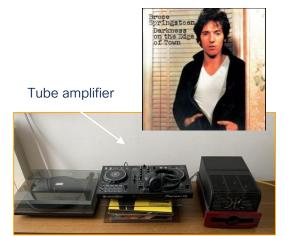
cisco Live!

Wi-Fi 6E is Here!

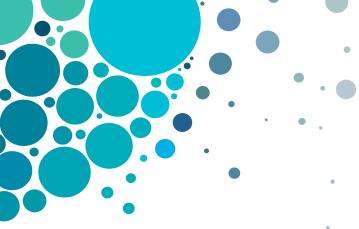
Are You Ready?

Simone Arena, Principal Technical Marketing Engineer

BRKEWN-2038



The Boss, what else??

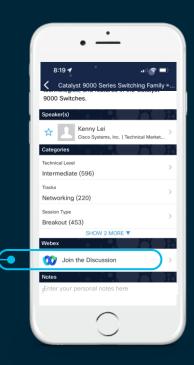


cisco life!

Why Wi-Fi 6E

- Are you ready?
 - Setting the stage..
 - Access Point Deployment
 - Radio Frequency Design
 - Wireless Network Design
- Conclusions

Cisco Webex App


Questions?

Use Cisco Webex App to chat with the speaker after the session

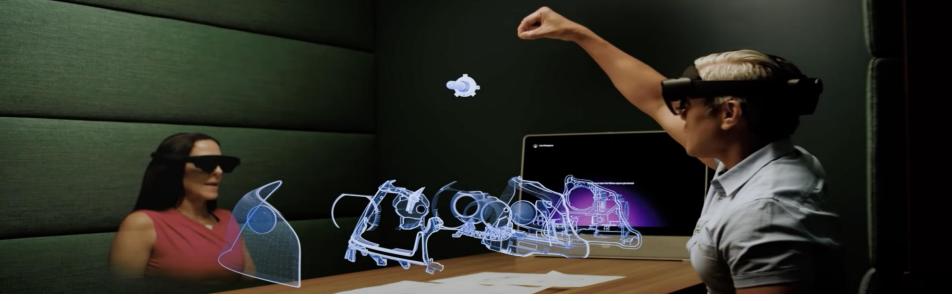
How

- 1 Find this session in the Cisco Live Mobile App
- 2 Click "Join the Discussion"
- 3 Install the Webex App or go directly to the Webex space
- 4 Enter messages/questions in the Webex space

Webex spaces will be moderated by the speaker until June 17, 2022.

https://ciscolive.ciscoevents.com/ciscolivebot/#BRKEWN-2038

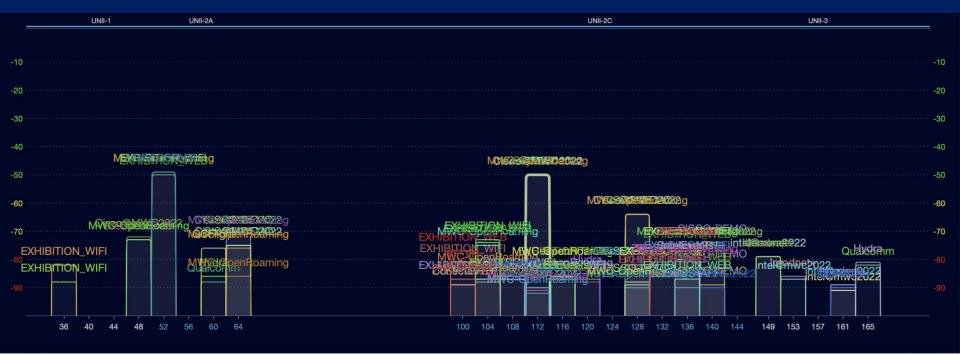
BRKEWN-2038


Shall I adopt 6Ghz now?

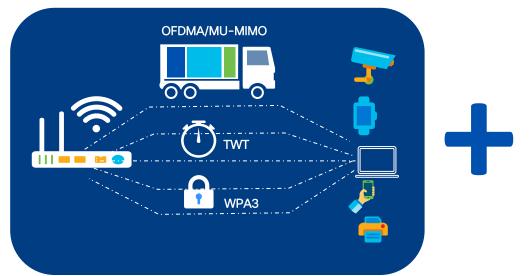
Immersive Experiences of Today...

Webex Hologram https://www.youtube.com/watch?v=YEx7h0NKnXE

and Tomorrow...


It's all About the Wireless Experience!

- New technology trends > new requirements:
 - More IoT devices, M2M communication > high density and critical communication
 - SLA-bound applications, video and delay sensitive apps > need for less latency, minimal jitter
 - VR/AR and High-resolution video > more throughput


Wi-Fi 6 is all about efficiently use the spectrum...

What is the Problem?

- Existing 2.4 GHz and 5 GHz spectrum is congested
- Legacy clients
- No way to use 80 or 160 MHz channels

Extending the Capabilities of Wi-Fi 6 to clean 6GHz spectrum

- √ 1200 MHz spectrum
- ✓ Greenfield 6GHz band!
- ✓ No legacy devices
- ✓ No DFS (for radar)
- ✓ Legacy Interference Free!

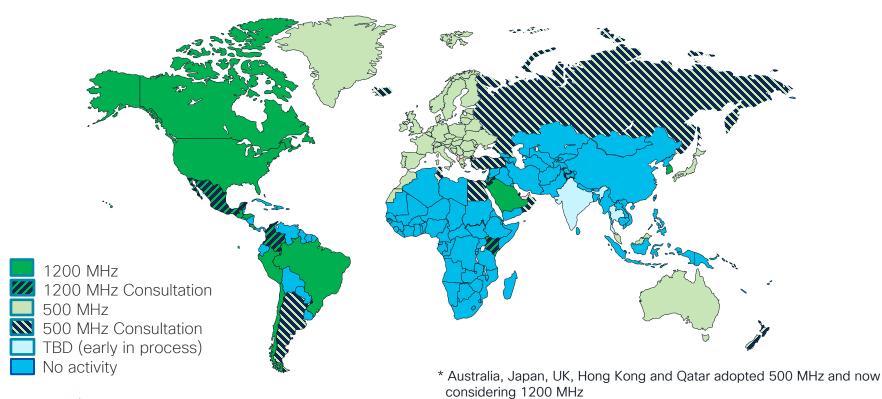
Orthogonal frequency-division multiple access (OFDMA) Multiple User, Multiple Input, Multiple Output (MU-MIMO) Target Wait Time (TWT)

Wi-Fi Protected Access v3 (WPA3). | Dynamic Frequency Selection (DFS). |

GHz = gigahertz MHz = megahertz

Are you Ready for Wi-Fi 6E?

Wi-Fi Network design Adoption/Migration RF design WLAN/SSID design AP coverage AP deployment · AP density Choose the right AP model RRM for 6GHz AP specs Power requirements Setting the stage... Switching infrastructure Regulatory considerations Client ecosystem Wi-Fi 6E AP type AP = Access Point Radio Resource Management (RRM) Radio Frequency (RF) WLAN = Wireless LAN SSID = Service Set IDentifier


Setting the stage...

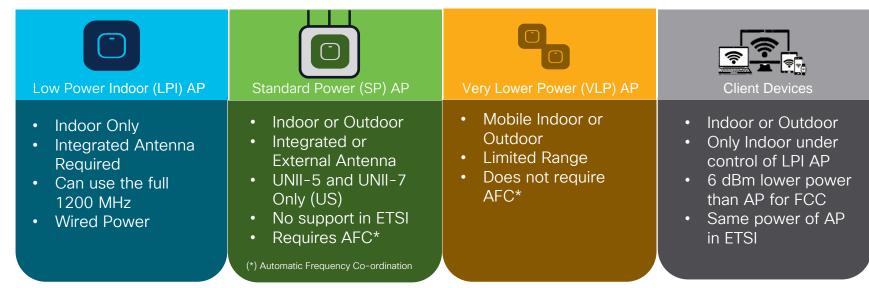
Setting the stage...

- · Regulatory considerations
- Client ecosystem
- Wi-Fi 6E AP type

Global availability of 6 GHz band for Wi-Fi (https://www.wi-fi.org/countries-enabling-wi-fi-6e)

Wi-Fi 6E Client Device Eco System

Wide range of client support ..



Laptops with Intel AX210/AX211/AX411 Chipset

https://www.androidcentral.com/these-android-phones-support-wi-fi-6e https://www.intel.com/content/www/us/en/products/details/wireless/wi-fi-6e-series.html

6 GHz - New Device Classes

- Wi-Fi 6E introduces new device classes for optimized capability
- Regulations vary by country

AP Deployment

AP deployment

- · Choose the right AP model
- AP specs
- · Power requirements
- · Switching infrastructure

Setting the stage...

- · Regulatory considerations
- · Client ecosystem
- Wi-Fi 6E AP type

Cisco Catalyst Wireless (CW) 6E Access Points

Ideal for Small to Medium-sized deployments

Mission Critical, Performance

CW9162*

- 2x2 + 2x2 + 2x2
- 2.5 Gbps mGig
- Power: PoE, DC Power
- IoT ready + Bluetooth 5.x
- iCAP for Management Frames
- USB 4.5 W

(*) Available with IOS-XE 17.9.2

CW9164

- 2x2, 4x4, 4x4
- 2.5 Gbps mGig
- Power: PoE, DC Power
- IoT Ready + Bluetooth 5.x
- iCAP for Management Frames
- USB- 4.5 W

- 4x4 + 4x4 + 4x4 (XOR 5/6)
- 5 Gbps mGig
- Power: PoE, DC Power
- IoT ready + Bluetooth 5.x
- USB 4.5W
- Full Packet Capture (iCAP)
- Environmental Sensor
- Zero-Wait DFS*

C9136

- 4x4, 8x8, 4x4 /4x4, 4x4+4x4, 4x4
- Dual 5 Gbps mGig
- Power: PoE only
- IoT ready + Bluetooth 5.x
- Environmental Sensor
- PoE and Link Redundancy
- Full Packet Capture (iCAP)
- Zero-Wait DFS*
- USB 9W

*Available in Future

Full radio capability (6 GHz @ LPI) on single 30W PoE+

Dedicated Radio for CleanAir Pro

Same Brackets

Same Industrial Design

AP Power Optimization

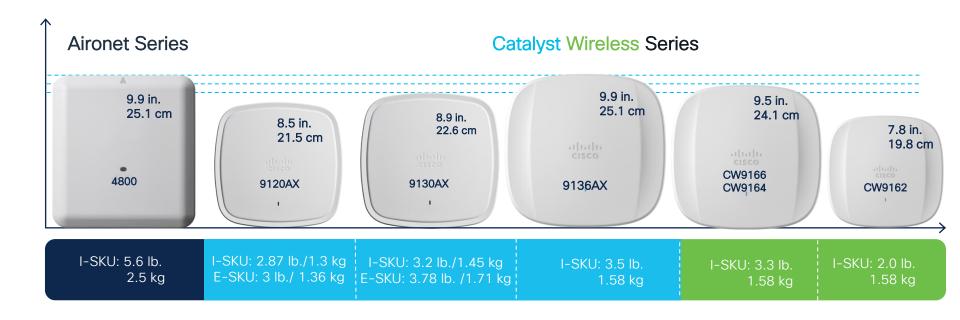
More on 6GHz and Cisco Wi-Fi 6E APs?

Architecting Next Generation Wireless Network with Catalyst Wi-Fi 6E Access Points - BRKEWN-2024

Anand Gurumurthy, Technical Marketing Engineering Technical Leader, Cisco Systems, Inc.

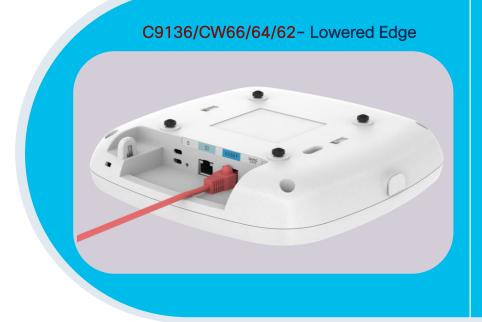
! Schedule

Monday, Jun 13 | 9:30 AM - 10:15 AM PDT


This session deep dives into the newly introduced Wi-Fi6E standard in 6GHz band. It begins with an overview of the 6GHz band and the worldwide regulations and then dives into the specifics of WI-FI 6E protocol including device classes and AP discovery. The session covers aspects of the protocol optimization introduced for the clients to discover the WLANs and AP in 6 GHz band. Security in the 6GHz WI-FI 6E world is now mandated with WPA3 This session covers the key WI-FI 6E security takeaways that the end user needs to be aware of. This session also covers technical deep dive of the new converged Wi-Fi 6E Access Point and walks through the deployment options with Onprem and Cloud, features, capabilities, power requirements and migration.

You can watch the recording of this great session from Anand!

Indoor Access Point Dimensions


Wi-Fi 6E - Similar in size but significantly more capabilities

Catalyst C9136/CW9166/9164/9162

Enhanced cabling experience

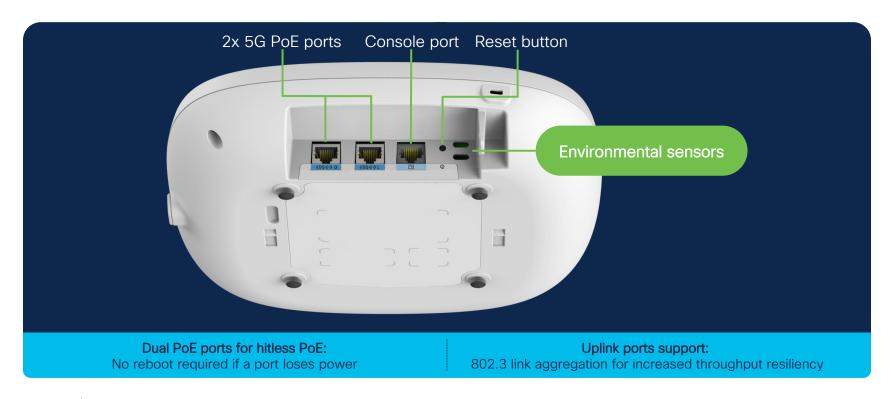
C9130 - Higher Edge and Smaller Area

Larger Recessed Area
Allow Wires not to be Bent During Connection

More Easily Accessible Port
Allow for Better Deployment Experience

Catalyst CW9166/64/62

Ports and connections


* Environmental Sensors Available only in CW9166

BRKEWN-2038

Catalyst 9136 ports

Ports and connections

BRKEWN-2038

AIR-AP-BRACKET-1 photos

AIR-AP-BRACKET-2 photos

BRKEWN-2038

What about 6E AP with external antennas?

Two important things:

- C9136 and CW916x are LPI access points
- In FCC LPI can only have internal antennas

A. Low-power indoor access points (6ID) operating in the 5.925-7.125 GHz band

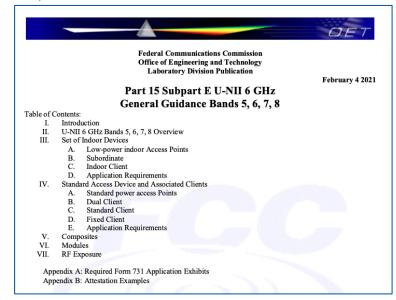
A low-power indoor access point (6ID) is a device that operates in a master mode as defined in Section 15.202, which can transmit without receiving an enabling signal. This mode can select a channel and initiate a network by sending enabling signals to client devices. A low-power indoor-

Limited to indoor locations, have integrated antenna

These devices ar limited to indoor locations, have an integrated antenna, and cannot use a weatherized enclosure.

Low-power indoor access points devices are prohibited on oil platforms, cars, trains, boats, and aircraft, except large aircraft while flying above 10,000 feet.

Low-power indoor access points must be powered by a wired connection and not by battery power [7]. Low-power indoor access points may use battery backup only during power outages.

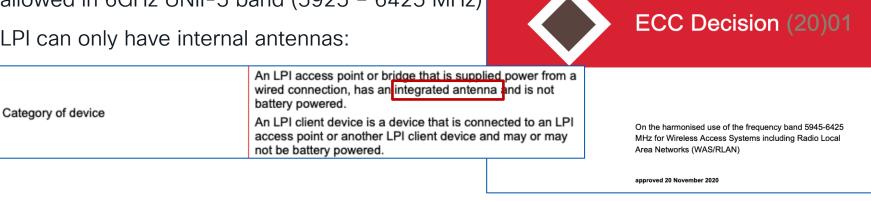

Label information required in the exhibit types ID Label/Location Info

FCC ID
Indoor Use only [13]
E-labelling is permitted on devices qualifying for e-labelling.

The device user manual must contain the following information. The user manual must be filed as an exhibit in the application filing [14].

- FCC regulations restrict the operation of this device to indoor use only.
- o The operation of this device is prohibited on oil platforms, cars, trains, boats, and aircraft,

Part 15 Subpart E U-NII 6 GHz General Guidance Bands 5, 6, 7, 8



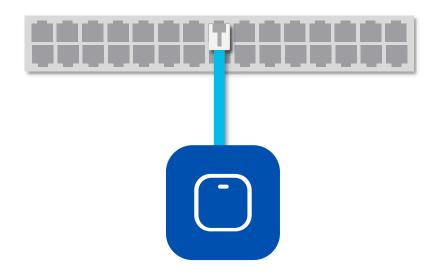
FCC = Federal Communications Commission

What about 6E AP with external antennas? ETSI

Two important things:

- In EU, as per ECC document, only LPI (Low Power Internal) and VLP (Very Low Power) are allowed in 6GHz UNII-5 band (5925 - 6425 MHz)
- LPI can only have internal antennas:

https://docdb.cept.org/download/1448


ECC/DEC/(20)01 document

ECC = Electronic Communications Committee

Catalyst AP to switch connection

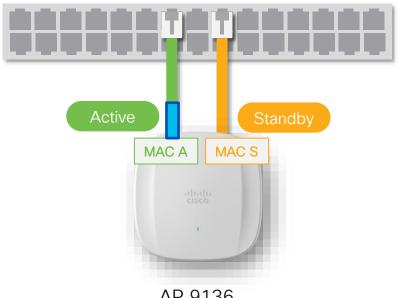
AP negotiates power, speed and duplex at boot time via CDP/LLDP

MGig switchport is recommended as Wi-Fi 6/6E speed may exceed 1 Gbps

Cabling: Cat 6/6A recommended. Cat 5e can support up to 5Gbps

CDP = Cisco Discovery Protocol
LLDP = Link Layer Discovery Protocol

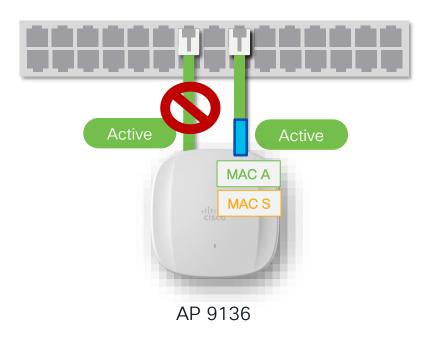
Cat = Category (of ethernet cable)


C9136 has two mGig uplink ports

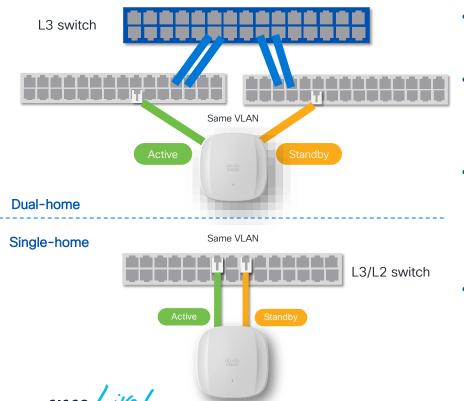
Dual port is for PoE power and uplink redundancy with hitless failover

Switchport and AP can be configured for LAG or standalone ports (default)

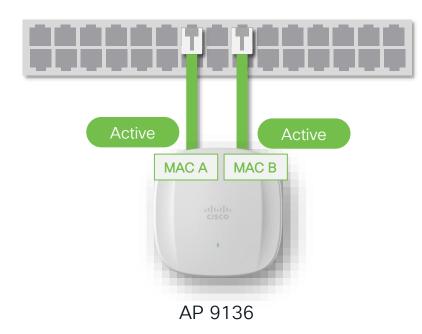
mGig = multi gigabit ethernet PoE = Power over Ethernet LAG = Link Aggregation Group



- When configured as standalone ports, one becomes active and the other one standby
 - If power is equal on both ports, Port 0 becomes active. Otherwise, the one with more power
- Traffic is exchanged on active port using active MAC A (CAPWAP, ARP, etc.)
- Standby port only exchanges CDP/LLDP messages with its own MAC S, no other traffic


AP 9136

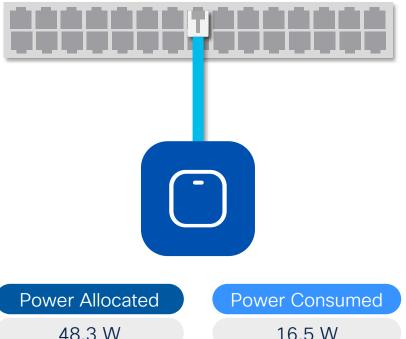
MAC = Media Access Control ARP = Address Resolution Protocol CAPWAP = Control and Provisioning of Wireless Access Points


- When configured as standalone ports, one becomes active and the other one standby
 - If power is equal on both ports, Port 0 becomes active. Otherwise, the one with more power
- Traffic is exchanged on active port using active MAC A (CAPWAP, ARP, etc.)
- Standby port only exchanges CDP/LLDP messages with its own MAC S, no other traffic
- In case of active port failure, standby becomes active and exchanges traffic using MAC A. Minimal to zero traffic interruption

- When configured with standalone ports, you have two options...
- Dual-home to two different switches
 - Recommend to connect to switches in different IDF, whenever possible
- Single-home to one logical switch (Stack Wise, vPC, Multi-layer switch, etc.)
 - Recommend to connect to two different members of the stack or line-cards
- In both scenario, the switchports must be configured in the same VLAN

VLAN = Virtual Local Area Network IDF = Intermediate Distribution Frame vPC = virtual Port Channel

- When configured with LAG, both ports are Active
- LAG must be configured on both AP and switchport side.
- AP supports static LAG config (mode on) or dynamic with LACP
- Traffic is load balanced across the two links using src-dst-port algorithm. CAPWAP uses random source UDP ports
- LAG must be connected to one single (physical or logical) switch


LACP = Link Aggregation Control Protocol src-dst-port = source-destination-port

Power considerations

AP Power Consumption

PoE Power Negotiation happens at boot time through CDP/LLDP

Power allocation is what you need to consider for power budget

Actual Power consumption is dependent on the AP operation

48.3 W

16.5 W

Catalyst CW9164 Power over Ethernet

Default Configuration (Fixed Power profile)

Power Source	Number of Spatial Stream	2.4 GHz Radio	5 GHz Radio	6 GHz Radio	mGig Link Speed	USB	AI/ML Driven Scanning Radio
802.3af	n.a.	Disabled	Disabled	Disabled	1G	Disabled	Υ
802.3at	10	2x2	4x4	4x4	2.5G	Disabled	Υ
802.3bt	10	2x2	4×4	4×4	2.5G	Y/4.5 W	Υ
DC Power	10	2x2	4x4	4x4	2.5G	Y/4.5 W	Y

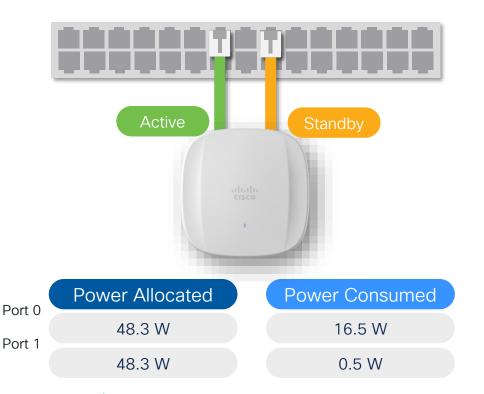
Note:

- 1. AIR-PWRINJ7 is C9164l's official 802.3bt Power Injector
- 2. Actual Power Draw data will be available later (as final testing is in progress)

USB = universal serial bus AI = Artificial Intelligence ML = Machine Learning

Catalyst CW9166 Power over Ethernet

Default Configuration (Fixed Power profile)


Power Source	Number of Spatial Stream	2.4 GHz Radio	5 GHz Radio	5 GHz /6 GHz Radio (LPI)	mGig Link Speed	USB	AI/ML Driven Scanning Radio
802.3af	n.a.	Disabled	Disabled	Disabled	1G	Disabled	Υ
802.3at	12	4x4	4×4	4×4	5G	Disabled	Υ
802.3bt	12	4x4	4×4	4×4	5G	Y/4.5 W	Υ
DC Power	12	4x4	4x4	4×4	5G	Y/4.5 W	Υ

Note:

- 1. AIR-PWRINJ7 is C9166l's official 802.3bt Power Injector
- 2. Actual Power Draw data will be available later (as final testing is in progress)

Catalyst 9136 Power Consumption (dual port)

Both ports negotiate power and need to be considered for budget

If no-LAG, Standby port consumes very little power

If LAG, both ports are active, and they both draw power

BRKFWN-2038

Catalyst 9136l Power over Ethernet

Default Configuration (Fixed Power profile)

Power source	Number of spatial streams	2.4-GHz radio (slot 0)	Primary 5-GHz radio (slot 1)	Secondary 5-GHz radio (slot 2)	6-GHz radio (slot 3)	mGig PHY 0 link speed	mGig PHY 1 link speed	USB	AI/ML- driven scanning radio	Env. sensors	Max power draw
802.3af (PoE)	0	Disabled	Disabled		Disabled	1G	Disabled	Disabled	Υ	Υ	14W
802.3at (PoE+)	8	2x2	4x4	Disabled	2x2	2.5G	2.5G (Standby)	Disabled	Υ	Υ	24.4W
802.3bt (UPOE)	16	4x4	8x8 or	dual 4x4	4x4	5G	5G	Yes/9W	Υ	Υ	47.3W

Note:

- 1. Slot 2 can operate only together with slot 1 in 8x8 mode. Independent slot 2 operation is not supported until a future software release.
- 2. AIR-PWRINJ7 is the 9136l's official 802.3bt power injector.

cisco Live!

PHY = Physical layer

PoE = Power over Ethernet

UPoE = Universal Power over Ethernet

RF Design

AP deployment

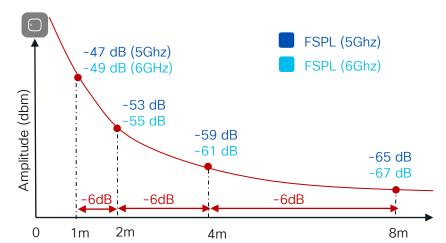
- · Choose the right AP model
- AP specs
- · Power requirements
- · Switching infrastructure

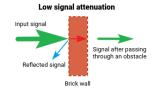
RF design

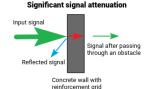
- AP coverage
- RRM for 6GHz

Setting the stage...

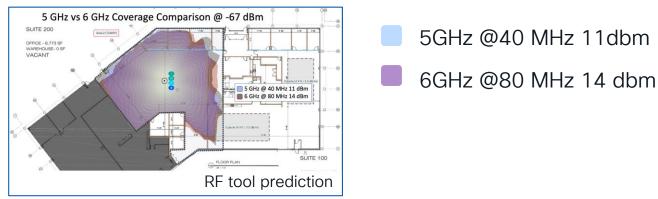
- · Regulatory considerations
- Client ecosystem
- · Wi-Fi 6E AP type


AP density




What you need to consider?

- Path Loss (FSPL)* Path loss in the first meter is on average 2dB higher at 6GHz vs. 5GHz. After that, the 6 dB rule applies: doubling the distance results in a 6 dB loss, regardless of the frequency
- Cell Size At 6 GHz @ same power level cell is smaller vs. cell size at 5 GHz
- Absorption/Reflectance 6 GHz will be attenuated more through wall or other surface
- Noise floor at 6 GHz is much lower than 5 GHz, at least for some time ©
- Coverage type: Today 6GHz is indoor only

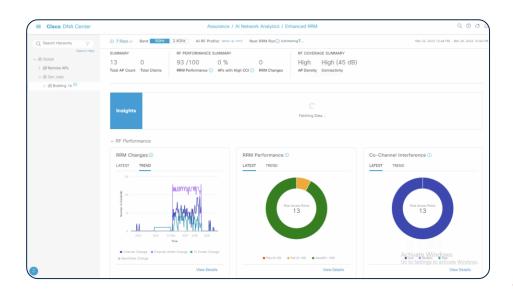


RF Design considerations

- AP antenna patterns at 6GHz are similar to 5GHz
- AP coverage between 5GHz and 6GHz will be similar, especially in open spaces BUT it does require to compensate with power > 3dB higher in 6GHz

 With brick walls, elevator and other environments, you would probably need to measure and add few APs

RF Design considerations


- 1:1 AP replacement for brownfield, assuming:
 - Cell size 1500/2000 ft² (140 190 m²) with 10 ft.
 (3 m) ceiling height
 - Power levels of 11-15 dBm in 5 GHz > power can easily be adjusted upward for 6 GHz to match 5GHz cell coverage

- For greenfield, a site survey is recommended: leverage the new site survey mode on Cisco Wi-Fi 6E APs
- Mixing Wi-Fi6E APs with existing APs in the same area is not recommended > avoid "salt & pepper" design if you can

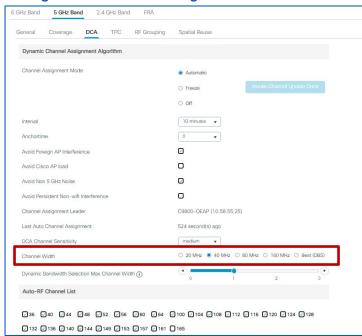
Al Enhanced RRM

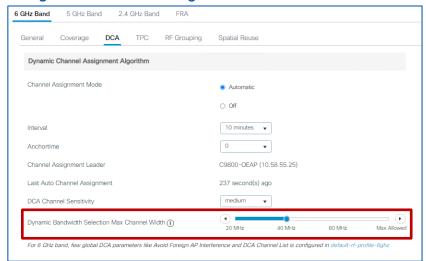
Al-Enhanced RRM Early Adoption Program!

Customer Benefit: Direct access to the AI-Enhanced RRM Team to have this solution deployed on your network ASAP!

Minimum requirements:

- Cisco DNA Center 2.3.2 or later
- 2. Catalyst 9800 17.7.1 or later
- Use Cisco DNA Center Automation

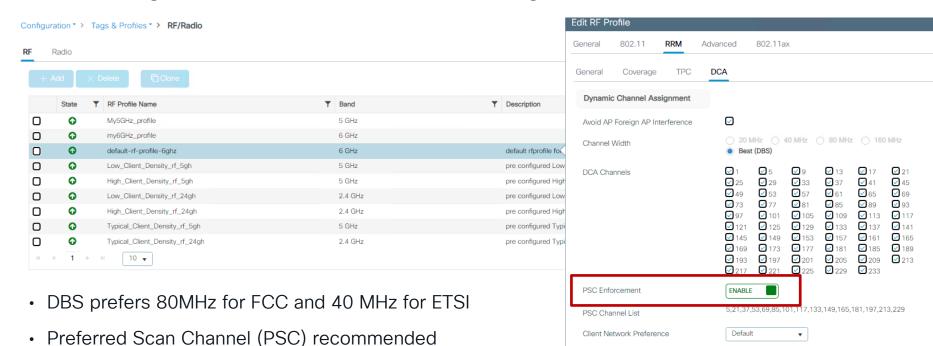

Email AIRRM-adoption@cisco.com to get started today!


RRM for 6GHz: Where are my channels??

...and a bunch of other DCA and TPC settings?

Configuration > Radio Configurations > RRM > 5GHz

Configuration > Radio Configurations > RRM > 6GHz



VS.

Do you you notice anything else here?

RRM for 6GHz

RRM settings are under 6GHz RF Profile configuration:

cisco life!

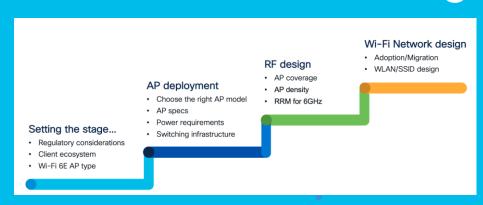
Want to know more about RF design?

Cisco Catalyst Wi-Fi, Understanding Catalyst Wi-Fi 6/6E and Beyond - BRKEWN-3005

Jim Florwick, Technical Marketing Engineering Technical Leader, Cisco Systems, Inc. - Distinguished Speaker

■ Schedule Monday, July

Monday, Jun 13 | 2:30 PM - 3:15 PM PDT

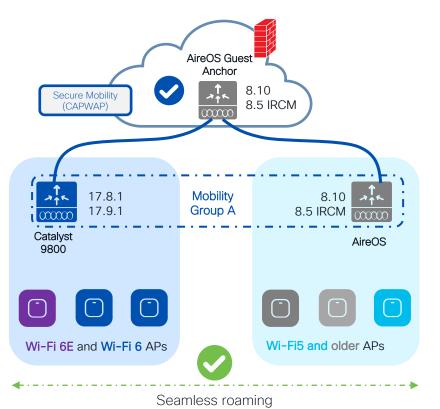

Learn the RF design and implementation guidelines necessary to plan, configure, and implement Wi-Fi to meet the evolving regulatory (6 GHz) and customers RF demands. Wi-Fi is changing and there has never been a more exciting time to be in wireless. Learn about Cisco's newest Catalyst Wireless Access Points and Antenna's including the latest Wi-Fi 6E Access Point and the new Wi-Fi 6 stadium antennas. Learn and understand the current coverage and design best practices as well in context of the evolving RF landscape around the world. Everything we know is evolving. This session will provide a deep dive on how to think about Wi-Fi6e, RRM, Spectrum Intelligence and the evolution of Multi Band Operations. Wi-Fi 6e brings amazing RF capacity

You can watch the recording from the RRM guru! ©

BRKEWN-2038

Wi-Fi Network Design

Wi-Fi 6/6E runs on Cisco Catalyst Wireless



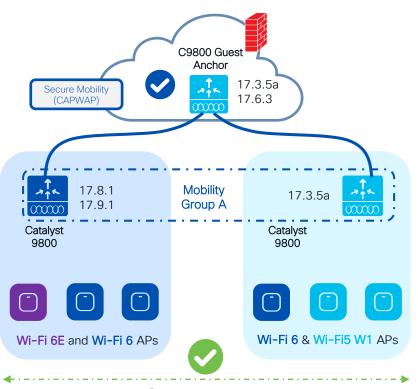
BRKEWN-2038

How do I start adopting 6GHz?

Answer: Inter Release Controller Mobility (IRCM)

IRCM enabled adoption:

- Adoption is not something that happens overnight...
- IRCM allows you to plan the 6GHz network adoption at your pace
- Introduce new 6/6E AP hadware on the new C9800 and support seamless roaming, single RF domain, and Guest Anchor with exsiting networks
- The release combinations shown have been tested at scale, check IRCM deployment guide*
- Note: Anchor WLC can be C9800



BRKFWN-2038

^(*) https://www.cisco.com/c/en/us/td/docs/wireless/controller/technotes/8-8/b_c9800_wireless_controller-aireos_ircm_dg.html

How do I start adopting 6GHz?

Answer: Inter Release Controller Mobility (IRCM)

IRCM enabled adoption:

- If you have already started your Catalyst Wireless journey...
- Introduce new AP hadware on the new supported IOS XE release and support seamless roaming and Guest Anchor with exsiting C9800 networks
- The release combinations shown have been tested at scale, check IRCM deployment guide*
- Note: Anchor can be on AireOS as well (8.10 or 8.5 IRCM latest)

(*) https://www.cisco.com/c/en/us/td/docs/wireless/controller/technotes/8-8/b c9800 wireless controller-aireos ircm dg.html

Seamless roaming

WLAN/SSID Design

6GHz WLAN Design Considerations

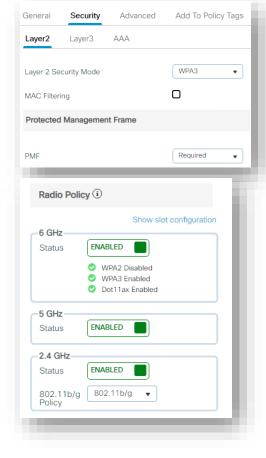
6GHz SSID Requirements

- WPA3 L2 Security: OWE, SAE or 802.1x-SHA256
- Protected Management Frame (PMF) enabled
- Any non-WPA3 L2 security method is not allowed – no mixed mode possible

What options would you have?

- 1. "ALL-IN" option: Reconfigure the existing WLAN to WPA3, one SSID for all radio policies (2.4/5/6 GHz) Most unlikely
- 2. "One SSID" option: Configure multiple WLANs with the same SSID name, different security settings Most conservative
- 3. "Multiple SSIDs" option: Redesign your SSIDs, adding specific SSID/WLAN with specific security settings Most flexible

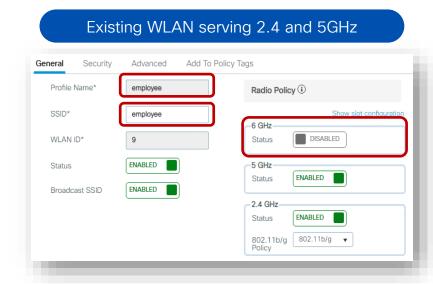
Most likely your current SSID configuration would prevent it from being broadcasted on 6GHz Note: as 17.9.1, there is a limit of 8 SSIDs broadcasted on 6GHz radio

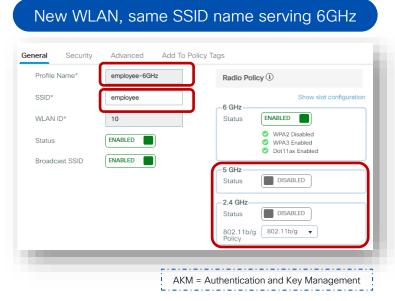

AKM = Authentication and Key Management OWE = Opportunistic Wireless Encryption SAE = Simultaneous Authentication of Equals SHA-256 = Secure Hash Algorithm (SHA) 256 bit

Option 1 Design: Apple Clients

- Reconfigure the existing SSID to meet Wi-Fi 6E requirements (WPA3 and PMF). Need to verify if the new settings are supported by the existing clients.
- Apple Support:
 - AKM: SAE or 802.1x-SHA256. OWE not supported
 - WPA3 support: iPhone 7 or later, iPad 5th generation or later, Apple TV 4K or later, Apple Watch series 3 or later, Mac computers (late 2013 on, with 802.11ac or later). Need iOS 13 and MacOS Catalina
 - **PFA support**: iPhone 6 or later, iPad Air 2 or later, Apple TV HD or later, Apple Watch series 3 or later, Mac computers (late 2013 on, with 802.11ac or later)
 - With SAE AKM: only H2E is supported and Fast Transition (FT) Adaptive is not supported
 - For MacOS: 802.11r support is only on M1 based platform

Note: Our tests showed that some devices need the latest software (e.g., iPhone 6, iPhone 10 worked with 15.4.1 but not earlier code, same for iPad Air 2)




Option 2

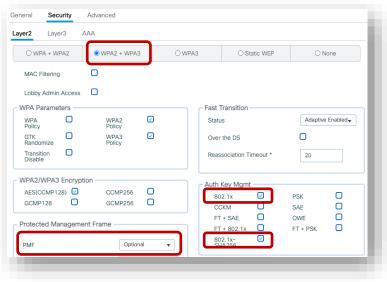
WLAN design considerations

 Option 2: Single SSID but different AKM per band. For Cisco today, this means creating an additional WLAN for 6GHz, with same SSID name but different WLAN profile name and security settings (AKM):

Option 2 sub-options for 2.4/5 GHz

Two options for WLAN security settings in 2.4/5GHz band:

- a) WPA3 Transition mode
- b) WPA/WPA2


Things to keep in mind:

- From the initial testing done, some older drivers clients may have issues in connecting to a WPA3 transition mode
- Today Cisco doesn't support seamless roaming across WLANs, so for both options it will be a hard roam across bands.

Option 2a (dot1x SSID)

WLAN security configuration for 2.4/5GHz > Enable WPA3-Enterprise Transition mode (a.k.a. mixed mode):

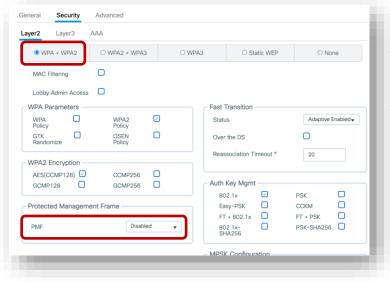
- L2 Security would be WPA2+ WPA3. AKM should be set to 802.1x-SHA256 and 802.1x (SHA1). PMF as Optional
- · How to configure the client side?
 - For clients that don't support 6GHz, configure a WPA2 profile
 - For clients that support 6GHz, configure **WPA3 Enterprise**. They will use these settings to connect to both 2.4/5 GHz and 6GHz

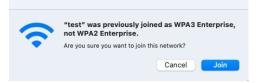
Option 2a

Pros

- Provide an adoption path to more secure Wi-Fi via WPA3 Transition mode
- No new SSID profile to be managed on the client side

Cons


- Older clients may have issues connecting to an SSID with WPA3 Transition mode
- Roaming across different WLANs (same SSID) is not supported
- Not supported by Cisco DNA Center Automation


BRKEWN-2038

Option 2b (dot1x SSID)

WLAN security configuration on 2.4/5GHz:

- L2 Security would be WPA+WPA2. AKM should be set to 802.1x-SHA1. PMF Disabled
- Make sure you don't have WFA "Transition Disable" feature turned on on the 6GHz WLAN
- How to configure the client side?
 - For legacy clients just keep the existing WPA2 profile
 - For clients that are configured for 6GHz with a WPA3 profile, connecting to the 2.4/5GHz WLAN could be seen as a security downgrade attack. Note: MacOS gives you a warning:

Important: This option should only be recommended if planning for a full coverage at 6GHz. In this case, 6GHz capable clients would not need to connect to 2.4/5GHz.

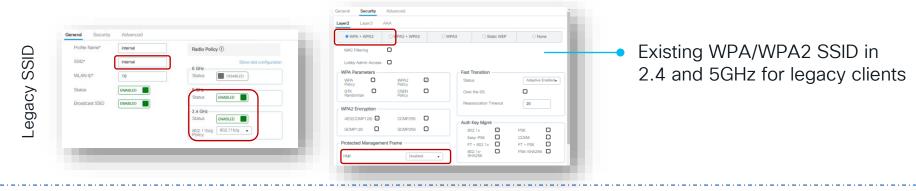
Option 2b

Pros

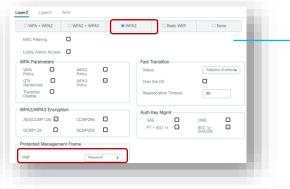
- Maintain support for older clients using WPA/WPA2.
- No new SSID profile to be managed on the client side

- WPA2 only for 2.4/5GHz > not as secure as using WPA3
- Clients may complain going from a WPA3 SSID to a lower security
- Roaming across different WLANs (same SSID) is not supported
- Not supported by Cisco DNA Center Automation

Option 3

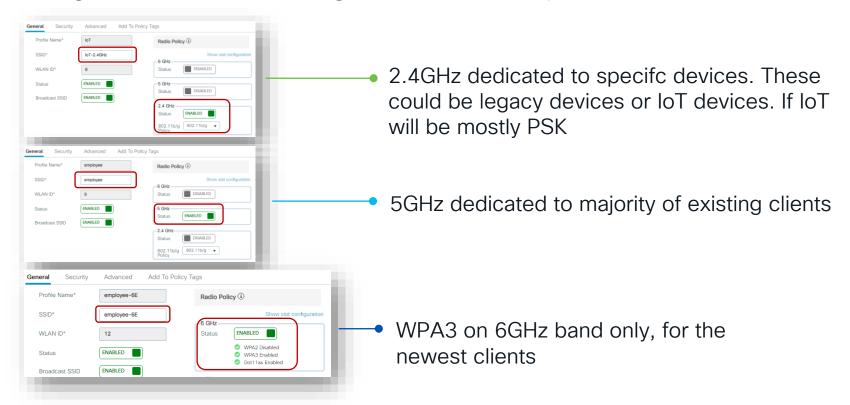

Option 3 - WLAN design considerations

- Option 3: Redesign the SSIDs. This entails adding a WPA3 separate SSID for 6GHz and then decide which bands to enable to address different customer use cases.
 - Example 1: customer wants to adopt 6GHz without touching the existing SSIDs > add a separate SSID with WPA3 and broadcast it in all bands.
 - Example 2: Customer wants to redesign the SSIDs dedicating each band for a specific device/use case



Option 3 > Example 1

Add a separate WLAN with different SSID name for WPA3 and broadcast it in all bands. Leave the existing WLAN/SSID untouched.



Dedicated SSID for WPA3 (new name) capable clients in all bands. This is the SSID for 6GHz

New SSID

Option 3 > Example 2

Redesign the WLANs, reserving each band for a specific device/use case

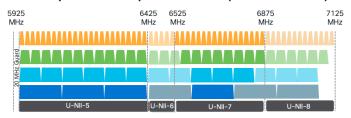
BRKEWN-2038

Option 3

Pros

- Cleanest option from a client compatibility point of view
- Most secure options as clients can adopt WPA3 security
- WPA3 clients can roam across different bands
- Automated via DNA Center

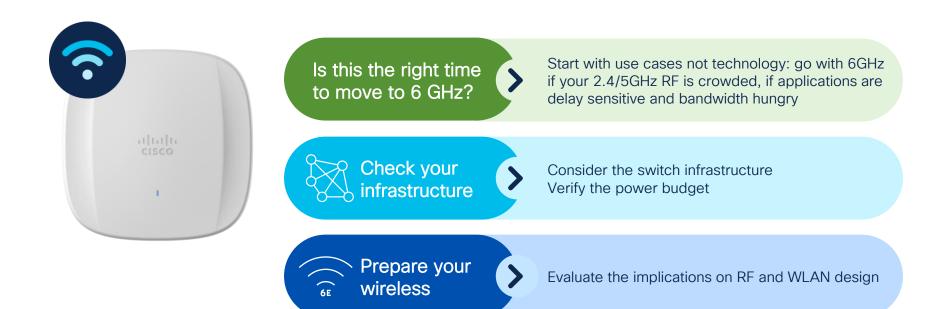
Cons


- Additional SSIDs to configure & manage on WLC
- Need to manage additional SSID profiles on clients

Wi-Fi 6E, are you ready?

6GHz: is it all beautiful and green?

Unexplored spectrum (> 5.9GHz) for consumer devices


- Wi-Fi 6E devices need to provide consistent performance over a much larger frequency > good quality of hardware components
- Most devices will be tri-band (2.4/5/6 GHz) > challenging from RF design, integration, heat dissipation, etc.

https://www.pinterest.com/timouskidi/beautiful-green-things/

Wi-Fi 6E, are you ready?

Understanding and Troubleshooting Cisco Catalyst 9800 Series Wireless Controllers 1st Edition

by Simone Arena (Author), Francisco Crippa (Author), Nicolas Darchis (Author), Sudha Katgeri (Author)

Coming soon (July) to any (online) store near you!!

BRKEWN-2338

Technical Session Surveys

- Attendees who fill out a minimum of four session surveys and the overall event survey will get Cisco Live branded socks!
- Attendees will also earn 100 points in the Cisco Live Game for every survey completed.
- These points help you get on the leaderboard and increase your chances of winning daily and grand prizes.

Cisco Learning and Certifications

From technology training and team development to Cisco certifications and learning plans, let us help you empower your business and career. www.cisco.com/go/certs

(CLCs) are prepaid training vouchers redeemed directly with Cisco.

Learn

Train

Certify

Cisco U.

IT learning hub that guides teams and learners toward their goals

Cisco Digital Learning

Subscription-based product, technology. and certification training

Cisco Modeling Labs

Network simulation platform for design, testing, and troubleshooting

Cisco Learning Network

Resource community portal for certifications and learning

Cisco Training Bootcamps

Intensive team & individual automation and technology training programs

Cisco Learning Partner Program

Authorized training partners supporting Cisco technology and career certifications

Cisco Instructor-led and Virtual Instructor-led training

Accelerated curriculum of product, technology, and certification courses

Cisco Certifications and **Specialist Certifications**

Award-winning certification program empowers students and IT Professionals to advance their technical careers

Cisco Guided Study Groups

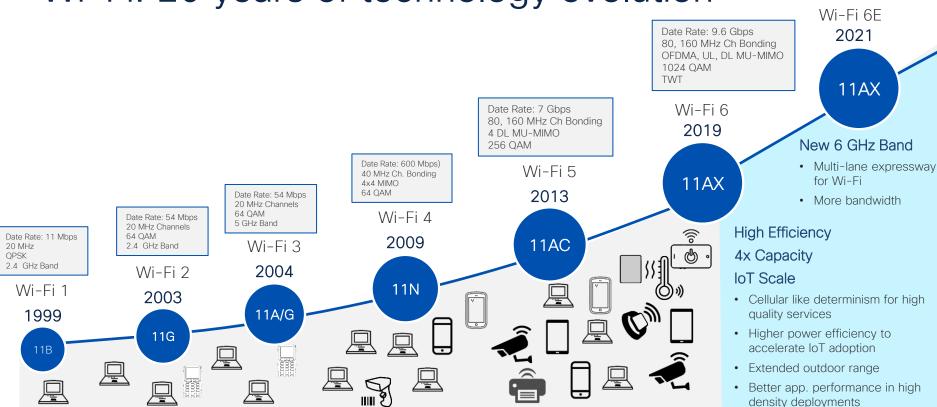
180-day certification prep program with learning and support

Cisco Continuina **Education Program**

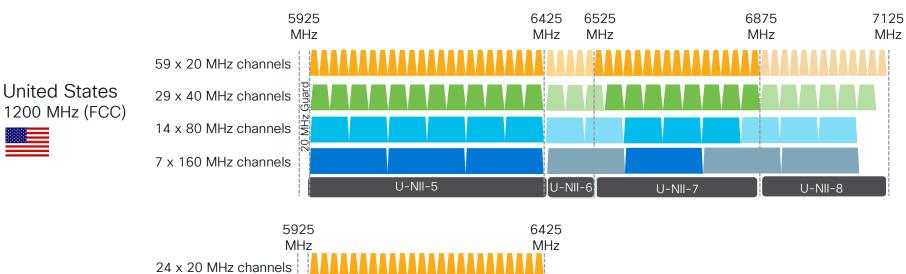
Recertification training options for Cisco certified individuals

Here at the event? Visit us at The Learning and Certifications lounge at the World of Solutions

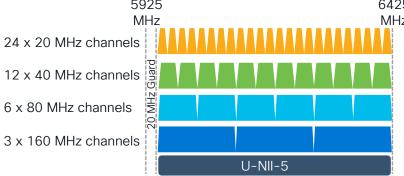
Thank you



cisco Live!



Wi-Fi: 20 years of technology evolution



The new 6 GHz band:

Europe/CEPT(*) 500 MHz

FCC = Federal Communications Commission

ETSI = European Telecommunications Standards Institute

CEPT = European Conference of Postal and

Telecommunications Administrations

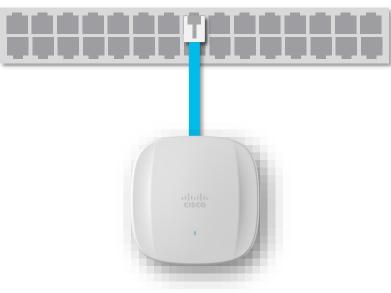
BRKEWN-2038

AP – switchport config

Catalyst AP to Switch connection

Local mode AP

Local mode AP - switchport config:


```
interface ten 1/0/1
description to_AP_LOCAL
switchport access vlan 200
switchport mode access
spanning-tree portfast
```

```
3560-CX#sh interfaces ten 1/0/1
TenGigabitEthernet1/0/1 is up, line protocol is up (connected)
```

```
Description: to_AP_LOCAL
Full-duplex, 5000Mb/s, media type is
100/1G/2.5G/5G/10GBaseT
```

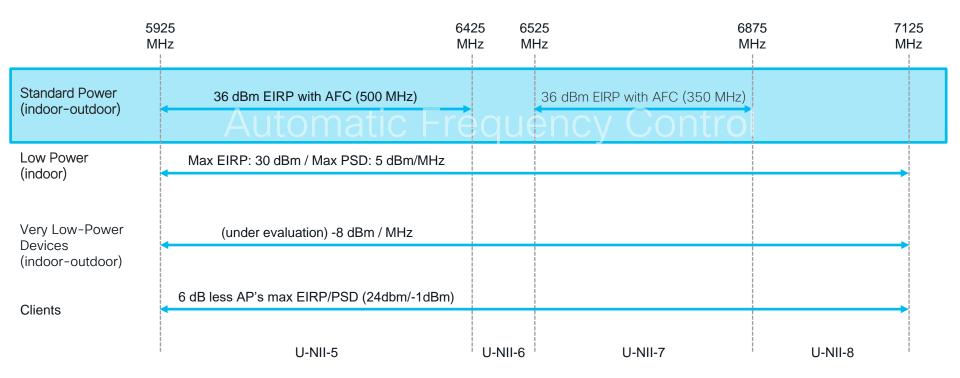

Catalyst AP to Switch connection

Flex mode AP

Flex mode AP - switchport config:

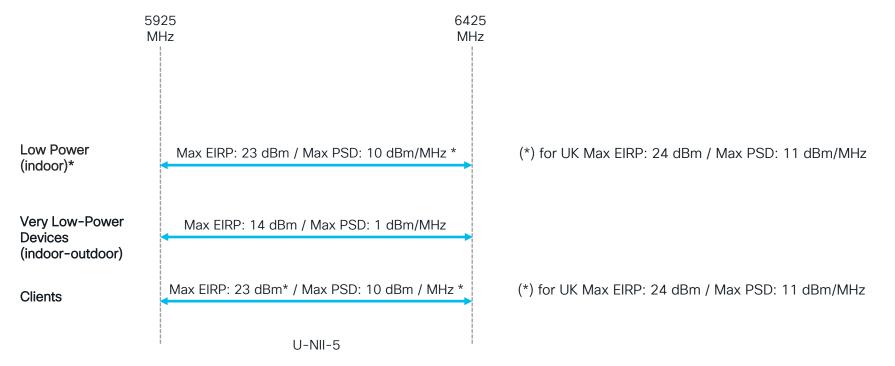
```
interface ten 1/0/1
 description to AP FLEX
 switchport trunk native vlan 100
 switchport trunk allowed vlan 20,100
 switchport mode trunk
 spanning-tree portfast trunk
3560-CX#sh interfaces ten 1/0/1
TenGigabitEthernet1/0/1 is up, line protocol is
up (connected)
Description: to AP FLEX
Full-duplex, 5000Mb/s, media type is
100/1G/2.5G/5G/10GBaseT
```

Other RF considerations

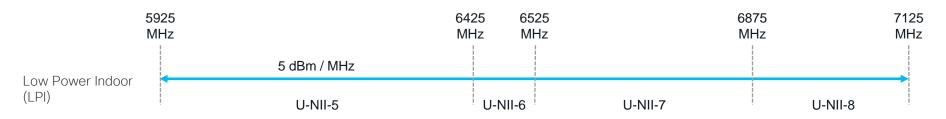

6GHz Transmit (Tx) power requirements*

Mode	Country	Max Tx Power EiRP		Max PSD EiRP		Max Ch BW
	(Frequency Range MHz)	AP (dBm)	Client (dBm)	AP (dBm)	Client (dBm)	(MHz)
	FCC (5925-7125)	30	24	5	-1	320
	ETSI (5945-6425)	23	23	10	10	
	UK (5925-6425)	24	24	11	11	No Max
	S Korea (5925-7125)			2	2	160
	Malaysia (5925-6425)	23	23	10	10	
	Brazil (5925-7125)	30	24	5	-1	
LPI	ISED (5925-7125)	30	24	5	-1	
LPI	Chile (5925-7125)	30	24	5	-1	
	Peru (5925-7125)	30	24	5	-1	
	UAE (5925-6425)	24	24			
	Saudi Arabia (5925-7125)	30	24	10	10	
	ATU (5945-6425) (Kenya/Uganda/Congo/Niger/Ghana)	23	23	10	10	
	Morocco (5945-6425)	23	23			
SP	FCC (U-NII-5/7)	36 (21<30°)	30	23	17	320

^{*} Includes only the countries and regions that approved the allocation; Empty cell means regulation is silent



The new power levels - FCC


The new power levels - ETSI

BRKEWN-2038

Low-Power Access Points (indoor) - FCC

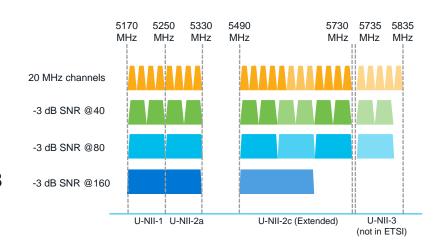
6 GHz power is measured as **Power Spectral Density (PSD)** a Maximum of 5 dBm/MHz is permitted for LPI

5 dBm = 3.162278 mW

 $3.162278 \text{ mW} \times 20 \text{ MHz} = 63.24556 \text{ mW} = 18 \text{ dBm}$

 $3.162278 \text{ mW} \times 40 \text{ MHz} = 126.4911 \text{ mW} = 21 \text{ dBm}$

Client power also has a PSD rule of 6 dB less than the AP's max EIRP


Channel BW	AP EIRP	Client EIRP	
20 MHz	18 dBm	12 dBm	
40 MHz	21 dBm	15 dBm	
80 MHz	24 dBm	18 dBm	
160 MHz	27 dBm	21 dBm	

Note: Indoor AP's with an external antenna, must operate under the Standard Power rules, LPI only applies to I models

Bonded Channels and Noise 5 GHz vs 6 GHz

- A wider channel creates more noise
- Increased noise decreases SNR
- In 5 GHz, every doubling of a channel width takes a corresponding 3 dB hit in SNR,
- A 3 dB reduction in SNR is equivalent to a 3 dB decrease in the RSSI performance wise
- Wi-Fi 6 E power rules in PSD of 5 dBm/MHz increases the EIRP as the channel gets wider
- This off-sets the corresponding SNR loss
- Comparing Effective EIRP 6 GHz favors wider channels

	Effective EIRP improvements						
BW width	20 MHz	40 MHz	80 MHz	160 MHz			
5 GHz, U-NII-1	23 dBm	20 dBm	17 dBm	14 dBm			
6 GHz. U-NII-5	18 dBm	21 dBm	24 dBm	27 dBm			

Low-Power Access Points (indoor) - ETSI

6 GHz power is measured as **Power Spectral Density (PSD)** a Maximum of 10 dBm/MHz is permitted for LPI

10 dBm = 10 mW

10 mW x 20 MHz = 200 mW = 23 dBm 10 mW x 40 MHz = 400 mW = 26 dBm (above max allowed)

In ETSI, you can really claim PSD as an advantage in using higher TX power to support larger bandwidth

Channel BW	AP PSD EIRP	AP EIRP	
20 MHz	23 dBm	23 dBm	
40 MHz	26 dBm	23 dBm	
80 MHz	29 dBm	23 dBm	
160 MHz	31 dBm	23 dBm	

AP deployment: Channel width feasibility

5GHz channel width feasibility						
Environment	20 MHz (25) ETSI (19)	40 MHz (12)/ ETSI (10)	80 MHz (6)/ ETSI (4)	160 MHz (2) ETSI (1)		
High Density [1000 ft ²] [92 m ²]						
Typical Density [1200 ft ²] [111 m ²]						
Low Density [3000 ft ²] [278 m ²]						

6GHz channel width feasibility						
Environment	20 MHz (59) ETSI (24)	40 MHz (29) ETSI (12)	80 MHz (14)/ ETSI (6)	160 MHz (7)/ ETSI (3)		
High Density [1000 ft ²] [92 m ²]						
Typical Density [1200 ft ²] [111 m ²]						
Low Density [3000 ft ²] [278 m ²]						

Note: Experience based on relative amount of AP co-channel interference at the AP based on EIRP power and channels available.

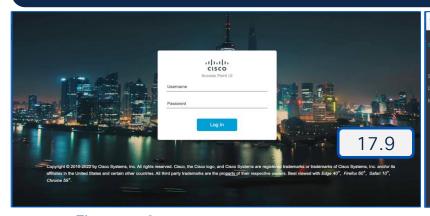
Site Survey Mode

Assess environmental RF coverage using the Catalyst 9136l's site survey mode

Puts AP in standalone mode and enables it to broadcast 2.4-, 5-, and 6-GHz SSIDs and have clients join via internal DHCP.

Supports WebUI access for easy configuration and viewing of various RF metrics for RF coverage and planning.

Supports configuration of channel number, channel width, Tx power, SSID, and data rates.



Site Survey mode configuration steps

1. Change AP to site survey mode > exec command "ap site-survey"

```
C9136#ap ?
capwap Switch to CAPWAP AP type
site-survey Switch to Site Survey AP type
```

- 2. After bootup, the AP is automatically assigned a static IP of 10.0.23.1.
- 3. AP will start broadcasting the CiscoAirProvision SSID with open authentication security.
- 4. Connect your wireless client with the CiscoAirProvision SSID and it'll receive an IP from 10.0.23.0/24.
- 5. Access the Catalyst® 9136l's Site Survey WebUl via 10.0.23.1.

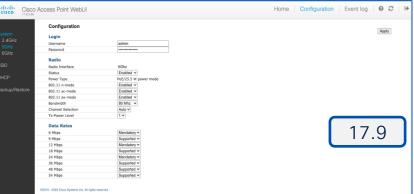
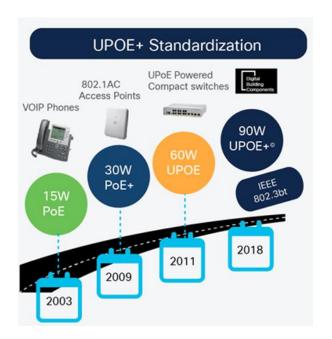


Figure 1. Site survey mode

Figure 2. Site Survey mode

Other Power considerations



Power Over Ethernet Categorization

PoE Standard	Туре	Class	Max Power	Power over wire pairs	
802.3af (PoE)	1	0-3	15.4W	15.4W No power	
802.3at (PoE+)	2	4	30W	30W No power	
Cisco UPOE	(2)	(4)	60W	30W 60W	
802.3bt (60W, 90W)	3	5, 6	60W	30W	
	4	7, 8	90W	45W 90W	

Power over Ethernet (POE)

Туре	Class	Power over twisted pairs	PoE standard	Maximum power from PSE	Maximum power to PD
0	0	2 pairs	Cisco Phone Discovery	15.4W	12.95W
1	0 to 3	2 pairs	802.3af (PoE)	15.4W	12.95W
2	4	2 pairs	802.3at (PoE+)	30W	25.5W
		4 pairs	Cisco UPOE	60W	51W
3	5, 6	4 pairs	802.3bt (60W)	60W	51W
4	7, 8	4 pairs	802.3bt (90W)	90W	71W

Power Sourcing Equipment (PSE) – network device that provides power Powered Devices (PDs) – IT or IoT device

What Catalyst switch to use?

All you need to know is here!

Reference URL: https://www.cisco.com/c/en/us/solutions/collateral/enterprise-networks/nb-06-upoe-plus-it-ot-wp-cte-en.html

AP Power Save mode

AP Power Save Mode

- Goal is to reduce power consumption for APs during certain period of operations (non-business hours, weekends, etc.)
- Power saving mode: APs can switch into a low power mode when no clients are associated
- Power saving mode is implemented via Power Profiles and Calendar Profiles

AP Power Profile

AP Power Profile

- Prioritized set of rules that define how the AP will turn down power
- Interface states that can be configured:

Radios: 6GHz, 5GHz, 2.4GHz

Ethernet: uplinks and RLAN

USB Port

Caveats

- If clients still need to connect, leave at least 1 radio enabled.
- As of 17.8.1, Ethernet speed will always use the Fixed Power Profile speed even if configured
- If APs do not support configured settings (ex. 6GHz or additional uplink port), the settings will not be applied.

Calendar Profile

Defines the dates and times when the AP will enter Power Save Mode

When the Calendar Profile is active, the applicable settings from mapped AP Power Profile will be applied to the AP

When the Calendar Profile is active, the AP Profile is applied IF there are no client connected

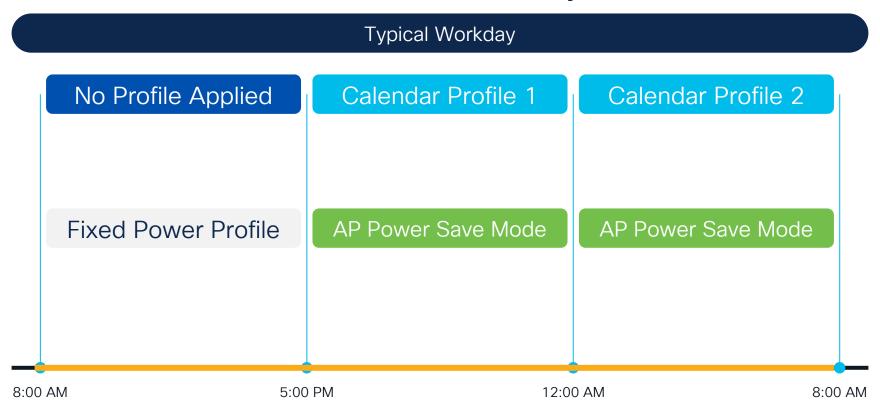
Can be used to define operational times such as work hours, after-work hours, and non-workdays.

Design Consideration with Calendar Profiles

- Cannot make a profile going into the next day
- Requires making multiple calendar profiles

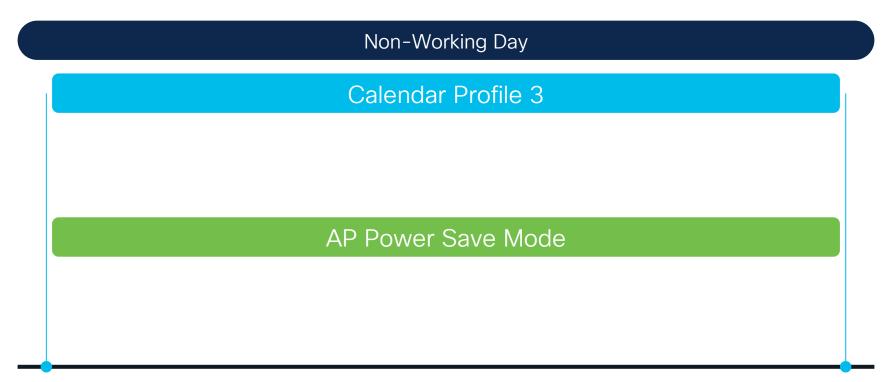
Example: Required Calendar Profile from 5:00 PM to 8:00 AM

Calendar Profile 1


Calendar Profile 2

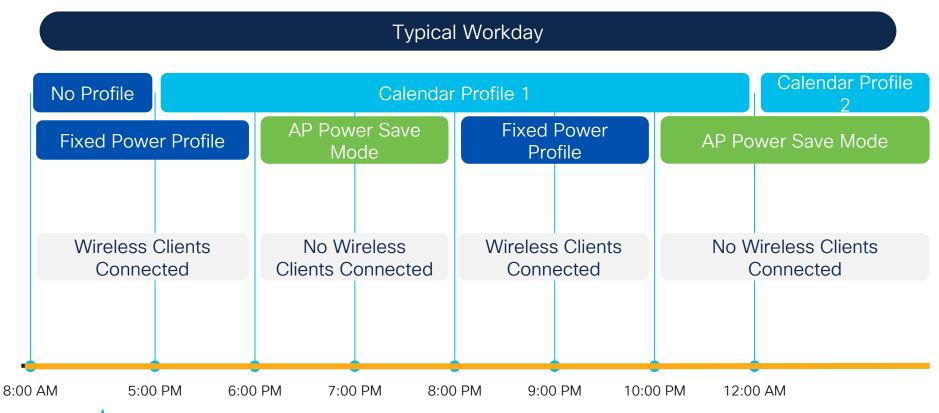
05:00:00 PM to 11:59:59 PM

12:00:00 AM to 08:00:00 AM



AP Power Save Mode - Workday

cisco Wel


AP Power Save Mode - Non-Working Day

12:00 AM

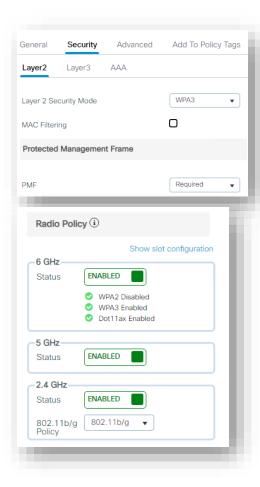
11:59 PM

AP Power Save Mode - with Clients

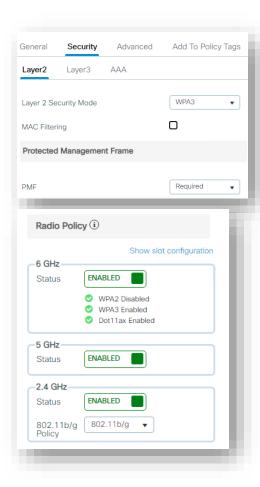
WLAN Design (additional slides)

What is WPA3-Enterprise transition mode? (a.k.a. WPA3 mixed mode)

- AP shall enable at least AKM suite selectors 00-0F-AC:1 (IEEE 802.1X with SHA-1) and 00-0F-AC:5 (IEEE 802.1X with SHA-256) in the BSS
- STA shall allow at least AKM suite selectors 00-0F-AC:1 and 00-0F-AC:5 to be selected for an association
- AP shall set MFPC to 1, MFPR to 0
- STA shall set MFPC to 1, MFPR to 0

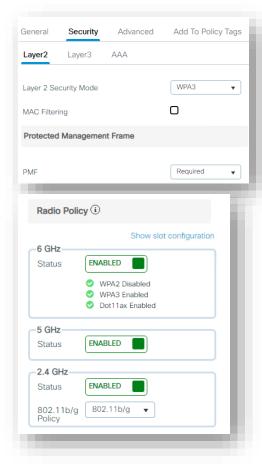


Option 1


Option 1 Design: Apple Clients

- Reconfigure the existing SSID to meet Wi-Fi 6E requirements (WPA3 and PMF). Need to verify if the new settings are supported by the existing clients.
- Apple Support:
 - AKM: SAE or 802.1x-SHA256. OWE not supported
 - WPA3 support: iPhone 7 or later, iPad 5th generation or later, Apple TV 4K or later, Apple Watch series 3 or later, Mac computers (late 2013 on, with 802.11ac or later). Need iOS 13 and MacOS Catalina
 - **PFA support**: iPhone 6 or later, iPad Air 2 or later, Apple TV HD or later, Apple Watch series 3 or later, Mac computers (late 2013 on, with 802.11ac or later)
 - With SAE AKM: only H2E is supported and FT Adaptive is not supported
 - For MacOS: 802.11r (FT) support is only on M1 based platform
 - Our tests showed that some devices need the latest software (e.g., iPhone 10 worked with 15.4.1 but not earlier code, same for iPad Air 2)

Option 1 Design: Android Clients


- Option 1: Reconfigure the existing SSID to meet Wi-Fi 6E requirements (WPA3 and PMF. Need to verify if the new settings are supported by the existing clients.
- Android support:
 - AKM: OWE, SAE or 802.1x-SHA256
 - WPA3 support: WPA3 introduced in Android 10, but Android 12 supports
 Transition Disable indication to instruct a device to only use WPA3
 - PFA support: should follow the support of WPA3
 - With SAE: on 6GHz only H2E is supported and FT Adaptive is not supported

WLAN design considerations Intel Clients

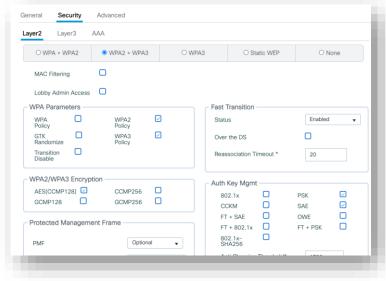
- Option 1: Reconfigure the existing SSID to meet Wi-Fi 6E requirements (WPA3 and PMF. Need to verify if the new settings are supported by the existing clients.
- Intel clients:
 - AKM: OWE, SAE or 802.1x-SHA256
 - WPA3 support: Intel Wi-Fi 6E AX210/211, Wi-Fi 6 AX201/200, Wireless-AC 9560/9462/9461/9260
 - PFA support: should follow the support of WPA3
 - With SAE AKM: only H2E is supported and FT Adaptive is not supported
 - With SAE: 802.11r (FT) is not supported on Windows
 - Windows 11 recommended, but should work with Widows 10 2004 or later
- Recommendation for all devices: always verify the specific driver documentation

Option 1

Pros

- Cleanest and simplest option
- No new WLAN and SSID to be managed
- Most secure with WPA3 everywhere

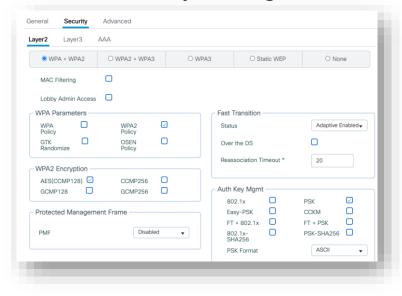
Cons


- Breaks support for existing clients that don't support WPA3 and PMF in 2.4 and 5GHz
- Requires full control on client devices and drivers

Option 2

Option 2a with PSK/SAE SSID

WLAN security configuration on 2.4/5GHz > Enable WPA3-Personal transition mode (a.k.a. mixed mode):


- L2 Security set to WPA2+WPA3. AKM configured with both PSK and SAE enabled. PMF as Optional. Use the same password
- The security level of the SSID is equivalent to WPA2-PSK
- If WPA3-Personal Transition Mode does not meet the security requirements, WPA3-Personal and WPA2-Personal should be deployed on individual SSIDs using unique passwords and logically separated/isolated network segments
- Select WPA2/WPA3 Personal on clients

Option 2b with PSK/SAE SSID

WLAN security configuration on 2.4/5GHz

- L2 Security set to **WPA+WPA2**. AKM configured with **PSK**. PMF **Disabled**
- How to configure the client side?
 - For clients that don't support 6GHz, configure a WPA/WPA2 Personal profile
 - For clients that support 6GHz, use WPA3 Personal

