

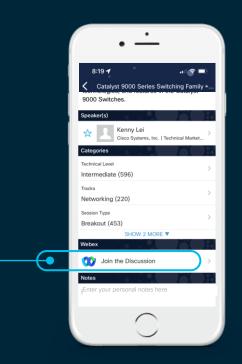
#CiscoLive

High Density Wi-Fi Design, Deployment, and Optimization

Matt Swartz, CCIE #13232 Cisco Customer Experience, Distinguished Engineer Josh Suhr, CCIE #39980 Cisco Customer Experience, Principal Architect BRKEWN-2087

#CiscoLive

Cisco Webex App


Questions?

Use Cisco Webex App to chat with the speaker after the session

How

- **1** Find this session in the Cisco Live Mobile App
- 2 Click "Join the Discussion"
- 3 Install the Webex App or go directly to the Webex space
- 4 Enter messages/questions in the Webex space

Webex spaces will be moderated by the speaker until June 17, 2022.

https://ciscolive.ciscoevents.com/ciscolivebot/#BRKEWN-2087

Josh Suhr

Principal Architect, Cisco CX CCIE #39980 (Wireless)

First HD WiFi Project: Sporting Kansas City, 2011 Husband, recent dad, soccer fan, beer & pizza connoisseur

cisco ile

Matt Swartz

Distinguished Engineer, Cisco CX CCIE #13232 (R/S, Wireless)

First HD WiFi Project: New York Yankees, 2008 Husband, dad, mountain biker, beer connoisseur

cisco life

Key Trends in High Density Wi-Fi

Wi-Fi 6 – new hardware and HD improvements

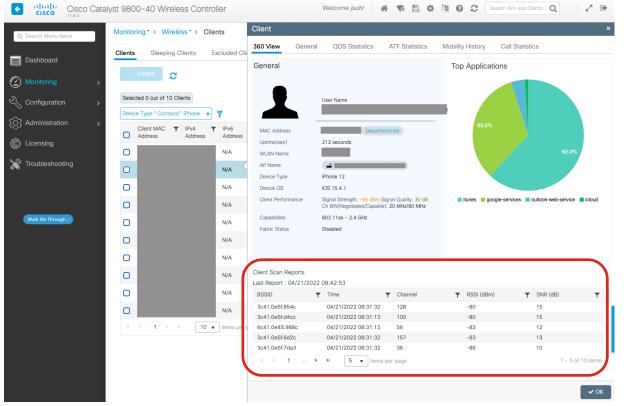
STREET.

- 6GHz / Wi-Fi 6E more spectrum!!!
- Smarter clients (11k/11v/11r)
- More devices per user
- Auto authentication & OpenRoaming

Agenda

- Designing RF for High Client Densities
- HD Wi-Fi Configuration Tips
- HD Wi-Fi Engineering Toolkit

Designing for the 3 Key RF Relationships

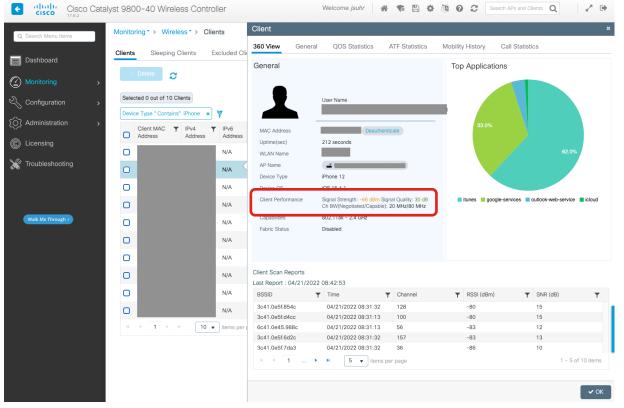

Name	Slot	Channel	Power Level	Power dBm	Neigh. Name	Neigh. Slot	Neigh. Channel	Neigh. Power	Compensated Power
AP12	1	112	6	4	AP1	1	52	-42	-57
AP12	1	112	6	4	AP2	1	144	-51	-66
AP12	1	112	6	4	AP3	1	120	-53	-65
AP12	1	112	6	4	AP4	1	100	-53	-65
AP12	1	112	6	4	AP5	1	124	-57	-66
AP12	1	112	6	4	AP6	1	60	-61	-73
AP12	1	112	6				136	-62	-74
AP12	1	112		- 4	AP8	1	44	-69	-69
AP12	1	112		M	CA	F	104	-79	-85
AP12	1	112		V	\mathcal{Q}_{\Box}	<u> </u>	60	-80	-89
P12	1	112	6				153	-81	-84

*Bonus points: Client <-> Client - harder to influence

How Clients Hear AP's - UI

Client Scan Report shows how this client hears all AP's within range

Aironet Active Sensors


Cisco Aironet Active sensors...

- are hardware devices (dedicated 1800S sensor or supported models of Cisco AP)
- connect to your WiFi network and run a series of tests as a client device
- send test results back to Cisco DNA Center for further analysis

See how the sensor sees AP's: <u>CLI: show dot11 sensor scan list</u>

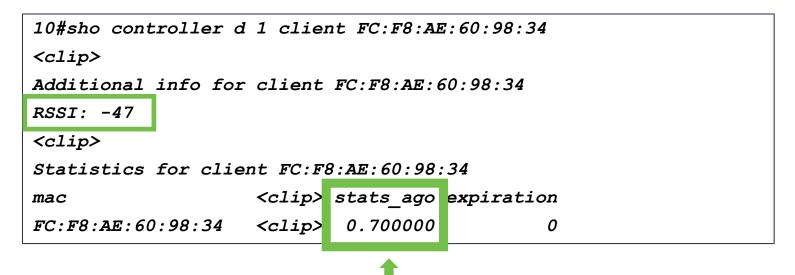
How AP's Hear Clients - UI

Client Performance readings show how the currently associated AP hears this client

How AP's Hear Clients

For a table of all clients on an AP, at AP CLI:

Telnet/SSH to AP and use "show dot11 clients" for immediate client RSSI readings of ALL clients associated to the specified radio


ap#show dot11 clients									
AP Mode - Local									
Client MAC	Slot	ID	WLAN	ID	AID	WLAN Name	RSSI	Maxrate	WGB
FC:F8:AE:60:98:34		1		3	1	AbrahamLinksys	-47	MCS82SS	No
00:24:D7:7E:48:D8		1		3	2	AbrahamLinksys	-54	M23	No
78:F8:82:EF:2E:A0		1		3	3	AbrahamLinksys	-37	MCS82SS	No
84:38:35:42:E1:F0		1		3	4	AbrahamLinksys	-71	MCS82SS	No

How AP's Hear Clients

For a detail on a single client, at AP CLI:

Telnet/SSH to AP and use "show controller d <0|1> client <mac-addr>" for immediate client RSSI readings of a single client

How long ago were these stats updated (in sec)?

It All Starts with Layer 1: RF Design

Antenna Selection:

Decide which antenna is right for the job.

Consider:

- Density of clients to be served
- Available mounting assets
 - Within 65'/20m of furthest client (or 200'/60m with C-ANT9104)

Antenna Placement:

Where will this antenna provide the best throughput and <u>most</u> <u>reliable</u> service?

Consider:

- Line of sight
- Isolation from ambient RF
- Angle of incidence to client devices

Antenna Selection

Beam Use Case

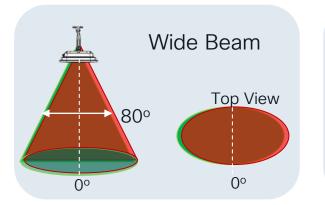
		Deam	000 0000
	Dual-Band "Narrow" 8x8 Patch Antenna AP: 9130AXE Antenna: C-ANT9103	2.4/5GHz 75/70° Az 70/70° Elev	Augmentation and short-distance HD coverage (15'/5m - 30'/10m to clients)
	Dual-Band "Wide" Patch Antenna AP: 3802E/P, 9120AXE/P, 9130AXE Antenna: AIR-ANT2566P4W-R	2.4/5GHz 105/125°Az 70/60°Elev	Augmentation and short-distance HD coverage (< 30'/10m to clients)
	Dual-Band "Narrow" Patch Antenna AP: 3802E/P, 9120AXE/P, 9130AXE Antenna: AIR-ANT2566D4M-N	2.4/5GHz 65/65°Az 65/65°Elev	Augmentation and short-distance HD coverage (15'/5m - 30'/10m to clients)
New!	Dual-Band Stadium Antenna C-ANT9104 (Antenna + Integrated AP)	70/70° 2.4GHz 80/25° 5GHz (Wide) 25/25° 5GH z (Narrow)	Primary overhead coverage (i.e. seating areas; > 30'/10m, <200'/60m to clients)

cisco live!

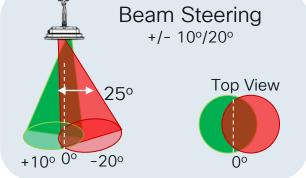
Cisco Catalyst C-ANT9104 – Stadium Antenna + Integrated AP

- The C-ANT9104 antenna is designed specifically to solve challenges encountered in stadium/Large Public Venue/High Client Density environments.
- Dual 5 GHz on two individual 5 GHz 4x4 Arrays
- Configurable electronic beam steering as well
 as Narrow and Wide modes of the antenna
- Catalyst C9800 release 17.6.1 adds configuration support for these new controls

cisco /


Three generations of High-Density WiFi Stadium Antennas

cisco live!


C-ANT9104: Key Things to Know

Antenna Design Improvements	Cover Clients from Longer Distances (up to 200' line-of-sight)
Integrated Unit, Outdoor-Rated	AP + Antenna all-in-one, no enclosures required, outdoor-rated
Deployment Flexibility	Beam Switching & Beam Steering; switch between narrow/wide, meet needs of multiple different coverage types
Important Notes	Band-Locked Slots & Tx Power Implications Tight RF patterns, minimal sidelobes, RF Isolation = no RRM

C-ANT9104: Software-Configurable Beams

Wide sector beamwidth Dual 4x4 5GHz (80°x25°) 2.4 GHz (75°x85°) 8 dBi gain Narrow sector beamwidth Dual 4x4, 5 GHz (25°x25°) 10 dBi gain Software defined beam steering Each 5GHz 4x4 can steer +/- 10°,20° off center

5GHz Software Defined Beamwidth and Direction

C-ANT9104: Deployment Checklist

Physical Install:

- All-In-One no enclosures needed
- Portrait vs landscape
- Physical orientation of higherpower slot
- Channel & power planning

- Determine initial beam configuration (surveys / prediction)
- Define Radio Profiles & RF Tags
- Less (or no) RX-SOP optimization needed

C-ANT9104 Power Table Summary[Slot 1][Slot 2]UNII-2e / 12 channels: 17dBmUNII-1 / 4 channels: 21dBmUNII-3 / 5 channels: 23dBmUNII-2 / 4 channels : 17dBm

C-ANT9104: Configuration (GUI)

Cisco Cata	alyst 9800-40 Wireless Controller		Search APs and Clients O	Cisco Catalyst 9800-40 Wireless Controller Welcome jouhr 🖌 🏶 🗈 🕸 🖄 🕢 🕫 Search Ain and Cleme Q					
	Weicome jsunr	Edit Radio Profile	Search APs and Clients	Q. Search Menu Items Configuration * > Tags & Profiles * > Tags Edit RF Tag			×		
Q. Search Menu Items	Configuration > Tags & Profiles > RF/Ra	Name*	M4-Wide	Dashboard	Policy Site RF AP	A Changes may result in loss	of connectivity for clients that are associated to APs with this RF Tag.		
🚃 Dashboard	RF Radio	Description	Enter Description	Monitoring >	+ Add × Delete	Name*	Ticketing-M4		
Monitoring >	+ Add X Delete	Antenna Beam Selection	Not Configured	Configuration >	RF Tag Name BBH	Description	for Ticketing 9104s		
Configuration	Radio Profile Name		Wide Beam Narrow Beam	Administration	Press Suites	5 GHz Band RF Profile 2.4 GHz Band RF Profile	RFP_Ticketing_5 RFP_Event_Plaza		
_	M4-Wide M4-Narrow-10		Narrow from centre 10	C Licensing	Concourse	5 GHz Slot 1 Radio Profile	M4-Narrow-20		
(O) Administration	M4-Narrow-20		 Narrow from centre 20 	Y Troubleshooting	Mezzanine Ticketing	5 GHz Slot 2 Radio Profile	M4-Narrow-20 ¥		
C Licensing	M4-Narrow-Boresight	Number of antenna to be enabled	8		Bowl Field BBH_Outdoor BBH_Outdoor	2.4 GHz Slot 0 Radio Profile	M4-Wide		
X Troubleshooting	default-radio-profile				EastBowl-RFP				
	items per p			Walk Me Through >	Ticketing-M4 I				
Walk Me Through >									
		ී Cancel	Update & Apply to Device			D Cancel	🔁 Update & Apply to Device		

Create **Radio Profiles**, one for each beam configuration you plan to use

*Note: "Number of antenna to be enabled" can be set to 8

Create new or edit existing **RF Tags** and assign the Radio Profiles to each slot as desired

*Note: 2.4GHz Slot 0 is always "Wide"

C-ANT9104: Configuration (CLI)

1 Define RF Profile(s):

ap dot11 5ghz rf-profile **MP1-5** high-density rx-sop threshold custom -85 channel chan-width 20 rate RATE_12M supported rate RATE_18M mandatory rate RATE_24M supported rate RATE_6M disable rate RATE_9M disable no shutdown

2 Define Radio Profile(s):

```
wireless profile radio M4-Wide
antenna beam-selection wide
antenna count 8
wireless profile radio M4-Narrow-10
antenna beam-selection narrow tilt 10
antenna count 8
wireless profile radio M4-Narrow-20
antenna beam-selection narrow tilt 20
antenna beam-selection narrow-Boresight
antenna beam-selection narrow
antenna count 8
```

3 Build RF tags and assign Radio Profile(s):

wireless tag rf MP1-rf-tag
5ghz-rf-policy MP1-5
dot11 24ghz slot0 radio-profile default-radio-profile
dot11 5ghz slot1 radio-profile M4-Narrow-10
dot11 5ghz slot2 radio-profile M4-Narrow-10

Apply tags to AP(s):

ap filter name "M4 Portrait Narrow 10" ap name-regex MP1 tag policy policy-tag-1 tag rf MP1-rf-tag tag site site-tag-1 ap filter priority 50 filter-name "M4 Portrait Narrow 10"

OR

ap f4bd.9ed1.4700
policy-tag policy-tag-1
rf-tag MP1-rf-tag
site-tag site-tag-1

AP Selection

.

cisco live!

Cisco Catalyst 9100 Series Access Points

Catalyst 9136 Series access point Best-in-class Wi-Fi 6E technology starting from Cisco IOS® XE 17.7.1

Hexa-radio architecture

- 2.4-GHz serving radio (slot 0): 4x4, 4SS
- 5-GHz serving radio (slots 1 and 2): 8x8, 8SS
- Dual 5-GHz serving radio (slot 1 or 2*): 4x4, 4SS
- 6-GHz serving radio (slot 3): 4x4, 4SS
- Dedicated AI/ML-driven scanning radio
- 2.4-GHz loT radio

Dual PoE for power redundancy

- 2x 5 Multigigabit (mGig) PoE ports
- 802.3 link aggregation > up to 5 Gbps uplink

Internet of Things (IoT) capabilities

- Built-in environmental sensors
- Application hosting technology
- USB port with 9W power output

Extending Cisco's intent-based network

Location and IoT with Cisco DNA Spaces

* The slot 2 radio in 4x4 will be supported in a future software release.

Assess environmental RF coverage using the Catalyst 9136l's site survey mode

Puts AP in standalone mode and enables it to broadcast 2.4-, 5-, and 6-GHz SSIDs and have clients join via internal DHCP.

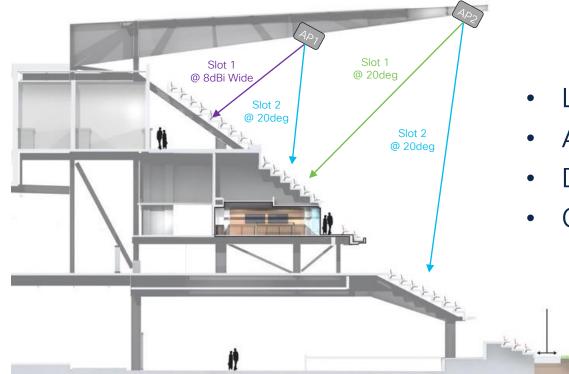
Supports WebUI access for easy configuration and viewing of various RF metrics for RF coverage and planning.

Supports configuration of channel number, channel width, Tx power, SSID, and data rates.

Cisco outdoor AP portfolios

cisco live!

#CiscoLive BRKEWN-2087

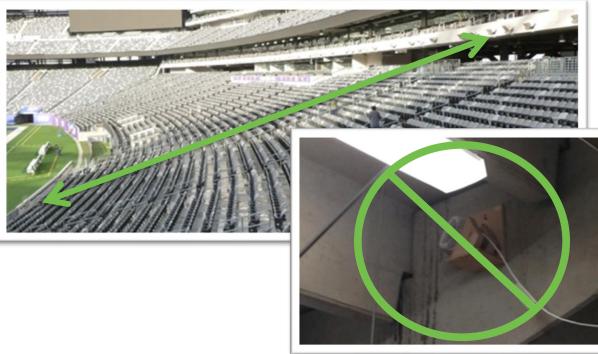

** Available second half 2021

Antenna Placement

.

cisco live!

AP Placement Tips

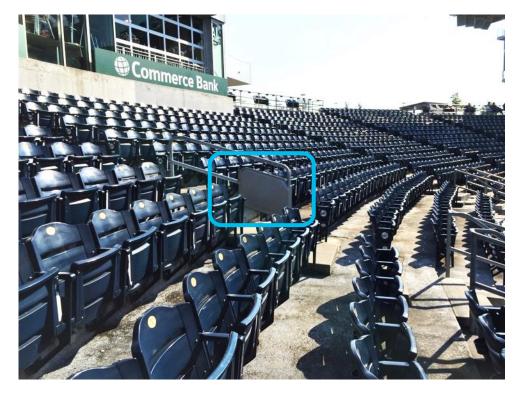


- Line-of-Sight
- Angle of Incidence
- Distance to Clients
- Cell Size & Overlap

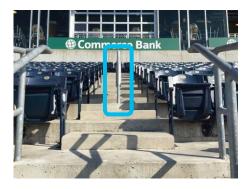
cisco / ile

Antenna Placement: What Not To Do

Seating Area Coverage: Challenging Areas



Avoid long shots like this


Avoid obstructions in front of your antennas

cisco live

Creative AP/Antenna Mount Examples

cisco live!

Creative AP/Antenna Mount Examples

Seating Area Coverage: Challenging Areas

- Creative options may be required for low seating rows
 - Handrails
 - Front walls (aimed away from playing surface)
- Ensure compliance with minimum distances to bodies - >20cm
- Stick to directional antennas

Antenna Placement

• High Density Open Areas - Conference Halls, Classrooms

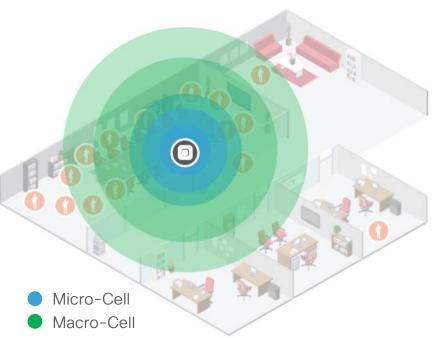
- Omnis are not ideal for open areas where high capacity is needed
- Create smaller cells with directional antennas mounted above, aimed directly downward
- Understand RRM implications of this type of design

cisco ile

Increase Coverage and Capacity

• Dual 5GHz -Micro/Macro Cell

Increase Capacity and Coverage from a Single Access Point Location


One AP for Different Coverage Areas:

Provide High Density Service for a Small Coverage Area

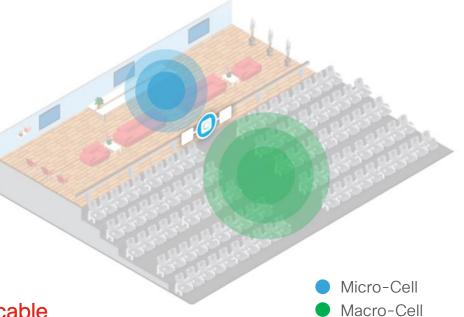
Conference room, classroom, patient room, operating room

Simultaneously Cover Wider Areas Such as Hallways and Lobbies

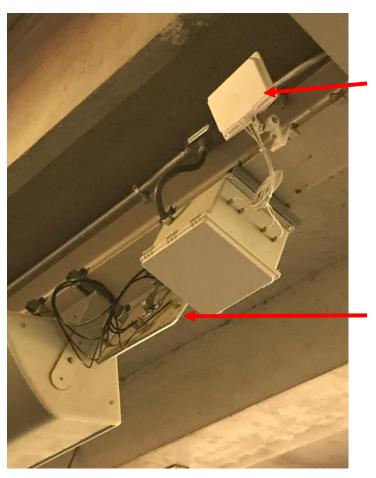
3802i/4800/9120i/9130i

Better User Experience in Locations with Varying Density Needs

Maximizes Coverage in Two Distinct Areas


• Dual 5GHz-Macro/Macro Cell

Deliver Coverage in Two Distinct Areas with a Single Access Point Using External Antennas


Better User Experience in Locations with Consistent Density Needs

Ideal for Warehouses: Optimize Costs with One Dual Radio Access Point That Covers Different Sections of a Large Space

3802e/p, 9120e/p or 9130 with breakout cable

Optimize Network Cost with Fewer Access Points

"Wide" Patch Antenna

Stadium Antenna

cisco live!

Segment Legacy Devices in your Network

Improve User Experience with Flexible Radio Assignment

Improve User Experience by Separating Performance Degrading Legacy Clients

Dedicate Specific 2.4Ghz Radios for Legacy Traffic Such as 11b While High Performing Clients Connect via 5Ghz Radio

Ideal for Healthcare, Warehouses and Retail Networks Where a Broad Mix of Modern and Legacy Devices Exists

Provide a Better User Experience While Extending the Life of Legacy Clients

Flexible Radio Assignment

A Better Mobile User Experience for High-Density Networks

- Automatically detects when a large number of devices are connected to a network
- Adds capacity by changing the access points from 2.4/5GHz to Dual 5GHz
- Monitors the network for security threats and RF interference that may affect performance
- Schedule more capacity through time of day templates
- For detailed info on FRA (and other advanced RRM topics) – see Jim Florwick's Cisco Live session BRKEWN-3010: <u>https://www.ciscolive.com/c/dam/r/ciscoliv</u> <u>e/us/docs/2019/pdf/BRKEWN-3010.pdf</u>

Supported on Cisco Aironet 2800/3800/4800/91XX Series Access Points

Agenda

- Designing RF for High Client Densities
- HD Wi-Fi Configuration Tips
- HD Wi-Fi Engineering Toolkit

Maximize your Spectrum

- Limit SSIDs (reduce management traffic)
- Filter unnecessary traffic OTA (IPv6, mcast)
- Integrate existing networks
- Optimize PHY Rates

PMP1. 7:

Renthing Marshall (Barnel) (Barnel) The American Contract (Barnel) (Barnel)

Monitor Noise Floor & use power adjustments

10.1

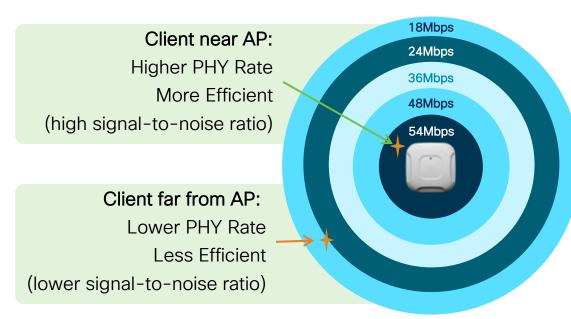
Remove barriers to entry

Oppertuition Courses - EDecember (Course Courses) - Courses (Courses)

Avoiding Excessive Management Traffic

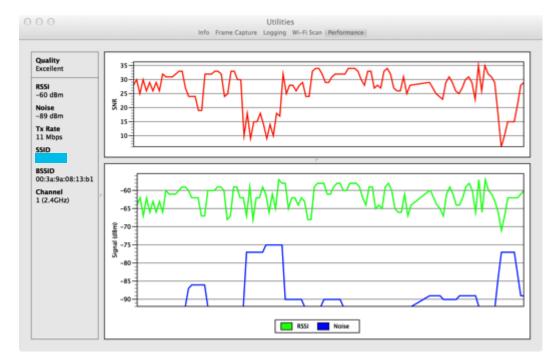
		44		
	Top Pro	tocols		✓ Others
				_
i				
	}			

- Always aim for 1 SSID
 - Especially in high density areas
- More SSID's = Worse Performance
- Why?
 - Each SSID requires a separate beacon
 - Each SSID will beacon at the minimum mandatory data rate
 - Each broadcast SSID will respond to null probe requests
 - Exponential amounts of airtime wasted!

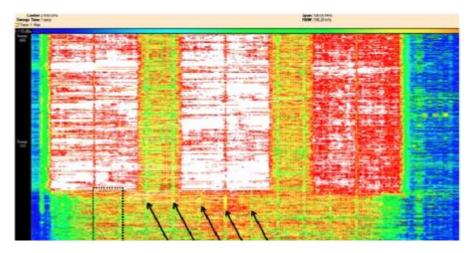


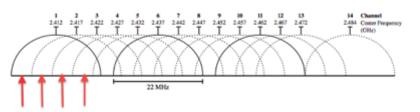
- Integrate Existing WLANs
- Common to see various existing WiFi deployments in venues
- Efficient HD WLANs are deployed holistically – one infrastructure
- Benefits?
 - Configuration consistency
 - Airtime efficiency
 - Legacy management traffic that once chewed up 30-40% of airtime typically drops to < 1% of airtime

cisco /


PHY Rate Tuning: Why PHY Rates Matter

- How fast can we talk?
 - Signal (RSSI) and Noise are key factors
- As client moves further from AP or as noise worsens, client rate-shifts downward
- Lower rate, more airtime consumed
- Position AP's and antennas to allow elimination of low rates (i.e., <18mbps)
- Eliminate 802.11b rates
- Accommodate "Soft Landing"


• RSSI vs. SNR


- Check your noise floor in each band during peak usage
 - Packet captures with a NIC that you trust (MacBook Pro, etc.)
 - Fluke AirCheck
 - Spectrum Expert
 - Metageek Chanalyzer for Clean Air

Client Induced Interference (Cont'd)

- Client-induced interference: especially damaging on 2.4GHz but also impacts 5GHz via ACI (Adjacent Channel Interference)
- Probe requests sent on all channels
 - Many frames on overlapping channels, driving noise floor to be higher/worse
- Getting these devices on your network can help
 - Probe frequency diminishes significantly on an associated device

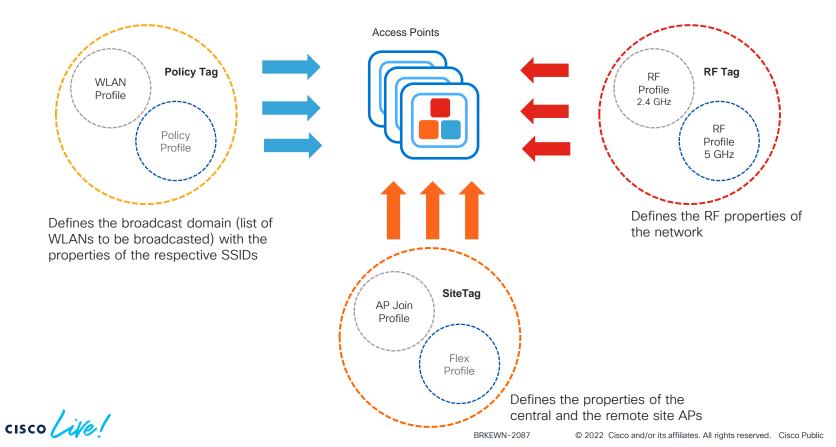
cisco ile

Ease-of-Use & Client Induced Interference

- Ask yourself how difficult is it to get on your WiFi network?
- Ease-of-use directly impacts airtime efficiency
- Low take rate = lots of probe request noise (1mb, max power, all channels)
 - Results in Client Induced Interference
- A device on the network is <u>far</u> less damaging than a device off the network!
- Device classification guide:
 - <u>http://www.cisco.com/c/en/us/td/docs/wireless/cont</u> roller/technotes/8-0/device_classification_guide.html

The Basics: RF Profiles, TPC, DCA

cisco live!


High Density WLAN Features & Configurations

- WiFi deployments are not "one-sizefits-all"
- Use RF Profiles for granular RF control
 - Dynamic Channel Allocation (DCA) per RF Profile
 - Transmit Power Control (TPC) minimum & maximum per RF Profile
 - RX-SOP to selectively reduce sensitivity
 - Channel Width 20MHz still preferred for Very High Density areas
- On C9800, plan Site Tags to balance APs across processes

cisco ile

Cisco Catalyst 9800 Config Model

49

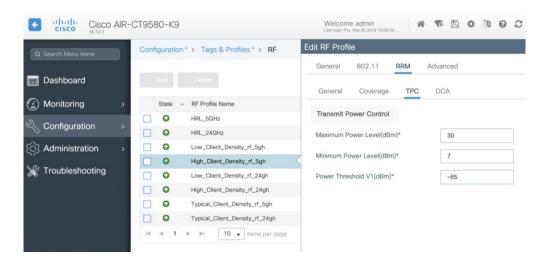
RF Profiles for High Density Optimization

Cisco All	(-01900	50-K9		Welcome admin Last login Thu, Sep 26 2019 163	56:5	*	V o		• 3	0	C Search APs	Q	C
	Conf	guratior	n >	Tags & Profiles * > RF									
Bashboard	+	Add											
		State	~ R	F Profile Name	Ŷ	Band		×	Description				Ŷ
		0	н	RL_5GHz		5 GHz							
Configuration		0	н	RL_24GHz		2.4 GHz							
S Administration		0	L	ow_Client_Density_rf_5gh		5 GHz			pre configur	ed Lo	w Client Density rf		
		0	н	igh_Client_Density_rf_5gh		5 GHz			pre configur	ed Hig	gh Client Density r		
Troubleshooting		0	Ŀ	ow_Client_Density_rf_24gh		2.4 GHz			pre configur	ed Lo	w Client Density rf		
		0	н	igh_Client_Density_rf_24gh		2.4 GHz			pre configur	ed Hig	gh Client Density r		
		o	т	vpical_Client_Density_rf_5gh		5 GHz			pre configur	ed Ty	pical Density rfpro		
		0	Т	vpical_Client_Density_rf_24gh		2.4 GHz			pre configu	ed Ty	pical Client Densit		
	14	4 1	×.	► 10 Thems per pa	age							1 - 8 of 8 i	items

- RF Profiles provide granular control of RF parameters – especially useful in High Density WiFi
- Many HD WiFi optimizations are configured via RF Profiles

cisco ile

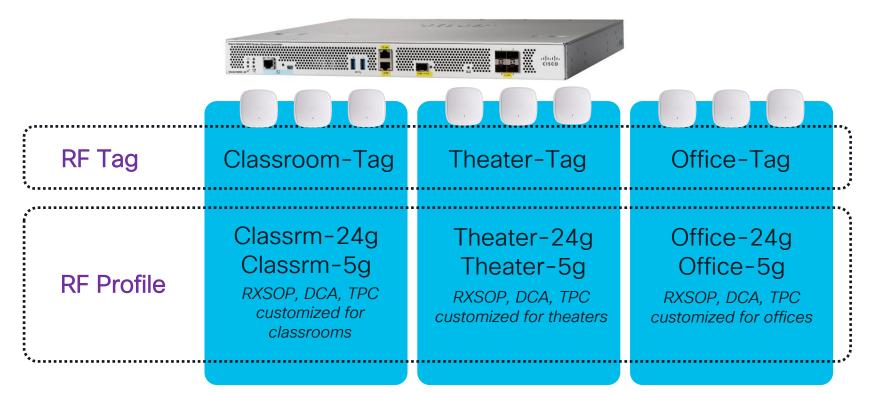
Channel Planning with RF Profiles


- Plan channels with Dynamic Channel Allocation (DCA) via RF Profile
- If needed eliminate unusable channels for business-critical areas (DFS, etc)
- Reserve channels for use by other systems

Cisco A	R-CT9580-K9	Welcome admin Last login Thu, Sep 26 2019 16:56:54	🕫 🖺 🏟 👰 🤣 🥰 Search APs and Clients Q
Q Search Menu Items	Configuration * > Tags & Profiles * > RF	Edit RF Profile	×
📰 Dashboard	+ Add × Delete	General 802.11 RRM General Coverage TPC	Advanced DCA
Monitoring	> State v RF Profile Name		
	HRL_5GHz	Dynamic Channel Assignment	
	HRL_24GHz	Avoid AP Foreign AP Interference	
	Low_Client_Density_rf_5gh	Channel Width	20 MHz 40 MHz 80 MHz 160 MHz Best
SG Tranklashan	High_Client_Density_rf_5gh		
Troubleshooting	Low_Client_Density_rf_24gh	DCA Channels	36 40 44 48 52 56 60 64 100 104 108 112 116 120 124
	High_Client_Density_rf_24gh		
	Typical_Client_Density_rf_5gh		128 132 130 140 144 149 153 157 101 105
	Typical_Client_Density_rf_24gh	High Speed Roam	
	< <1	Mode Enable	
		Neighbor Timeout*	5
		Client Network Preference	Default
{	High_Client_Density_rf_5gh Low_Client_Density_rf_24gh High_Client_Density_rf_24gh Typical_Client_Density_rf_5gh Typical_Client_Density_rf_24gh	DCA Channels High Speed Roam Mode Enable Neighbor Timeout*	x x x x x x x x 36 40 44 45 55 60 64 100 104 112 116 120 124 y y y y y y y x 128 132 136 140 144 149 153 157 161 165 5

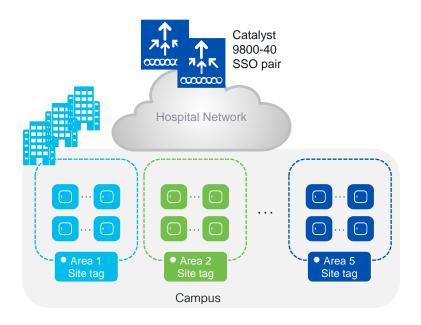
Balancing Transmit Power with RF Profiles

- Ensures AP-to-AP consistency (no "client magnets") and 2.4GHz to 5GHz balance (5GHz hotter, 2.4GHz cooler)
- TPC Min/Max: set actual limits on dBm levels to avoid ambiguity of the relative "Power Levels"
- TPC Min lower power limit specified for a given radio. RRM will never adjust power below this level.
- TPC Max upper power limit specified for a given radio. RRM will never adjust power above this level.



Selecting Channel Width with RF Profiles

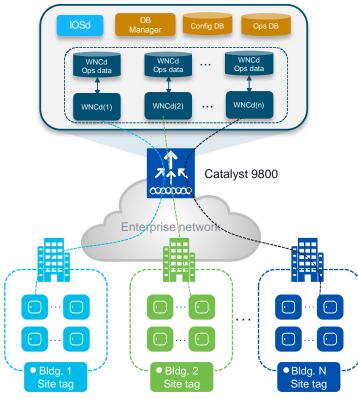
it RF Profi	le		
General	802.11	RRM	Advanced
General	Coverage	TPC	DCA
Dynamic C	hannel Assigr	nment	
Avoid AP Fo	oreign AP Interf	erence	
Channel Wi	dth		20 MHz 40 MHz 80 MHz 160 MHz Best
DCA Chann	els		✓ ✓
High Spee	d Roam		
Mode Enabl	е		
	meout*		5


- In general, 20MHz channels provide the most channel reuse (capacity) for high density environments
- Wider channels may be used selectively in more isolated areas – smaller classrooms, lobbies, conference rooms, etc.

RF Profiles for High Density Optimization (9800)

cisco live!

C9800 Site Tag Design in High Density



- Custom Site Tags deterministically distribute APs across C9800 processes, aka "WNCd's"
- Always use Custom Site Tags not Default to ensure load is balanced in a predictable way
- 500 APs per Site Tag is the rule of thumb, BUT...
- Platform limits on AP count per Site Tag will differ from "ideal limits" in High Density / High Roam frequency environments
- Recommended AP count per Site Tag will vary based on the environment
 - <u>Consider roaming patterns</u> and minimize roaming between Site Tags

Refer to the C9800 Best Practices guide for the latest guidance

Site Tags – Design considerations

Important facts:

- Distributing APs (and clients) across custom Site Tags (and thus WNCd's) gives better scale and performance
- The number of WNCd varies from platform to platform:

Platform	# of WNCD instances
EWC (on AP or C9k switch)	1
C9800-L	1
C9800-CL (small)	1
C9800-CL (medium)	3
C9800-40	5
C9800-CL (large)	7
C9800-80	8

The following command shows the # of WNCDs processes: 9800#sh processes platform | inc wncd

Refer to the C9800 Best Practices guide for the latest guidance

Site Tag Limitations

Platform	Maximum number of APs per site tag*
C9800-80, C9800-CL (medium and large)	1600
C9800-40	800
Any other C9800 platform	Equal to the maximum number of APs supported

Platform	Recommended number of site tags
C9800-80	8 or a multiple (16, 24,)
C9800-CL (large)	7 or a multiple (14, 21,)
C9800-40	5 or a multiple (10, 15,)
C9800-CL (medium)	3 or a multiple (6, 9,)

Always refer to the <u>C9800 Best Practices</u> guide for the latest guidance

cisco live!

57

Helpful Site Tag Monitoring Commands

show wireless stats ap loadbalance summary

- Shows summary of APs assigned to each WNCd

#sho DTLS drop - 380	ow wireless stat	s ap loadbalance	summary
WNCD	APs Discovered	APs Joined	APs Timedout
0	179	179	8715

show wireless loadbalance tag affinity wncd <wncd-number>

- Shows which site tags are assigned to each WNCd

Tag	wireless loadbalance ta Tag type	g affinity wncd 0 No of AP's Joined
	SITE TAG SITE TAG	177 1

The (Not So) Secret High Density Weapon: RX-SOP

cisco life!

"I have a well-designed network, but my Channel Utilization is always high anyway, even with low client counts. I've done as much as I can do per Best Practices. What do I do next?"

Vendor	Signal	Noise	SNR	Channel	Channel Utilization \lor	Clients
😑 Cisco Sys	-85 dBm 📒	-96 dBm 🦳	11 dB 📃	48	90%	
😑 Cisco Sys	-70 dBm 📒 🗌	-96 dBm 🦳	26 dB	153	89%	
💿 Cisco Sys	-74 dBm 📒 🗌	-96 dBm 📃	22 dB	153	89%	7
😑 Cisco Sys	-74 dBm 📒	-96 dBm 🦳	22 dB	153	89%	
😑 Cisco Sys	-74 dBm 📒	-96 dBm 🦳	22 dB	153	89%	
😑 Cisco Sys	-90 dBm 🚺	-96 dBm 📃	6 dB 🚺	144	87%	
💿 Cisco Sys	-78 dBm 📒 🗌	-96 dBm 🦳	18 dB 📃	157	86%	2
😑 Cisco Sys	-64 dBm 📒	-96 dBm 🦳	32 dB	1	84%	
😑 Cisco Sys	-70 dBm 📒	-96 dBm 📃	26 dB	153	82%	
💿 Cisco Sys	-76 dBm 📒	-96 dBm 🦳	20 dB	153	80%	
😑 Cisco Sys	-86 dBm 📒 🗌	-96 dBm 📃	10 dB	161	80%	
😑 Cisco Sys	-80 dBm 📒 🗌	-96 dBm 📃	16 dB 📃	153	80%	
😑 Cisco Sys	-64 dBm 📒	-96 dBm 📃	32 dB	44	79%	3
😑 Cisco Sys	-62 dBm 📒	-96 dBm 🦳	34 dB	44	79%	
😑 Cisco Sys	-64 dBm 📒	-96 dBm 🦳	32 dB	44	79%	2
😑 Cisco Sys	-80 dBm 📒	-96 dBm 🦳	16 dB 📃	153	78%	
😑 Cisco Sys	-74 dBm 📒 🗌	-96 dBm 🦳	22 dB	153	77%	
😑 Cisco Sys	-70 dBm 📒	-96 dBm 🦳	26 dB	153	76%	
😑 Cisco Sys	-80 dBm 📒 🗌	-96 dBm 🦳	16 dB	153	76%	
😑 Cisco Sys	-80 dBm 📒 🗌	-96 dBm 🦳	16 dB	153	76%	
😑 Cisco Sys	-80 dBm 📒 🗌	-96 dBm 🦳	16 dB	153	76%	
😑 Cisco Sys	-70 dBm 📒	-96 dBm 🦳	26 dB	153	76%	
🛑 Cisco Sys	-80 dBm 📒	-96 dBm 📃	16 dB	153	75%	
😑 Cisco Sys	-78 dBm 📒	-96 dBm 📃	18 dB 📃	153	75%	
😑 Cisco Sys	-78 dBm 📒	-96 dBm 📃	18 dB 📃	153	74%	1

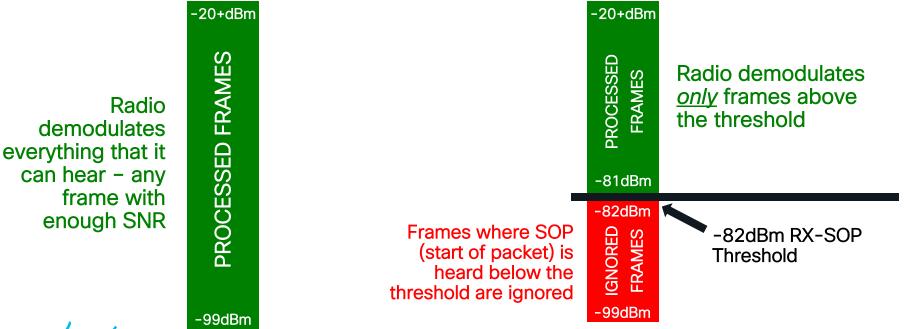
What does it do?

Reduces "receive" sensitivity of the AP to a pre-determined power level

Example: ignore everything coming into the radio at lower than -80dBm, because those devices are unlikely to be in our cell

Why is it helpful?

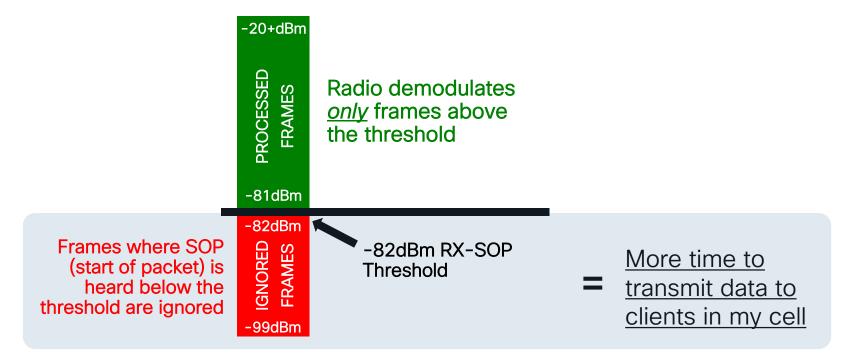
Allows us to transmit more often to clients in our *intended* cell



- Be careful and make small adjustments
 - Generally, start in the -80's
- Remember adjusting the RX-SOP threshold doesn't impact the actual RF energy on the channel, but it does impact APs' sensitivity to it
 - High Channel Utilization still affects all clients
- Antenna placement matters!
- WiFi6 adoption may reduce the need for RX-SOP in some environments; monitor your Channel Utilization as client adoption increases

Without Custom RX-SOP Threshold

(Default Radio Sensitivity)



cisco live!

#CiscoLive BRKEWN-2087

With Custom RX-SOP Threshold

With Custom RX-SOP Threshold

HOW TO: Optimize RX-SOP Thresholds

Choose client devices and representative areas to test

Create a temporary SSID on <u>one AP</u> in the test area so your client

doesn't roam

(see hidden slides for tips on AireOS / 9800)

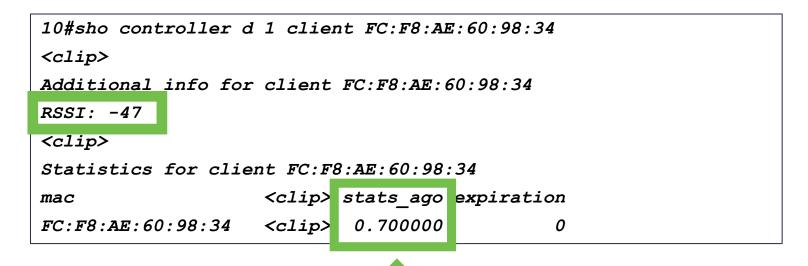
Monitor the AP's view of test clients throughout the cell (from WLC UI, WLC CLI, or AP CLI)

Pad the worst reading by another 15dB or more = initial threshold

Example: Worst AP-observed RSSI value is -72; initial RXSOP threshold with 15dB cushion = -87

	Configuratio	on • > Tags & Profile	Edit RF Profile	
			General 802.11 RRM	Advanced
n Dashboard	+ Add	× Delete	High Density Parameters	
Monitoring >	State	~ RF Profile Name		
Configuration >	0	HRL_RF_5GHz	Max Clients*	200
	0	RLS_RF_5GHz	Multicast Data Rate (Mbps)	Auto
 (○) Administration → 	0	HRL_RF_24GHz	Rx Sop Threshold (dbm)	custom
X Troubleshooting	•	RLS_RF_24GHz		-85
	• •	Low_Client_Density		
	0	High_Client_Densit,	Client Distribution	
	•	Low_Client_Density	Load Balancing Window*	5
	•	High_Client_Density	Load Balancing Denial Count*	3
	• •	Typical_Client_Dens	ATF Configuration	
		Typical_Client_Dens	All comgatuton	

HOW TO: Optimize RX-SOP Thresholds (9800)


- 1. Pick the client device(s) you want to test
- 2. Pick the representative area(s) you want to test
- 3. Create a new temporary WLAN and Policy Tag
- 4. Assign the Policy Tag to the test AP
- 5. Join your client device(s) to the new SSID and monitor how the AP hears your client(s) (from AP CLI "show controller d 1 client <mac-addr>")
- 6. Test for "worst case scenario" bodies between device and AP, furthest corner of the cell, etc. Continually check RSSI from AP side.
- 7. Take your "worst" RSSI value, add a 10-15dB cushion, and use that as your **initial RXSOP threshold** for that cell type (set in RF Tag)

Example: Worst RSSI value is -72; initial RXSOP with 15dB cushion = -87

Review: How AP's Hear Clients

For a detail on a single client, at AP CLI:

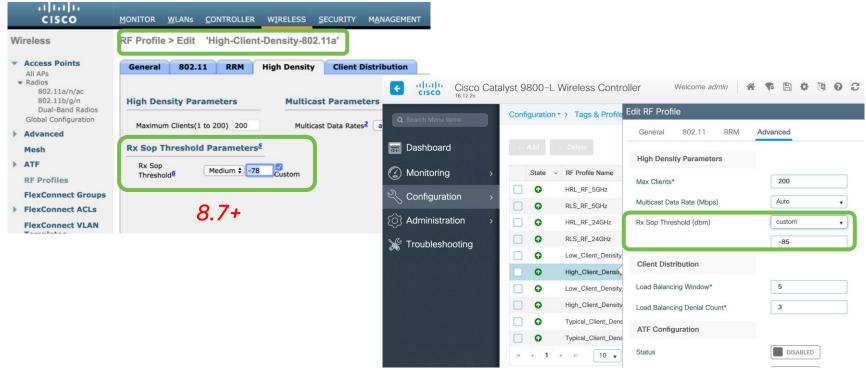
Telnet/SSH to AP and use "show controller d <0|1> client <mac-addr>" for immediate client RSSI readings of a single client

How long ago were these stats updated (in sec)?

HOW TO: Optimize RX-SOP Thresholds (AireOS)

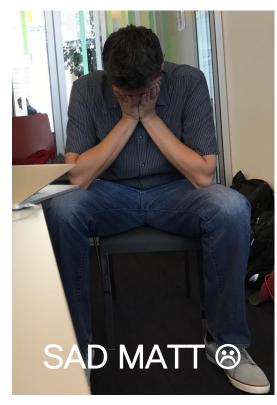
- 1. Pick the client device(s) you want to test
- 2. Pick the **representative area(s)** you want to test
- 3. Create a new temporary SSID and a new AP Group
- 4. Add the AP's you want to test to the new AP group
- 5. Join your client device(s) to the new SSID and monitor how the AP hears your client(s) (from AP CLI "show controller d 1 client <mac-addr>")
- 6. Test for "worst case scenario" bodies between device and AP, furthest corner of the cell, etc. Continually check RSSI from AP side.
- 7. Take your "worst" RSSI value, add a 10-15dB cushion, and use that as your **initial RXSOP threshold** for that cell type

Example: Worst RSSI value is -72; initial RXSOP with 15dB cushion = -87

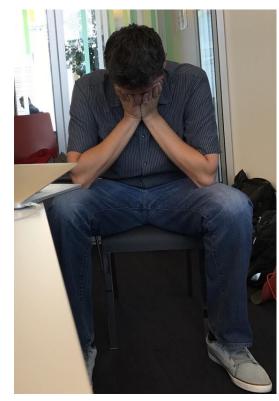

HOW TO: Optimize RX-SOP Thresholds

The last rule.....

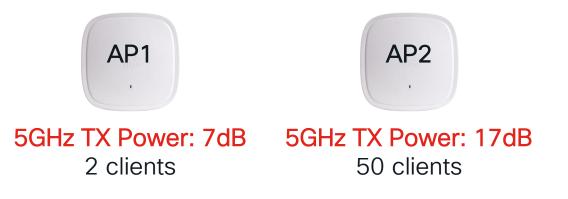
Be conservative and make small adjustments!

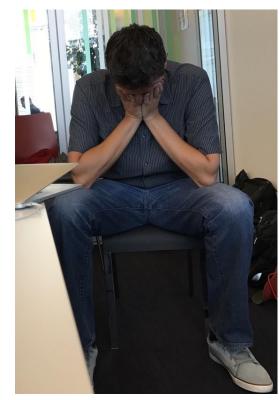

cisco ile

Tuning RX-SOP Thresholds: GUI



Common High Density Optimization Mistakes




cisco live!

Common High Density Optimization Mistakes

 AP-to-AP transmit power imbalance (causes "Magnet" / overloaded AP's)

 AP-to-AP transmit power imbalance (causes "Magnet" / overloaded AP's)

 2.4GHz to 5GHz transmit power imbalance (draws dual-band clients to 2.4GHz)

2.4GHz: 10dB 20 dual-band clients 5GHz: 7dB 0 dual-band clients

Case Study - Poor HD Optimization

BSSID	Beacon Airtime	Vendor	SNR	Device Name Signa	I v Nois	e.	Channel	Channel Width	Band	Channel Utilization
<multiple values=""></multiple>	5.612 ms		38 dB	-47	-85		1, 6, 11, 48, 112, 124	20, 40, 80 MHz		
	4.804 ms		40 dB	-47	-85					
<multiple values=""></multiple>							1, 6, 11, 48, 112			
38:FF:36:9D:63:A8	0.204 ms		40 dB	-47	-87		6			
38:FF:36:9D:7E:58	0.204 ms		33 dB	-61	-94		6			
38:FF:36:9D:85:F8	0.196 ms		24 dB	-63	-87] 1	20 MHz	2.4 GHz	76%
34:8F:27:84:8B:D8	0.204 ms		23 dB	-64	-87		11	20 MHz	2.4 GHz	76%
38:FF:36:9D:82:C8	0.204 ms		23 dB	-64	-87] 11	20 MHz	2.4 GHz	69%
38:FF:36:9D:63:AC	0.104 ms		20 dB	-67	-87		48	40 MHz	5 GHz	39%
38:FF:36:9D:7F:D8	0.204 ms		19 dB	-68	-87		6	20 MHz	2.4 GHz	82%
38:FF:36:9D:7E:28	0.204 ms		16 dB	-69	-85		6	20 MHz	2.4 GHz	79%
38:FF:36:9C:6A:D8	0.204 ms		18 dB	-69	-87] 1	20 MHz	2.4 GHz	77%
38:FF:36:9D:84:F8	0.204 ms		12 dB	-73	-85		6	20 MHz	2.4 GHz	82%
38:FF:36:9D:7F:F8	0.204 ms		12 dB	-75	-87] 11	20 MHz	2.4 GHz	78%
38:FF:36:9C:76:9C	0.104 ms		11 dB	-76	-87		48	40 MHz	5 GHz	37%
38:FF:36:9D:7E:5C	0.104 ms		11 dB	-76	-87		48	40 MHz	5 GHz	31%
38:FF:36:9D:82:CC	0.108 ms		10 dB	-77	-87		112	40 MHz	5 GHz	43%
38:FF:36:9C:65:88	0.204 ms		16 dB	-78	-94		11	20 MHz	2.4 GHz	77%
38:FF:36:9C:74:98	0.204 ms		8 dB	-79	-87] 1	20 MHz	2.4 GHz	76%
34:8F:27:84:8D:A8	0.204 ms		15 dB	-79	-94		6	20 MHz	2.4 GHz	69%
21.05.27.01.00.00	0.000 mc			_70	_07		110		E CH7	51%

• Same SSID, same AP – 2.4GHz overpowers 5GHz

http://www.adriangranados.com/apps/wifi-explorer

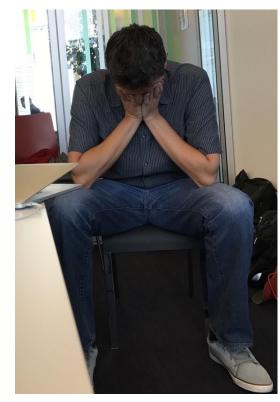
cisco / ila I

Case Study – Poor HD Optimization

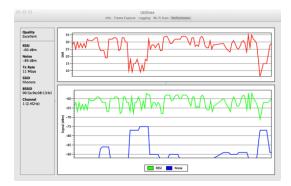
BSSID	Beacon Airtime	Vendor	SNR	Device Name	Signal	~ 1	loise	Channel		Channel Width	Band	Channel Utilization
<multiple values=""></multiple>	5.612 ms		38 dB		-47	-	85	1, (6, 11, 48, 112, 124	20, 40, 80 MHz	2.4, 5 GHz	85%
<multiple values=""></multiple>	4.804 ms		40 dB		-47	-	87		1, 6, 11, 48, 112	20, 40, 80 MHz	2.4, 5 GHz	83%
38:FF:36:9D:63:A8	0.204 ms		40 dB		-47	-	87 🔳		6	20 MHz	2.4 GHz	83%
38:FF:36:9D:7E:58	0.204 ms		33 dB		-61	-	94		6	20 MHz	2.4 GHz	74%
38:FF:36:9D:85:F8	0.196 ms		24 dB		-63	-	87		1	20 MHz	2.4 GHz	76%
34:8F:27:84:8B:D8	0.204 ms		23 dB		-64	-	87		11	20 MHz	2.4 GHz	76%
38:FF:36:9D:82:C8	0.204 ms		23 dB		-64	-	87		11	20 MHz	2.4 GHz	69%
38:FF:36:9D:63:AC	0.104 ms		20 dB		-67	-	87		48	40 MHz	z 5 GHz	39%
38:FF:36:9D:7F:D8	0.204 ms		19 dB		-68	-	87		6	20 MHz	2.4 GHz	82%
38:FF:36:9D:7E:28	0.204 ms		16 dB		-69	-	85		6	20 MHz	2.4 GHz	79%
38:FF:36:9C:6A:D8	0.204 ms		18 dB		-69	-	87		1	20 MHz	2.4 GHz	77%
38:FF:36:9D:84:F8	0.204 ms		12 dB		-73	-	85		6	20 MHz	2.4 GHz	82%
38:FF:36:9D:7F:F8	0.204 ms		12 dB		-75	-	87		11	20 MHz	2.4 GHz	78%
38:FF:36:9C:76:9C	0.104 ms		11 dB		-76	-	87		48	40 MHz	z 5 GHz	37%
38:FF:36:9D:7E:5C	0.104 ms		11 dB		-76	-	87		48	40 MHz	5 GHz	31%
38:FF:36:9D:82:CC	0.108 ms		10 dB		-77	-	87		112	40 MHz	5 GHz	43%
38:FF:36:9C:65:88	0.204 ms		16 dB		-78	-	94		11	20 MHz	2.4 GHz	77%
38:FF:36:9C:74:98	0.204 ms		8 dB		-79	-	87		1	20 MHz	2.4 GHz	76%
34:8F:27:84:8D:A8	0.204 ms		15 dB		-79	-	94		6	20 MHz	2.4 GHz	69%
21.00.07.01.00.00	0.229 mc				-70		07		110	ON MU-	, E CU-	51%

- Same SSID, same AP 2.4GHz overpowers 5GHz
- 2.4GHz is in very bad shape (high CU, low throughput)

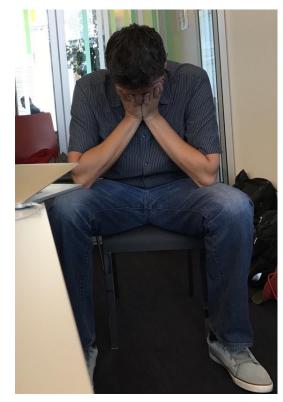
http://www.adriangranados.com/apps/wifi-explorer

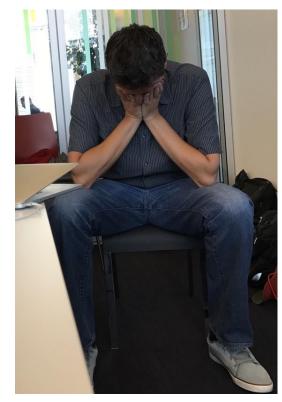

cisco / ille

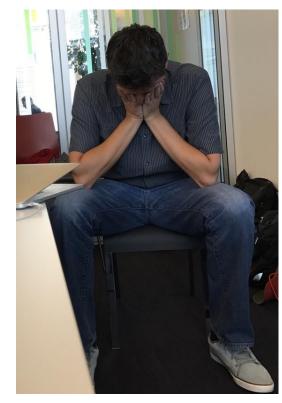
Case Study – Poor HD Optimization


BSSID	Beacon Airtime	Vendor	SNR	Device Name Signa	I v Noise	e Chanr	nel	Channel Width	Band	Channel Utilization
<multiple values=""></multiple>	5.612 ms		38 dB	-47	-85		1, 6, 11, 48, 112, 124	20, 40, 80 MHz	2.4, 5 GHz	85%
<multiple values=""></multiple>	4.804 ms		40 dB	-47	-87		1, 6, 11, 48, 112	20, 40, 80 MHz	2.4, 5 GHz	83%
38:FF:36:9D:63:A8	0.204 ms		40 dB	-47	-87		6	20 MHz	2.4 GHz	83%
38:FF:36:9D:7E:58	0.204 ms		33 dB	-61	-94		6	20 MHz	2.4 GHz	74%
38:FF:36:9D:85:F8	0.196 ms		24 dB	-63	-87		1	20 MHz	2.4 GHz	76%
34:8F:27:84:8B:D8	0.204 ms		23 dB	-64	-87		11	20 MHz	2.4 GHz	76%
38:FF:36:9D:82:C8	0.204 ms		23 dB	-64	-87		11	20 MHz	2.4 GHz	69%
38:FF:36:9D:63:AC	0.104 ms		20 dB	-67	-87		48	40 MHz	5 GHz	39%
38:FF:36:9D:7F:D8	0.204 ms		19 dB	-68	-87		6	20 MHz	2.4 GHz	82%
38:FF:36:9D:7E:28	0.204 ms		16 dB	-69	-85		6	20 MHz	2.4 GHz	79%
38:FF:36:9C:6A:D8	0.204 ms		18 dB	-69	-87		1	20 MHz	2.4 GHz	77%
38:FF:36:9D:84:F8	0.204 ms		12 dB	-73	-85		6	20 MHz	2.4 GHz	82%
38:FF:36:9D:7F:F8	0.204 ms		12 dB	-75	-87		11	20 MHz	2.4 GHz	78%
38:FF:36:9C:76:9C	0.104 ms		11 dB	-76	-87		48	40 MHz	5 GHz	37%
38:FF:36:9D:7E:5C	0.104 ms		11 dB	-76	-87		48	40 MHz	5 GHz	31%
38:FF:36:9D:82:CC	0.108 ms		10 dB	-77	-87		112	40 MHz	5 GHz	43%
38:FF:36:9C:65:88	0.204 ms		16 dB	-78	-94		11	20 MHz	2.4 GHz	77%
38:FF:36:9C:74:98	0.204 ms		8 dB	-79	-87		1	20 MHz	2.4 GHz	76%
34:8F:27:84:8D:A8	0.204 ms		15 dB	-79	-94		6	20 MHz	2.4 GHz	69%
21.00.07.01.00.00	0.000 mc			_70			110	00 MU-	E CU-	E10/

- Same SSID, same AP 2.4GHz overpowers 5GHz
- 2.4GHz is in very bad shape (high CU, low throughput)
- I can't get on 5GHz because 2.4 is too hot!


http://www.adriangranados.com/apps/wifi-explorer


- AP-to-AP transmit power imbalance (causes "Magnet" / overloaded AP's)
- 2.4GHz to 5GHz transmit power imbalance (draws dual-band clients to 2.4GHz)
- □ Transmit power too low to overcome noise floor



- AP-to-AP transmit power imbalance (causes "Magnet" / overloaded AP's)
- 2.4GHz to 5GHz transmit power imbalance (draws dual-band clients to 2.4GHz)
- □ Transmit power too low to overcome noise floor
- □ Channel Utilization too high high latency

- AP-to-AP transmit power imbalance (causes "Magnet" / overloaded AP's)
- 2.4GHz to 5GHz transmit power imbalance (draws dual-band clients to 2.4GHz)
- □ Transmit power too low to overcome noise floor
- □ Channel Utilization too high high latency
- Minimum mandatory PHY rate improperly tuned (too high or too low)

- AP-to-AP transmit power imbalance (causes "Magnet" / overloaded AP's)
- 2.4GHz to 5GHz transmit power imbalance (draws dual-band clients to 2.4GHz)
- □ Transmit power too low to overcome noise floor
- □ Channel Utilization too high high latency
- Minimum mandatory PHY rate improperly tuned (too high or too low)
- Too many SSID's enabled (not using AP Groups to control where SSID's are enabled)

- AP-to-AP transmit power imbalance (causes "Magnet" / overloaded AP's) TPC
- 2.4GHz to 5GHz transmit power imbalance (draws dual-band clients to 2.4GHz) TPC
- □ Transmit power too low to overcome noise floor **TPC**
- □ Channel Utilization too high *Env. Cleanup / RXSOP*
- Minimum mandatory PHY rate improperly tuned (too high or too low) *PHY Rate tuning*
- Too many SSID's enabled (not using AP Groups to control where SSID's are enabled) *Policy Tags*

□ Unusable channels (especially 5GHz) DCA

Smartphone Roaming Challenges

- As a rule, smartphones pick the loudest AP, then stick to that AP as long as possible
- Many phones won't go looking for a "better" AP unless things are REALLY bad (low RSSI/SNR)
- We attack this problem with workarounds (Optimized Roaming feature) and standards-based features (11k, 11v, adaptive 11r)
- Standards-based methods are best!!

Rogue APs

- DSL/cable modems
 - Are often auto-configured on "least loaded" channel on 2.4ghz
- MiFi's, Eye-Fi's, and hotspot-enabled smartphones
- Low PHY rates, max power
- Often on overlapping channels due to least-congested channel selection
- Causes exponential load on the air due to probe requests/responses and beacons

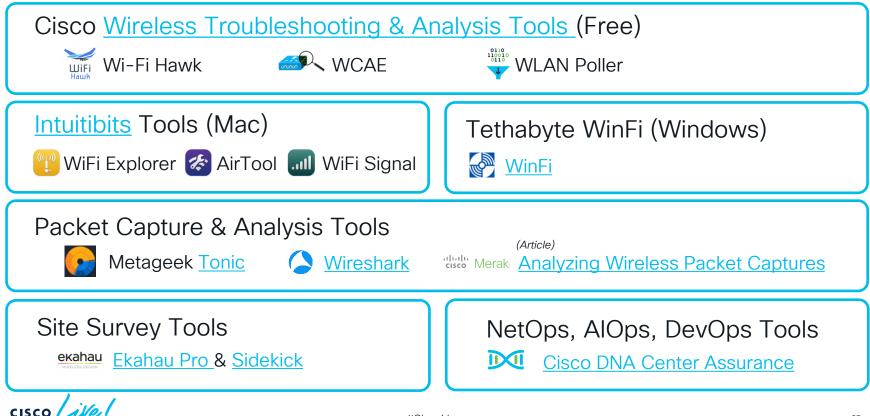
Looks like it belongs... but it doesn't

Non-WiFi Interferers

- Video cameras, wireless audio (Coachcomm, Zaxcom), lighting, pyro, and cryo systems, etc.
- Ever look at a Fluke meter and see zero AP's where you'd expect to see dozens? Non-WiFi Interferers often drown out 802.11 altogether.
- Mitigation: remove them altogether or change frequency if possible

What can we do?

- Develop and Enforce an RF Policy
- Employ an effective RF policy
- Identify:
 - what's permitted in your environment
 - what is not permitted in your environment
 - whom to contact for further information



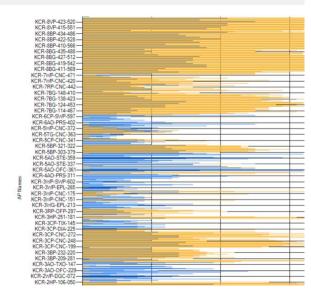
Agenda

- Designing RF for High Client Densities
- HD Wi-Fi Configuration Tips
- HD Wi-Fi Engineering Toolkit

Our Favorite Tools

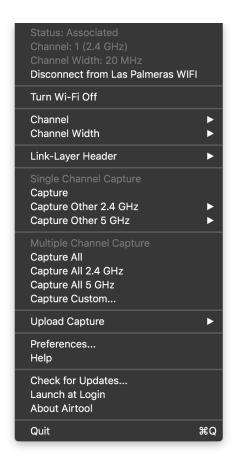
Wireless Troubleshooting Tools

Overview	Wireless Troubleshooting Tools
Wireless Troubleshooting Tools	In order to help people in the field, doing Wireless networks troubleshooting and RF analysis, the WNG
WLCCA	Escalation, TAC and Development teams have made available several tools to facilitate some of the most
Wireless Config Analyzer	common tasks.
Config Checks and Messages	Wireless Config Analyzer Express - WCAE
Features	Cloud Version
RF Analysis	Mini Desktop Version For access, please request to wcae@cisco.com
RF Health	Next generation, multi platform Wireless Analyzer tool, including checks from WLCCA, and several new
Support	additions
WCAE	Support for AireOS and 9800 IOS-XE controllers, you can use the Cloud version (summary view, all
Wireless Config Analyzer Express	checks), or the Desktop version, providing a detailed XLS or text report, with RF analysis output, Flex summarisation and more Now with Windows 10 or Mac OS support.
How to use - Cloud	Wireless Lan Config Analyzer - WLCCA - Download V4.4.14
How to use - mini-Desktop	 For access, please request to wlc-conf-app-dev
Changelog	It is desktop Windows application, oriented primarily towards AireOS controllers Provides around 300+
Support	configuration checks, RF analysis and RF Health evaluation
WLAN Poller	WLAN Poller - Download Windows or Mac OS)
	Bulk data collection script system, focused on capturing debugging data, flash che Chat with Us!


Download: https://developer.cisco.com/docs/wireless-troubleshooting-tools/

Wireless Troubleshooting Tools

- The WLC Config Analyzer (WLCCA) is an extremely valuable tool when validating and optimizing a Cisco Wi-Fi deployment
- WLCCA helps us determine:
 - Configuration consistency across multiple WLC's
 - RF Problem Finder determine likely "problem" RF areas
 - AP Neighbors how do AP's hear each other? Too well, not well enough?
 - Additional views of CleanAir data
 - RRM overview with the RF Summary


수 WLC Config Analyzer - sh run config 12-15-15.log - [Charts] 뒢 File Edit Find RF Analysis Report Center View Settings Windows Help 파 🎯 🍄 🎒 🔐 🕼 😩 🖺 1 🕂 💠 🏨 🌽 Search...

Download: <u>https://developer.cisco.com/docs/wireless-troubleshooting-tools/</u>

Packet Captures

- OmniPeek/Wireshark
 - For packet captures of the WLAN, including beacons and other management traffic
 - Helpful for troubleshooting of problems at the source
- AirTool
 - Free app for Mac simplifies packet capture process
 - <u>https://www.adriangranados.com/ap</u> <u>ps/airtool</u>

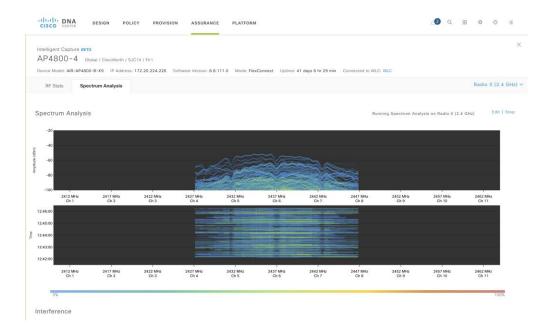
Site Surveys

Ekahau Site Survey Pro

- Design & Verify
- Determine differences in coverage that occur as a result of tuning changes

And Address of the	LAA BANK				alast (-10	
	trees a terry		and the second se	in the second	died.			- 11	
		Cather,		10	-			11	
trag and to real				/ 着	in Inde			- 11	
			N.A.						
	CO MATING TUTAL	h	$\backslash \land$	A					
	and an other state	6	7			6	2		
	and the second s		AP-8/3		-				
				111		part, b	-	100	
1	En las Pas Alta des al			2					
	2 by line in state								
-	Signal	Nois	27.1	Channel	Width	Band	Stations		annel Utilization
	Signal -55	Nois -91	36 dB	56	20 MHz	5 GHz	34	13%	
	Signal -55 -56	Nois -91	36 dB 35 dB	56 100	20 MHz 20 MHz	5 GHz 5 GHz	34 10	13% 60%	
	Signal -55 -56 -56 -56	Nois -91 1 -91 1 -90 1	36 dB 35 dB 35 dB 34 dB	56 100 1	20 MHz 20 MHz 20 MHz	5 GHz 5 GHz 2.4 GHz	34 10 2	13% 60% 74%	
	Signal -55 • -56 • -56 • -57 •	Nois -91	36 dB 35 dB 34 dB 34 dB	56 100 1 6	20 MHz 20 MHz 20 MHz 20 MHz	5 GHz 5 GHz 2.4 GHz 2.4 GHz	34 10 2 2	13% 60% 74% 79%	
	Signal -55	Nois -91 -91 -90 -90 -91 -91 -91 -91 -91 -91 -91 -91 -91 -91	36 dB 35 dB 34 dB 34 dB 33 dB 33 dB	56 100 1 6 44	20 MHz 20 MHz 20 MHz 20 MHz 20 MHz	5 GHz 5 GHz 2.4 GHz 2.4 GHz 5 GHz	34 10 2 2 44	13% 60% 74% 79% 48%	
	Signal -55	Nois -91 -91 -90 -91 -91 -91 -91	36 dB 35 dB 34 dB 34 dB 33 dB 31 dB	56 100 1 6 44 64	20 MHz 20 MHz 20 MHz 20 MHz 20 MHz 20 MHz	5 GHz 5 GHz 2.4 GHz 2.4 GHz 5 GHz 5 GHz	34 10 2 2 44 9	13% 60% 74% 79% 48% 22%	
	Signal -55	Nois -91 -91 -91 -91 -91 -91 -91 -91	36 dB 35 dB 34 dB 34 dB 33 dB 31 dB 31 dB	56 100 1 6 44 64 161	20 MHz 20 MHz 20 MHz 20 MHz 20 MHz 20 MHz 20 MHz	5 GHz 5 GHz 2.4 GHz 2.4 GHz 5 GHz 5 GHz 5 GHz	34 10 2 2 44 9 0	13% 60% 74% 79% 48% 22% 0%	
	Signal -55	Nois -91 1 -91 1 -91 1 -91 1 -91 1 -91 1 -91 1	36 dB 35 dB 34 dB 34 dB 33 dB 31 dB 31 dB 30 dB	56 100 1 6 44 64 161 40	20 MHz 20 MHz 20 MHz 20 MHz 20 MHz 20 MHz 20 MHz 20 MHz	5 GHz 5 GHz 2.4 GHz 2.4 GHz 5 GHz 5 GHz 5 GHz 5 GHz	34 10 2 2 44 9 0 42	13% 60% 74% 79% 48% 22% 0% 18%	
	Signal -55	Nois -91 -91 -91 -91 -91 -91 -91 -91 -91 -91	36 dB 35 dB 34 dB 34 dB 33 dB 31 dB 31 dB 30 dB	56 100 1 6 44 64 161 40 153	20 MHz 20 MHz 20 MHz 20 MHz 20 MHz 20 MHz 20 MHz 20 MHz 20 MHz	5 GHz 5 GHz 2.4 GHz 2.4 GHz 5 GHz 5 GHz 5 GHz 5 GHz 5 GHz 5 GHz	34 10 2 2 44 9 0 0 42 2	13% 60% 74% 79% 48% 22% 0% 18% 28%	
	Signal -55	Nois -91 -91 -91 -91 -91 -91 -91 -91 -91 -91	36 dB 35 dB 34 dB 34 dB 33 dB 31 dB 31 dB 30 dB 30 dB	56 100 1 6 44 64 161 40 153 36	20 MHz 20 MHz 20 MHz 20 MHz 20 MHz 20 MHz 20 MHz 20 MHz 20 MHz 20 MHz	5 GHz 5 GHz 2.4 GHz 2.4 GHz 5 GHz 5 GHz 5 GHz 5 GHz 5 GHz 5 GHz 5 GHz	34 10 2 2 44 9 0 42 2 2 0	13% 60% 74% 79% 48% 22% 0% 18% 28% 0%	
	Signal -55	Note -91 1 -91 1 -91 1 -91 1 -91 1 -91 1 -91 1 -91 1 -91 1 -91 1	36 dB 35 dB 34 dB 34 dB 33 dB 31 dB 30 dB 30 dB 30 dB 28 dB	56 100 1 6 44 64 161 40 153 36 108	20 MHz 20 MHz 20 MHz 20 MHz 20 MHz 20 MHz 20 MHz 20 MHz 20 MHz 20 MHz	5 GHz 5 GHz 2.4 GHz 5 GHz 5 GHz 5 GHz 5 GHz 5 GHz 5 GHz 5 GHz 5 GHz	34 10 2 2 44 9 0 42 2 2 0 35	13% 60% 74% 79% 48% 22% 0% 18% 28% 0% 9%	
	Signal -55	Nois -91 0 -91 0	36 dB 35 dB 36 dB 37 dB 37 dB 37 dB 37 dB 37 dB 37 dB 30 dB	56 100 1 6 44 64 161 40 153 36 108 161	20 MHz 20 MHz	5 GHz 5 GHz 2.4 GHz 5 GHz 5 GHz 5 GHz 5 GHz 5 GHz 5 GHz 5 GHz 5 GHz 5 GHz	34 10 2 44 9 0 42 2 0 35 16	13% 60% 74% 79% 48% 22% 0% 18% 28% 0% 9% 31%	
	Signal -55	Note -91 1 -91 1 -91 1 -91 1 -91 1 -91 1 -91 1 -91 1 -91 1 -91 1	36 dB 35 dB 34 dB 34 dB 33 dB 31 dB 30 dB 30 dB 30 dB 28 dB	56 100 1 6 44 64 161 40 153 36 108	20 MHz 20 MHz	5 GHz 5 GHz 2.4 GHz 5 GHz	34 10 2 44 9 0 42 2 0 35 16	13% 60% 74% 79% 48% 22% 0% 18% 28% 0% 9%	
	Signal -55	Nois -91 0 -91 0	36 dB 35 dB 36 dB 37 dB 37 dB 37 dB 37 dB 37 dB 37 dB 30 dB	56 100 1 6 44 64 161 40 153 36 108 161	20 MHz 20 MHz	5 GHz 5 GHz 2.4 GHz 5 GHz 5 GHz 5 GHz 5 GHz 5 GHz 5 GHz 5 GHz 5 GHz 5 GHz	34 10 2 2 44 44 9 0 0 42 2 0 0 35 16	13% 60% 74% 79% 48% 22% 0% 18% 28% 0% 9% 31%	

Ekahau Sidekick


- Multi-Radio Survey Device, Spectrum Analyzer, and Realtime Troubleshooting Tool
- No more USB dongles that you may or may not inadvertently break off (not that we've ever done that...)

https://www.ekahau.com/products/sidekick/overview/

Spectrum Analysis

Cisco DNA Center Intelligent Capture

- Layer 1
- Provides a view of real energy on a channel
- Identify interferers of all types
- Critical part of the "big picture"

iOS Wi-Fi Diagnostics with iOS

10:42 🕫 Search		
ancel	Install Profile	Install
	FiFi Performance Diagnostics	
Signed by	AppleCare Profile Signing Certificate	
	Enable WiFi daemon and driver diagno Internal Settings Logging Settings Unknown Payload	ostic mode
More Det	ails	÷.
	Remove Downloaded Profile	

g Diagn	ostics
BSSID	aa:17:d8:ff:e8:3f
Channel	149 (40MHz)
Signal Strength	-46 (Strong)
Channel utilization is low.	
Security	WPA2 Personal
Captive	No
Deployment	Multi AP
Motion	Moving
CONNECTIVITY	
Gateway	9ms
Internet	47ms
Responsiveness	Test
COEXISTENCE	
AWDL Mode	Inactive
Bluetooth	Idle
Scan	Inactive

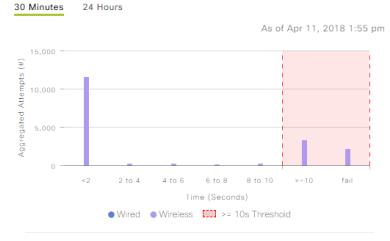
Diagnostics Profile for installation on iOS devices extends on-device WiFi diagnostics capabilities

More Info:

https://tidbits.com/2022/04/22/use-applesnetworkquality-tool-to-test-internetresponsiveness/

Profile Download:

https://developer.apple.com/servicesaccount/download?path=/iOS/iOS_Logs/MegaWifiP rofile.mobileconfig


Note: Profile auto-expires after 7 days and must be re-installed when needed

Cisco DNA Center Assurance

Broad applicability to High Density deployments

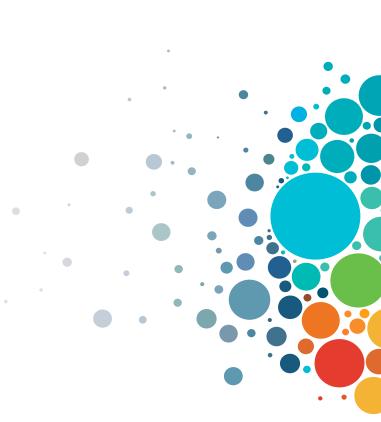
Client Attempts by Onboarding Times

- iOS Analytics
- Detailed client onboarding analysis
- Aironet Active Sensor support
- Intelligent Capture
- Network Time Travel

...and much more!

View Details

https://clnv.s3.amazonaws.com/2018/usa/pdf/BRKEWN-2034.pdf



Key Takeaways

- Design the RF environment with appropriate antennas and sensible physical placements
- Employ HD-focused WLC feature configurations such as RF Profiles for more flexible and robust designs
- Understand the key outside factors that may impact a live HD WLAN, including enemies of performance
- Get comfortable with Wi-Fi analysis and optimization tools to
 make informed, data-driven decisions

Technical Session Surveys

- Attendees who fill out a minimum of four session surveys and the overall event survey will get Cisco Live branded socks!
- Attendees will also earn 100 points in the Cisco Live Game for every survey completed.
- These points help you get on the leaderboard and increase your chances of winning daily and grand prizes.

Cisco Learning and Certifications

From technology training and team development to Cisco certifications and learning plans, let us help you empower your business and career. www.cisco.com/go/certs

Pay for Learning with **Cisco Learning Credits**

(CLCs) are prepaid training vouchers redeemed directly with Cisco.

Learn

Cisco U. IT learning hub that guides teams

and learners toward their goals

Cisco Digital Learning

Subscription-based product, technology, and certification training

Cisco Modeling Labs

Network simulation platform for design, testing, and troubleshooting

Cisco Learning Network Resource community portal for certifications and learning

Cisco Training Bootcamps Intensive team & individual automation and technology training programs

Cisco Learning Partner Program

Authorized training partners supporting Cisco technology and career certifications

Cisco Instructor-led and Virtual Instructor-led training

Accelerated curriculum of product, technology, and certification courses Certify

Cisco Certifications and Specialist Certifications

Award-winning certification program empowers students and IT Professionals to advance their technical careers

Cisco Guided Study Groups

180-day certification prep program with learning and support

Cisco Continuina **Education Program**

Recertification training options for Cisco certified individuals

Here at the event? Visit us at The Learning and Certifications lounge at the World of Solutions

Continue your education

- Visit the Cisco Showcase for related demos
- Book your one-on-one Meet the Engineer meeting
- Attend the interactive education with DevNet, Capture the Flag, and Walk-in Labs
- Visit the On-Demand Library for more sessions at <u>www.CiscoLive.com/on-demand</u>

CISCO The bridge to possible

Thank you

#CiscoLive

#CiscoLive