Fi 6E is Here! Are You Ready?

June 13 | 9:30 a.m.

BRKEWN-2024

Architecting Next Generation Wireless Network with Catalyst Wi-Fi 6E Access Points

June 16 | 8:00 a.m.

BRKEWN-2030

WiFi6 and Private 5G for the Enterprise – a 'Better Together' Journey

June 13 | 2:30 p.m. BRKEWN-3005

Cisco Catalyst Wi-Fi, Understanding Catalyst Wi-Fi 6/6E and Beyond

June 15 | 4:00 p.m.

BRKEWN-2338

Catalyst Wireless – How to Successfully Migrate to Catalyst 9800

FINISH

June 12 | 9:00 a.m.

Cisco Catalyst Wireless Mobility Lab

cisco live!

If you are unable to attend a live session, you can watch it On Demand after the event.

Technical Session Surveys

- Attendees who fill out a minimum of four session surveys and the overall event survey will get Cisco Live branded socks!
- Attendees will also earn 100 points in the Cisco Live Game for every survey completed.
- These points help you get on the leaderboard and increase your chances of winning daily and grand prizes.

Cisco Learning and Certifications

From technology training and team development to Cisco certifications and learning plans, let us help you empower your business and career. www.cisco.com/go/certs

Pay for Learning with Cisco Learning Credits

(CLCs) are prepaid training vouchers redeemed directly with Cisco.

E Learn

Cisco U.

IT learning hub that guides teams and learners toward their goals

Cisco Digital Learning

Subscription-based product, technology, and certification training

Cisco Modeling Labs

Network simulation platform for design, testing, and troubleshooting

Cisco Learning Network

Resource community portal for certifications and learning

En Train

Cisco Training Bootcamps Intensive team & individual automation and technology training programs

Cisco Learning Partner Program

Authorized training partners supporting Cisco technology and career certifications

Cisco Instructor-led and Virtual Instructor-led training

Accelerated curriculum of product, technology, and certification courses

E Certify

Cisco Certifications and Specialist Certifications

Award-winning certification program empowers students and IT Professionals to advance their technical careers

Cisco Guided Study Groups

180-day certification prep program with learning and support

Cisco Continuing Education Program

Recertification training options for Cisco certified individuals

Here at the event? Visit us at The Learning and Certifications lounge at the World of Solutions

Continue your education

- Visit the Cisco Showcase for related demos
- Book your one-on-one Meet the Engineer meeting
- Attend the interactive education with DevNet, Capture the Flag, and Walk-in Labs
- Visit the On-Demand Library for more sessions at <u>www.CiscoLive.com/on-demand</u>

CISCO The bridge to possible

Thank you

#CiscoLive

#CiscoLive