# cisco Live!





This session provides an overview of the programmability and automation features that are supported on the Cisco IOS XE Catalyst 9800 platforms.

An overview of the YANG based API's and the associated YANG Suite tooling will be used extensively throughout this session, in addition to gRPC and gNMI.

The Model Driven Telemetry capabilities will also be discussed and the example Docker container for collection and visualization will be demonstrated as well as example dashboards from Grafana for Client and AP visibility.

Let's not forget Guest Shell, EEM, the Python and NETCONF API, and other innovations around Zero Touch Provisioning that enable WLCs to be deployed, managed, and configured with ease at scale.





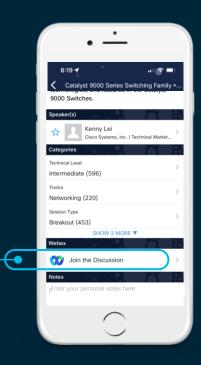
# Programmability and Automation

on Cisco Catalyst Wireless platforms

Jeremy Cohoe, Technical Marketing @jeremycohoe
BRKEWN-2730



# Cisco Webex app


#### **Questions?**

Use Cisco Webex App to chat with the speaker after the session

#### How

- 1 Find this session in the Cisco Live Mobile App
- 2 Click "Join the Discussion"
- 3 Install the Webex App or go directly to the Webex space
- 4 Enter messages/questions in the Webex space

Webex spaces will be moderated by the speaker until June 17, 2022.



https://ciscolive.ciscoevents.com/ciscolivebot/#BRKEWN-2730



### **About Jeremy**

# WxT/jcohoe@cisco.com

- From Vancouver, BC, Canada
- Amateur Radio Operator, VA7NSA
- Canadian Forces Army Signals Operator 4 yrs
- UBC Wireless Infrastructure 7 yrs
- Cisco Enterprise Networks 5 yrs





















### Agenda

- Introduction
- Day 1 WLC management with API's
  - YANG Suite, Terraform
- Day 2 Streaming Telemetry
  - TIG, gRPC Dial-Out & gNMI Dial-In
- Day N/0 Automation
  - Guest Shell, EEM, Python/NETCONF API
- Conclusion

GIF Demo WLC in AWS

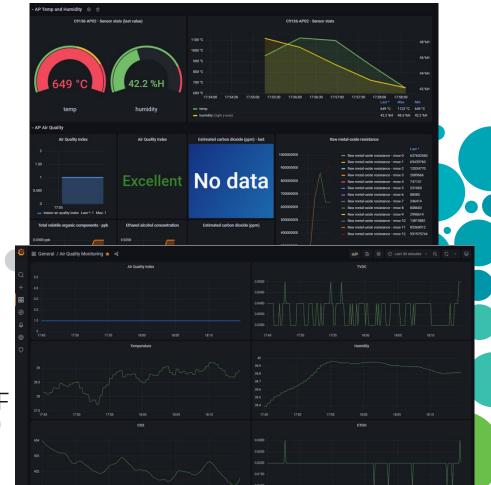
Live demos: C9800-L ZTP DEVWKS-2275 with Palmer Supercharge your Wireless Programmability



#### Demo workflow...



- Deploy C9800-CL WLC with Terraform in AWS
  - Using the default C9800-CL Amazon AMI (GCP, Azure, etc)
- Configure WLC with Terraform
  - Using RESTCONF + CLI2YANG payload
- WLC sends telemetry from AP to Grafana Dashboard
  - Visualized in Grafana

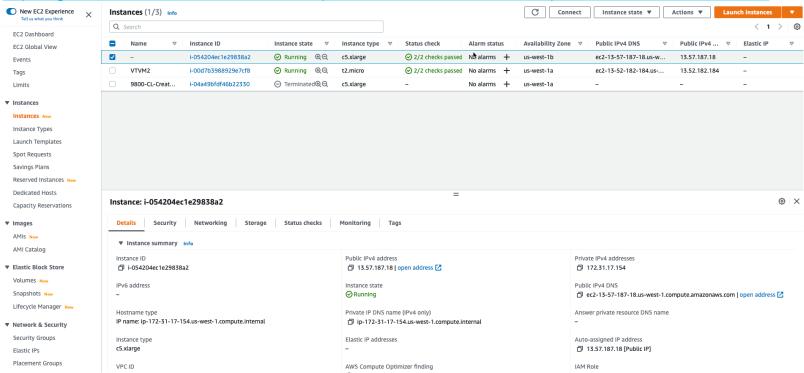



What is the current air quality in this breakout room?

Let's plug in the AP9136 with built-in sensors and view the dashboard...

#### Demos

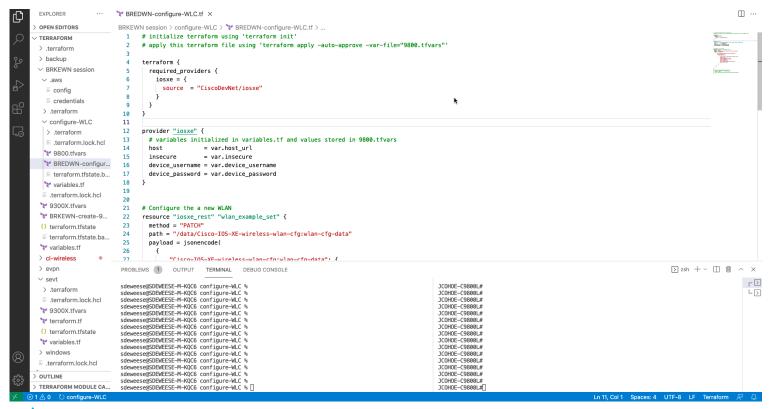
- 1. deploy controller w/ TF in cloud
- 2. Configure the new controller w/ TF
- 3. View cool dashboards (TIG stack)





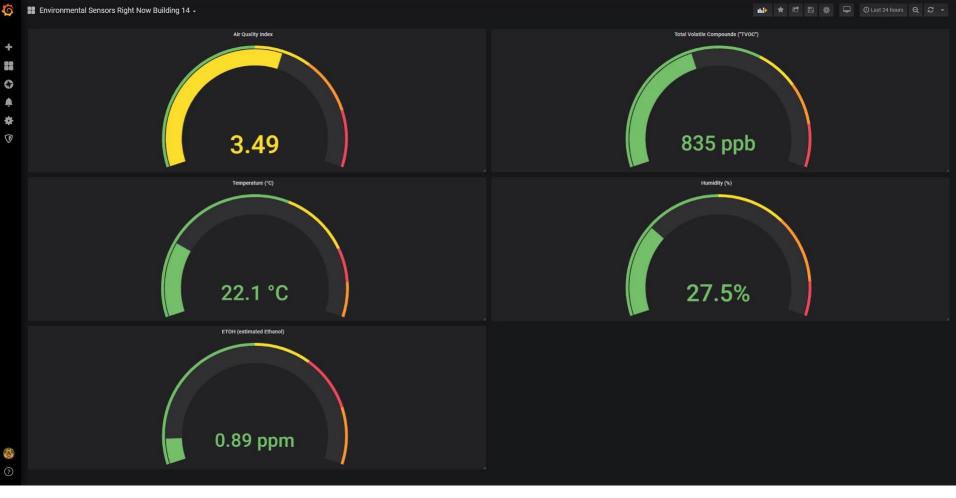



### Terraform Demo: Create a 9800 WLC in AWS


https://github.com/CiscoDevNet/terraform-provider-iosxe/tree/main/examples/tutorials/9800-and-AWS








# TF Demo - configure controller





BRKEWN-2730





BRKEWN-2730

# Cisco's Next-gen Wireless Stack

Enabling next-generation mobility powered for Wi-Fi 6



Cisco Catalyst 9800 Wireless Controllers



Cisco Catalyst 9100 Access Points



### Managed by



Translate business intent into network policy and capture actionable insights



# Digitized by Cisco DNA Spaces

Digitize people, spaces and things







### Cisco New Wi-Fi 6E Portfolio

#### MR and C series APs are not convertible

#### One Product - Two personas

#### CW9162



- 2x2 + 2x2 + 2x2
- 2.5 Gbps mGig
- Power Options: PoE, DC Power
- Scanning Radio
- IoT ready + Bluetooth 5.x
- Standard Bracket

#### CW9164



- 2x2, 4x4, 4x4
- 2.5 Gbps mGig
- Power Options: PoE, DC Power
- Scanning Radio
- IoT Ready + Bluetooth 5.x Common XOR
- Standard Bracket

#### CW9166



- 4x4 + 4x4, 4x4 (XOR 5/6)
- 5 Gbps mGig
- Power Options: PoE, DC Power
- IoT readv + Bluetooth 5 x
- Scanning Radio
- Environmental Sensor
- Architecture
- · Standard Bracket

#### **MR57**



- 4x4 + 4x4, 4x4 (XOR 5/6)
- Dual 5 Gbps mGig with failover
- Power Options: PoE, DC Power
- IoT ready + Bluetooth 5.x
- Scanning Radio
- XOR Architecture (High/Low band)
- Standard Bracket

#### C9136



- 4x4 + 8x8 + 4x4 or  $4\times4+4\times4+4\times4+4\times4$
- Dual 5 Gbps mGig with failover
- Power Options: PoE, DC Power
- IoT ready + Bluetooth 5.x
- Scanning Radio
- Environmental Sensor
- XOR Architecture (macro/meso)
- Standard Bracket



BRKEWN-2730

### IOS XE Programmability & Automation Overview

Pre-boot Execution Environment (iPXE)

Zero Touch Provisioning

VM Automation

Provisionina **Model Driven** Automation **Programmability** Device Onboarding python" Day 0 Device Configuration INTENT CONTEXT Day 1 Day N Device Optimization Day 2 **Model Driven** Software Image Management **Telemetry** Device Monitoring

Network Configuration Protocol (NETCONF), RESTCONF, gNMI

YANG Data Models, OpenConfig, and YANG Suite tooling

Terraform, Ansible, pyATS

gNOI cert/os/reset.proto

**Guest Shell + NETCONF** 

CentOS 8 with Python 3

Application Hosting with Docker

TIG\_MDT container + GitHub examples

YANG On-Change support

gRPC Dial-Out + DNS + mTLS

gNMI/NETCONF Dial-In

CLI to YANG

BRKEWN-2730

14

# Programmable features on wireless platforms

|                    | EWC     | C9800-CL | C9800-L | C9800-40/80 |
|--------------------|---------|----------|---------|-------------|
| ZTP / Guest Shell  | N/A     | N/A      | ZTP     | Yes         |
| NETCONF            | Yes     | Yes      | Yes     | Yes         |
| NETCON Dial-In MDT | Enabled | Enabled  | Enabled | Enabled     |
| RESTCONF           | Yes     | Yes      | Yes     | Yes         |
| gNMI               | N/A     | Yes      | Yes     | Yes         |
| gNMI Dial-In MDT   | N/A     | Enabled  | Enabled | Enabled     |
| gRPC Dial-Out MDT  | N/A     | Enabled  | Enabled | Yes         |
| gNOI cert.proto    | N/A     | Enabled  | Enabled | Enabled     |
| gNOI factory reset | N/A     | N/A      | N/A     | Yes         |



Source of truth: https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/prog/configuration/178/b\_178\_programmability\_cg.html



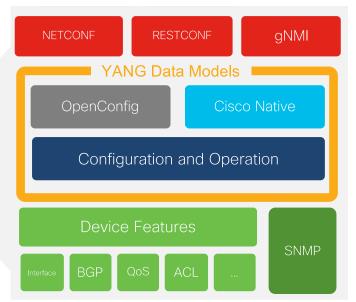
BRKEWN-2730

IOS XE Programmability provides a flexible and open API ecosystem that is available for integrations with 3rd party tooling and systems



### Programmable Interfaces

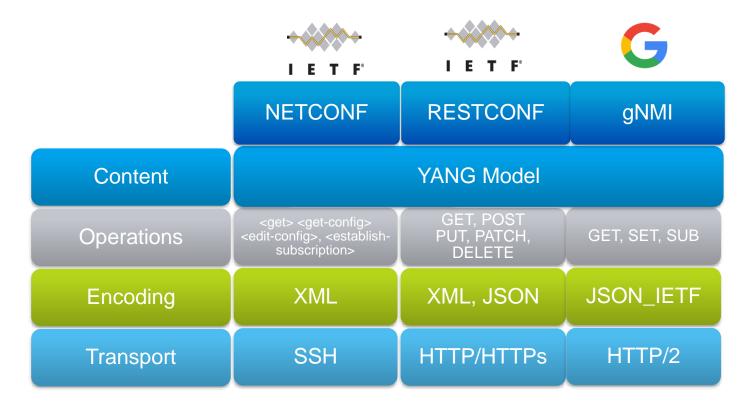
CLI


SNMP

WebUI

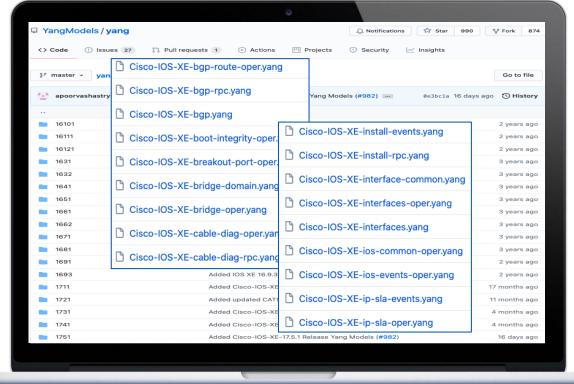
The NETCONF, RETCONF and gNMI are <u>programmatic</u> interfaces that provide <u>additional</u> methods for interfacing with the IOS XE device – Just like the CLI, SNMP, and WebUI is used for configuration changes and operational metrics so can the programmatic interfaces of NETCONF, RESTCONF and gNMI

YANG data models define the data that is available for configuration and streaming telemetry





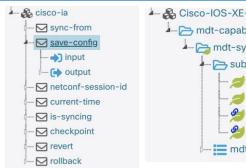




BRKEWN-2730 17

#### **API Interfaces**






# IOS XE - YANG model coverage on GitHub





### Notable YANG models

| YANG Module                             | Description                         |
|-----------------------------------------|-------------------------------------|
| Cisco-IOS-XE-native.YANG                | Running-configuration               |
| Cisco-IOS-XE-{feature}-oper.YANG        | Feature specific operational data   |
| Cisco-IOS-XE-{feature}-cfg.YANG         | Feature specific configuration      |
| Cisco-IOS-XE-RPC, cisco-ia              | Actions for DHCP Renew, Save config |
| Cisco-IOS-XE-events-oper.yang           | Event based telemetry notifications |
| Cisco-IOS-XE-mdt-capabilities-oper.yang | Telemetry capabilities              |

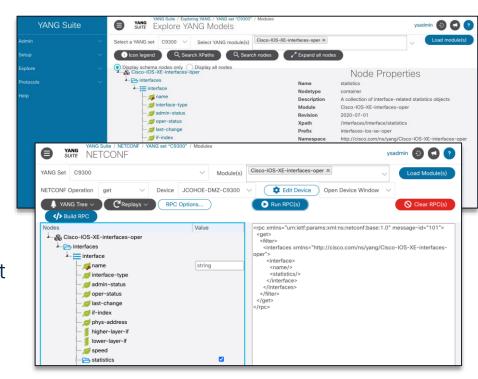











### Cisco YANG Suite



YANG API Testing and Validation Environment

Construct and test YANG based APIs over NETCONF, RESTCONF, gRPC and gNMI

IOS XE / IOS XR / NX OS platforms



Now Generally Available!

developer.cisco.com/yangsuite

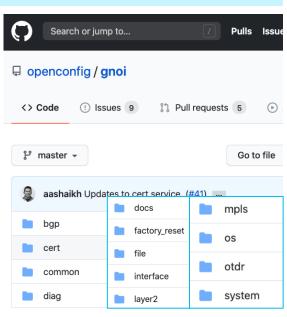
github.com/CiscoDevNet/yangsuite

DEVLIT-2787 with Story has more details about YANG Suite



BRKEWN-2730

#### gNMI / gNOI


# gRPC Network Operations Interface

- 1. gRPC Network Operations Interface, or gNOI, is a set of gRPC-based microservices, used for <u>executing</u> operational commands on network devices
- 2. gNOI operations are executed against the gNMI API interface
- 3. gNOI is defined and implemented on a per proto basis
- 4. There are many protos defined some are more mature and evolve and different pace

| Protobuf RPC | Use                                 | Related CLI         | Release |
|--------------|-------------------------------------|---------------------|---------|
| Cert.proto   | TLS Certificate management          | crypto pki          | 17.3    |
| Os.proto     | Network Operating System management | install add<br>file | 17.5    |
| Reset.proto  | Factory Reset and wipe              | factory-reset       | 17.7    |
| File.proto   | Not implemented                     | copy, delete        | N/A     |
| System.proto | Not implemented                     | reload, set boot    | N/A     |

https://github.com/openconfig/gnoi





# Model driven programmability comparison

Network architecture, security posture and policy, YANG data modules, tools and language preferences are some considerations when leveraging the various MDP interfaces

|                        | NETCONF                                                                                                                            | RESTCONF                         | gNMI                                     |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------|
| Minimum IOS XE Version | 16.6                                                                                                                               | 16.7                             | 16.8                                     |
| Recommended Version    | 17.6                                                                                                                               | 17.6                             | 17.7                                     |
| Default Port           | 830                                                                                                                                | 443                              | 9339                                     |
| Operations             | <pre><get>,<get-config>,<edit-<br>config&gt;,<establish-subscription></establish-subscription></edit-<br></get-config></get></pre> | GET, POST, PUT, PATCH,<br>DELETE | GET, SET, SUBSCRIBE                      |
| Encoding               | XML                                                                                                                                | XML or JSON                      | RFC7951 JSON_IETF                        |
| Security               | SSH + PKI certificate or password                                                                                                  | HTTPS user/pass                  | TLS certificate with user authentication |
| Transport Protocol     | SSH                                                                                                                                | HTTPS                            | HTTP/2                                   |
| Telemetry Collector    | Client                                                                                                                             | Server                           | Client                                   |
| Tooling                | YANG Suite, ncclient,<br>Netconf-console                                                                                           | YANG Suite*, Postman, python     | YANG Suite*, gnmic, gnmi_cli             |
| Content                | YANG                                                                                                                               | YANG                             | YANG + Protobuf                          |

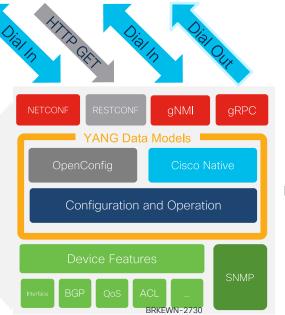




# Model Driven Telemetry Interfaces



Dial In: Collector establishes a connection to the device then subscribes to telemetry (pub/sub)




Dial Out: Telemetry is pushed from the device to the collector based off configuration (push)

#### Publication / Subscription

DEVWKS-3240 with Gustavo has more details for Telemetry observability





XML, JSON and kvGPB encoding

Consistent YANG data models between interfaces

On-change event and time-based publication options

# Model Driven Telemetry Interface Comparison

|                           | NETCONF                                 | gRPC                         | gNMI                                     |
|---------------------------|-----------------------------------------|------------------------------|------------------------------------------|
| Minimum IOS XE<br>Version | 16.6                                    | 16.10                        | 16.12                                    |
| Telemetry Direction       | Dial-In,<br>IOS XE is server            | Dial-Out<br>IOS XE is client | Dial-In<br>IOS XE is server              |
| Configuration             | Dynamic per session                     | Static per configuration     | Dynamic per session                      |
| Telemetry Collector       | Client                                  | Server                       | Client                                   |
| Encoding                  | XML                                     | KV GPB                       | JSON_IETF                                |
| Security                  | SSH + PKI<br>certificate or<br>password | TLS or plain-text            | TLS certificate with user authentication |
| Transport Protocol        | SSH                                     | HTTP2                        | HTTP2                                    |
| Data Models               | YANG                                    | YANG                         | YANG                                     |

Network architecture, security posture and policy, YANG data modules, tools and language preferences are some considerations when leveraging the various MDT interfaces



# IOS XE Model Driven Telemetry







gNMI Dial-In/Dynamic NETCONF Dial-In

gRPC Dial-Out/Configured

Collector/Receiver

Decodes to text splun

Storage
Time Series Database

**Monitoring** and Visualizations



telegraf







Example dashboards
https://grafana.com/grafana/dashboards/13462 AP Temp and Humidity @ @ C9136-AP02 - Sensor stats (last value) C9136-AP02 - Sensor stats https://grafana.com/grafana/dashboards/12468 44 %H E Catalyst 9800 - Client Stats -Clients f8:4e:73:da:e7:6b \* III MDT Health humidity 649 °C 1122 °C 649 °C Client RSSI SNR for f8:4e:73:da:e7:6b Data Rate for f8:4e:73:da:e7:6b - humidity (right y-axis) 200 MB Last Boot AP Air Quality -40 dBm 150 MB 2020-03-04 1 Estimated carbon dioxide (ppm) - last ₹ -50 d8m 100 MB 50 MB Power Suppl **Excellent No data** Client Info for f8:4e:73:da:e7:6b - PowerSupply1/A Output Powe Spatial Streams - Indoor air quality index Last \* 1 Max: - PowerSupply1/A Capacity Total volatile organic components - ppb 0.0150 - Egress Bytes Egress Bytes **EWC** 80211v DMS? false Apple Fast Lane? 225 Bs 521 Bs



GlosbitEthernet1/0/23

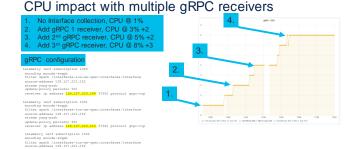
668 Bs

129 Bs

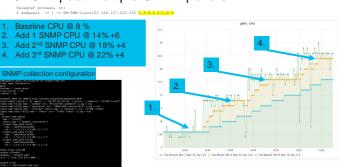
53 Be

# Migrating from SNMP to gRPC Dial-Out Telemetry

What is the expected increase in CPU/Memory when using the gRPC Dial-Out telemetry interface, compared to SNMP?


gRPC adds 2% for each telemetry collector SNMP adds 6% and an additional 4% for each collector

Testbed:


Ubuntu Linux VM Telegraf Tooling SNMP + gRPC

C9300-48

Spirent 48 port traffic generator



#### CPU impact multiple SNMP pollers







# Model Driven Telemetry: usage comparison

60-minute collection sample with 60-second update interval

| Interface | CPU<br>Impact | PCAP file<br>size/data<br>size (MB) | Data byte<br>Rate | Data bit<br>rate | Average<br>Packet<br>Rate (sec) | Average<br>Packet<br>Size<br>(bytes) |
|-----------|---------------|-------------------------------------|-------------------|------------------|---------------------------------|--------------------------------------|
| gNMI      | +3%           | 23 MB                               | 6 kBps            | 53 kbps          | 5                               | 1180                                 |
| gRPC      | +3%           | 69 MB                               | 19 kBps           | 155 kbps         | 58                              | 333                                  |
| NETCONF   | +2%           | 83 MB                               | 23 kBps           | 185 kbps         | 29                              | 780                                  |
| RESTCONF  | +4%           | 200 MB                              | 35 kBps           | 281 kbps         | 37                              | 945                                  |
| SNMP *    | +6%           | 120 / 87                            | 24 kBps           | 197 kbps         | 90                              | 273                                  |







Tested with C9300-48. Testing underway with 8x stack C9300-48





/arp-ios-xe-oper:arp-data

/cdp-ios-xe-oper:cdp-neighbor-details

/environment-ios-xe-oper:environment-sensors

/if:interfaces-state

/interfaces-ios-xe-oper:interfaces/interface /ios:native

/lldp-ios-xe-oper:lldp-entries

/matm-ios-xe-oper:matm-oper-data

/mdt-oper:mdt-oper-data/mdt-subscriptions

/memory-ios-xe-oper:memory-statistics/memory-statistic

/oc-if:interfaces/interface/state/counters

/oc-platform:components

/oc-sys:system

/platform-ios-xe-oper:components

/poe-ios-xe-oper:poe-oper-data/poe-switch

/process-cpu-ios-xe-oper:cpu-usage/cpu-utilization

/process-cpu-ios-xe-oper:cpu-usage/cpu-utilization /process-memory-ios-xe-oper:memory-usage-processes

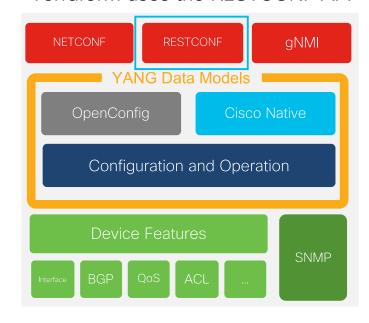
\* SNMP collection of interfaces (IF-MIB) only



# Day 1: YANG Programmatic Interfaces

Terraform CLI-to-YANG YANG Suite




### Terraform is...



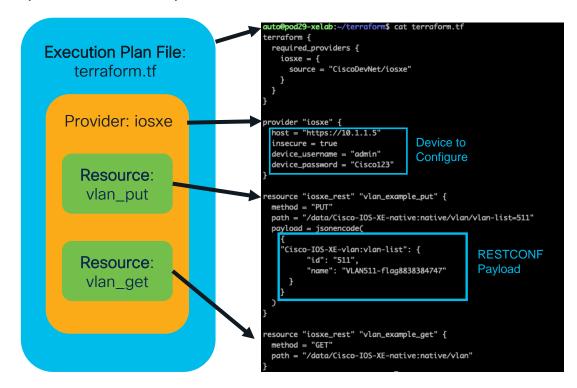
Open-source Infrastructure as Code (IaC) Software Tool providing a consistent CLI workflow to manage hundreds of cloud services. Terraform codifies cloud APIs into declarative configuration files.

- Cloud Native Tooling circa 2014 from HashiCorp
- · Agentless, single binary file
- Zero server-side dependencies

#### Terraform uses the RESTCONF API






# Terraform terminology

Terraform uses an execution plan file with a provider and resource definitions.

An <u>execution plan file</u> defines the provider and resources. It is written in HashiCorp Configuration Language (HCL), similar to JSON, and stored with a .tf extension

A <u>provider</u> is a plugin to make a collection of resources accessible

A <u>resource</u> (or infrastructure resource) describes one or more infrastructure objects managed by Terraform. With the IOS XE Terraform provider, resources can be considered the same as a configurable feature





C9300#
C9300#show run | i netconf-yang
netconf-yang
C9300#

#### CLI to YANG

This new CLI addition to "show run | format" brings additional visibility into the YANG modelled configuration, either for NETCONF with XML or JSON with RESTCONF Easily convert CLI into YANG to re-use in tooling, scripts, and automation and orchestration systems

```
show run | format netconf-xml
show run | format restconf-json
```

Requires netconf-yang Data Model Interfaces to be enabled CLIs with corresponding native YANG and modeled in show run are returned



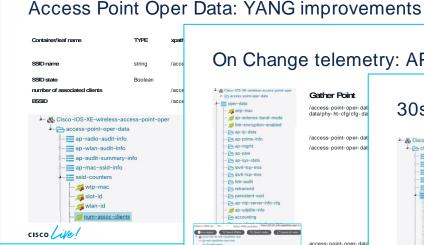
### YANG 1.0 to 1.1 transition - YANG advertisement

Planning for YANG 1.0 RFC6020 to RFC7950 YANG 1.1 in IOS XE 17.10 is underway

Legacy YANG 1.0 capabilities exchange and NETCONF "hello" message will soon be unsupported

```
c/v/lib/python3.8/site-packages/paramiko/kex_ecdh_nist.py:39: CryptographyDeprecationWarning: encode_point has been deprecated on EllipticCurvePublicNumbers and will be
            //lib/python3.8/site-packages/paramiko/kex_ecdh_nist.py:91: CryptographyDeprecationWarning: Support for unsafe construction of public numb
             lib/python3.8/site-packages/paramiko/kex_ecdh_nist.py:103: CryptographyDeprecationWarning: encode_point has been deprecated on EllipticCurvePublicNumbers and will
m.add_string(self.Q_C.public_numbers().encode_point())
nl version='1.0' encoding='UTF-8'?>
:hello xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
<nc:capability>urn:ietf:params:netconf:base:1.0</nc:capability>
<nc:capability>urn:ietf:params:netconf:base:1.1</nc:capability>
<nc:capability>urn:ietf:params:netconf:capability:writable-running:1.0</nc:capability>
<nc:capability>urn:ietf:params:netconf:capability:rollback-on-error:1.0</nc:capability>
<nc:capability>urn:ietf:params:netconf:capability:validate:1.0</nc:capability>
<nc:capability>urn:ietf:params:netconf:capability:validate:1.1</nc:capability>
<nc:capability>urn:ietf:params:netconf:capability:xpath:1.0</nc:capability>
<nc:capability>urn:ietf:params:netconf:capability:notification:1.0</nc:capability>
<nc:capability>urn:ietf:params:netconf:capability:interleave:1.0</nc:capability>
<nc:capability>urn:ietf:params:netconf:capability:with-defaults:1.0?basic-mode=expl
<nc:capability>urn:ietf:params:netconf:capability:yang-library:1.0?revision=2016-06-21&amp;module-set-id=4702f66e9d4acb0c47ccf523dcafba47</nc:capability>
<nc:capability>http://cisco.com/ns/cisco-xe-ietf-ip-deviation?module=cisco-xe-ietf-ip-deviation&amp;revision=2016-08-10/nc:capability>
            ity>http://cisco.com/ns/cisco-xe-ietf-ipv6-unicast-routing-deviation?module=cisco-xe-ietf-ipv6-unicast-routing-deviation&revision=2015-09-11</nc:capability>
               http://cisco.com/ns/cisco-xe-ietf-ospf-deviation?module-cisco-xe-ietf-ospf-deviation&revision-2018-02-09</nc:capability>
           ity>http://cisco.com/ns/cisco-xe-ietf-routing-deviation?module-cisco-xe-ietf-routing-deviation&revision=2016-07-09</nc:capability>
            ity>http://cisco.com/ns/cisco-xe-openconfig-acl-deviation?module=cisco-xe-openconfig-acl-deviation&revision=2017-08-25</nc:capability>
           lity>http://cisco.com/ns/cisco-xe-openconfig-aft-deviation?module=cisco-xe-openconfig-aft-deviation&revision=2018-12-05</nc:capability>
            ty>http://cisco.com/ns/cisco-xe-openconfig-isis-deviation?module=cisco-xe-openconfig-isis-deviation&revision=2018-12-05</nc:capability>
            ty>http://cisco.com/ns/cisco-xe-openconfig-lldp-deviation?module=cisco-xe-openconfig-lldp-deviation&revision=2018-07-25</nc:capability>
<nc:capability>http://cisco.com/ns/cisco-xe-openconfia-mpls-deviation?module=cisco-xe-openconfia-mpls-deviation&amp:revision=2019-06-27/nc:capability
```

YANG 1.1 example: "ietf-yang-library" to retrieve supported YANG modules


```
<nc:rpc xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="urn:uuid:b966c2ff-a59b-46a3-aa31-cblcc5e97e44">
    <nc:filter>
      <modules-state xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-library"/>
    </nc-filters
  </nc:get>
</nc:rpc>
Received message from host
<?xml version="1 0" ?>
<rpc-reply message-id="urn:uuid:b966c2ff-a59b-46a3-aa31-cblcc5e97e44" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns:nc="urn:ietf:par</pre>
    <modules-state xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-library">
      <module-set-id>4702f66e9d4acb0c47ccf523dcafba47</module-set-id>
      emodul ex
        <name>BGP4-MIB</name>
        <revision>1994-05-05</revision>
        <schema>http://localhost:9938/restconf/tailf/modules/BGP4-MIB/1994-05-05</schema>
        <namespace>urn:ietf:params:xml:ns:yang:smiv2:BGP4-MIB</namespace>
        <conformance-type>implement/conformance-type>
      </module>
      <module>
        <name>RRIDGE-MIR</name>
        <revision>2005-09-19</revision>
        <schema>http://localhost:9938/restconf/tailf/modules/BRIDGE-MIB/2005-09-19/schema>
        <namespace>urn:ietf:params:xml:ns:vang:smiv2:BRIDGE-MIB</namespace>
        <conformance-type>implement</conformance-type>
```

If the desired application previously parsed the NETCONF "hello" message to retrieve the supported YANG models, the parsing must be modified to reflect how version 1.1 advertises via "ietf-yang-library" instead of the NETCONF "hello" message.



### Innovations in wireless YANG

#### Cisco IOS XE wireless mesh exec RPC



On Change telemetry: AP oper



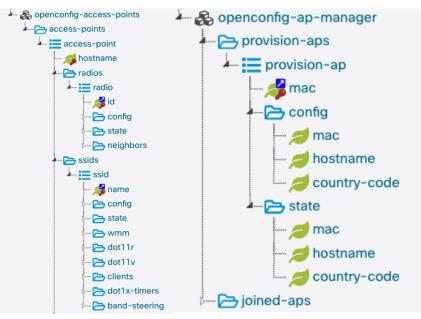
#### 30s Periodic telemetry: AP and Client oper





à → S Cit 

cisco


BRKEWN-2730

### OC wireless: YANG model end of support

17.9 will be the last release supporting the OC wifi YANG

https://github.com/openconfig/public/tree/master/release/models/wifi

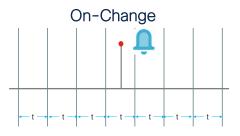
- The YANG for OpenConfig Wireless including OpenConfigaccess-points and OpenConfig-ap-manager YANG are no longer being supported after 17.9
- The constructs within OC Wireless support <u>only flex deployments</u> and direct AP management. There is no modelled concept of any CAPWAP tunnels or centralized controller infrastructure
- All or nothing: OC Wifi leverages a <u>hostname centric view</u> and does not use the MAC address. All config and operations must be via OC-wifi.YANG as the traditional YANG/CLI uses MAC centric view
- Most deployment are controller based/local mode, so the OC
   Wifi model is not applicable and not usable for most deployments
- OC Model version drift: the initial version implemented of 0.1.0 or 0.2.0 is not current with GitHub version of 1.0.0 so there are many mapping gaps making it even less usable

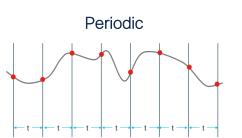




BRKEWN-2730

## Day 2:


Model Driven Telemetry




## Telemetry publication options

Operational telemetry periodic and onchange update of AP status (joined/not joined) and client traffic stats

- Periodic + On-Change MDT
- AP-oper YANG
- Mesh exec RPC's





Feature Model <u>"On-Change"</u> Notifications

Event Notifications (failed login, optic fault, etc.)

State and Configuration

AP Oper / CAPWAP / radio / etc

Feature Model <u>"Periodic"</u> Notifications
Time based publication
Minimum interval 100 centiseconds (1s)

AP Join Stats / Traffic Stats



## Streaming Telemetry support for 9840/9880

## gNMI Dial-In and gRPC Dial-Out for the following KPI's and YANG

Cisco-IOS-XE-wireless-access-point-oper.yang

Cisco-IOS-XE-wireless-client-oper.yang

Cisco-IOS-XE-wireless-rrm-oper.yang

Recommended telemetry collection intervals with one or two collectors is shown on the next slides and described in more detail in the Programmability Configuration Guide.

#### Per AP Radio Stats - keyed by AP MAC + Slot ID:

channel, channel width, total/tx/rx channel utilization, rx noise channel utilization, noise floor, frequency, tx power, neighbor table

Per AP Per Radio Per SSID stats - keyed by AP MAC, slot ID, ap-vap-id, wlan id:

SSID name/state/hidden/VLAN, number of associated clients, BSSID

#### <u>Client Counters</u> - keyed by client MAC address

AP/SSID name, phy rate, connection-mode, rssi, frequency, IPv4/IPv6 address, tx retries, data tx/rx-bytes+pkts, broadcast packet count, channel-support

#### AP System - keyed by AP MAC

Hostname, joined-controller, software version, 802.3 speed, IPv4/IPv6 address, power IIdp, serial, uptime, state, CPU, memory

<u>BSSID Counters</u> - keyed by AP MAC + Slot ID + WLAN ID Tx-retries-data, tx-retries-subframe, rx-data-dist, rx-mcs, tx-data-dist, tx-mcs

<u>Neighbor details</u> – keyed by AP MAC + Slot ID + BSSID Ssid, rssi, channel, primary-channel, last-update-rcvd



## Innovations in wireless Telemetry

Source: https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/prog/configuration/178/b\_178\_programmability\_cg/m\_178\_prog\_ietf\_telemetry.html

## Wireless Telemetry Full Scale Six SSIDs at Scale Phese 1

Gathering Point Records

Joined 2.000 AAA 2.000 Radio 4.000 Client RF 30.000 Client CNTR 30,000 Client CONN 30,000 BSSID 24,000 Neighbor 288.000 Wireless Telemetry Full Scale

| Tour colbs at ocale i mase i |         |                                               |  |  |  |
|------------------------------|---------|-----------------------------------------------|--|--|--|
| Gathering Point              | Records | Recommende<br>Interval (Seco<br>One Collector |  |  |  |
| Joined                       | 2,000   | 30                                            |  |  |  |
| AAA                          | 2,000   | 30                                            |  |  |  |
| Radio                        | 4,000   | 30                                            |  |  |  |
| Client RF                    | 30,000  | 30                                            |  |  |  |
| Client CNTR                  | 30,000  | 30                                            |  |  |  |
| Client CONN                  | 30,000  | 60                                            |  |  |  |
| BSSID                        | 16,000  | 90                                            |  |  |  |
| Neighbor                     | 192,000 | 180                                           |  |  |  |

30 seconds is recommended periodic update interval for wireless metrics

| Wireless Telemetry         | Reduced | Scale |
|----------------------------|---------|-------|
| Six SSIDs at Scale Phase 1 |         |       |

| Gathering Point |         | Recommended<br>Interval (Seconds) | Recommended<br>Interval (Seconds) | 1,000  |
|-----------------|---------|-----------------------------------|-----------------------------------|--------|
|                 |         | One Collector                     | Two Collectors                    | 15,000 |
| Joined          | 1,000   | 30                                | 30                                | 15,000 |
| AAA             | 1,000   | 30                                | 30                                | 6      |
| Radio           | 2,000   | 30                                | 30                                |        |
| Client RF       | 15,000  | 30                                | 30                                | 12     |
| Client CNTR     | 15,000  | 30                                | 30                                |        |
| Client CONN     | 15,000  | 30                                | 30                                | 12     |
| BSSID           | 12,000  | 120                               | 120                               | 144    |
| Neighbor        | 144,000 | 180                               | 180                               |        |
| 1               |         | •                                 |                                   |        |

cisco Live!

#CiscoLive

© 2022 Cisco and/or its affiliates. All rights reserved. Cisco Public

SSIDs per AP

BSSIDs per AP

Neighbors per AP

Physical neighbors per AP



## gRPC Dial-Out with DNS + mTLS

Zero Trust Telemetry: mTLS for gRPC Dial-Out by defining the telemetry configuration with the CA and ID crypto trustpoints

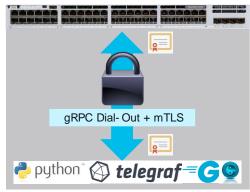
```
telemetry ietf subscription 1010
encoding encode-kvgpb

filter xpath /wireless-ble-ltx-oper:ble-ltx-oper-data/ble-ltx-ap-streaming
source-address 10.85.134.83
stream yang-push
update-policy periodic 6000
receiver-type protocol
receiver name yangsuite

telemetry receiver protocol yangsuite
host name yangsuite-telemetry.cisco.com 57501
protocol grpc-tls profile mtlsyangsuite

telemetry protocol grpc profile mtlsyangsuite
ca-trustpoint myCA
id-trustpoint myID
```

Crypto trustpoints (myCA and myID) and certifications are defined before telemetry configuration using:


- gNOI cert.proto
- Cisco-IOS-XE-crypto-rpc.YANG
- "crypto pki import" CLI



Telemetry Subscription xpath, named receiver, protocol

Named Receiver
FQDN DNS name,
TCP port, crypto
protocol definition

Protocol
Crypto trustpoints:
CA & ID



## Case Study: Telemetry in production



**IOS XE** 

gRPC Dial-Out Model Driven Telemetry
Using DNS and mTLS

C9300#show run L i domain / i name-server ip name-server 208.67.222.222 ip domain lookup C9300#show run | sec telemetry telemetry ietf subscription 101 encoding encode-kvgpb filter xpath /access-point-oper-data/capwap-data receiver-type protocol source-address 10.4.20.188 source-vrf Mgmt-intf stream vang-push update-policy periodic 6000 receiver name vangsuite telemetry receiver protocol yangsuite host name yangsuite-telemetry.cisco.com 443 protocol grpc-tls profile vangsuite telemetry protocol grpc profile yangsuite

<u>DNS Load Balancing</u> is used to distribute the connections across a group of servers

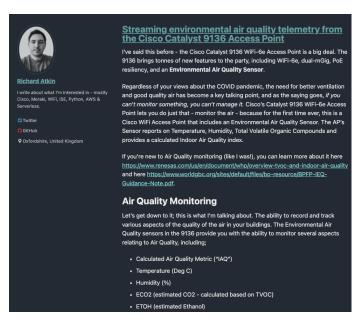
dig +short cisco.com mx
30 aer-mx-01.cisco.com.
10 alln-mx-01.cisco.com.
20 rcdn-mx-01.cisco.com.

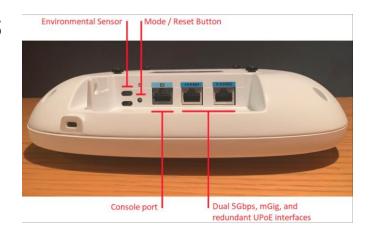
<u>DNS Geo-location</u> uses the geographic location of the client and the server resource

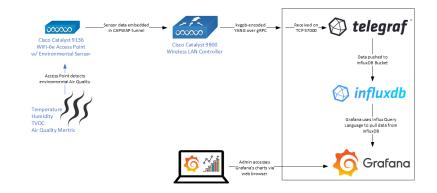
#### **Public Cloud**

Telemetry Server / Receiver
Public IP with port accessible ©
Mutual Authentication with mTLS

Cloud native backend data lake S3, InfluxDB Cloud, etc


15+ Internal Business Customers: Tooling, NOC/SOC, Dashboards, Charts, Alerts, Reports





ca-trustpoint CAforMDTserver id-trustpoint CAforWLCclient

## Partner telemetry examples

https://richardatkin.com/post/2022/03/22/Streaming-environmental-air-quality-data-from-the-Cisco-Catalyst-9136-WiFi6e-Access-Point.html









## Day N - On-Box Automation

ZTP, Guest Shell, EEM, Python & NETCONF API

gNOI



## gNXI

|             | C9800-40<br>C9800-80 | C9800-L | C9800-CL | EWC     |
|-------------|----------------------|---------|----------|---------|
| os.proto    | Roadmap              | Roadmap | Roadmap  | Roadmap |
| reset.proto | Supported            | Roadmap | Roadmap  | Roadmap |
| cert.proto  | Enabled              | Enabled | Roadmap  | Roadmap |

The 'gnmi' CLI has been renamed to the 'gnxi' CLI in 17.3 as more protocols are "ratified" in the Github/openconfig and Github/gnxi organizations and implemented by vendors

C9300#show gnxi state detail Settings

Server: Disabled Server port: 50052

Secure server: Enabled Secure server port: 9339

Secure client authentication: Disabled

Secure trustpoint: gnxi-cert Secure client trustpoint:

Secure password authentication: Disabled

**GNMI** Admin state: Enabled Oper status: Up State: Provisioned aRPC Server Admin state: Enabled Oper status: Up Configuration service Admin state: Enabled Oper status: Up Telemetry service Admin state: Enabled GNOI Cert Management service Admin state: Enabled Oper status: Up

#### aNMI Clients:

- gNMI Capabilities
- gNMI Get
- gNMI Set
- gNMI Subscribe

#### aNOI Clients

- gNOI Cert
- gNOI OS
- aNOI Reset

#### aNxl Tools

- · gNMI gRPC Network Management Interface
- gNOI gRPC Network Operations Interface

https://github.com/google/gnxi



BRKFWN-2730

Oper status: Up

### **ZTP Overview**

- 1. When an IOS XE device boots and no configuration is present, the device will issue a DHCP request on the management port and on the front panel port.
- 2. If the DHCP response contains option 67 then ZTP is initiated and the device will retrieve and execute the python script from within the Guest Shell
- 3. Guest Shell is started and networking is automatically configured

Cisco Blogs

cisco

Cisco Blog > Developer

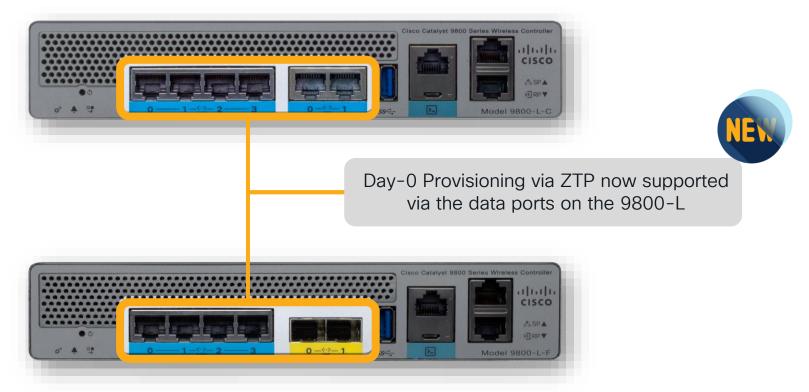


Developer

Automate Device
Provisioning with Cisco
IOS XE Zero Touch
Provisioning



Jeremy Cohoe April 15, 2019 - 1 Comment


When new hardware is ordered and it arrives on site, it's an exciting time. New hardware! New software! ... But new challenges too! But the age-old challenge of getting new devices on the network doesn't need to be one of them. Sitting in the lab pre-provisioning devices is no longer required if you're using Cisco IOS XE, because of features like Cisco Network Plugn-Play (PnP) and Zero Touch Provisioning (ZTP). PnP is the premium solution made possible with Cisco DNA Center, while Zero Touch Provisioning (ZTP) is for the do-it-yourself customers who don't mind investing more time in configuring and maintaining the infrastructure required to bootstrap devices. IOS XE runs on the enterprise hardware and

https://www.youtube.com/watch?v=EAXnftG6odg

https://blogs.cisco.com/developer/device-provisioning-with-ios-xe-zero-touch-provisioning



## ZTP Support on Data Port on 9800-L





## ZTP timing improvements for C9800



 Improvements in 17.3 reduce boot time and ZTP execution time, including starting of the Guest Shell faster and executing the python script sooner



- The previous Python <u>file size limitation of 8k has been removed</u> allows for more customization and flexibility during day 0
- Larger Python files are becoming more common as additional logic, loops, and intelligence are built into scripts as needed



### ZTP MSDC customer use case - workflow

- Customer problem statement: How can we reduce the manual work that takes time which increases costs and risk when deploying networks at various locations globally?
- Zero Touch Provisioning and automated onboarding solution for multiple devices in multiple locations
  - (retail, warehouse, corporate branch and campus)
- DHCP connectivity required and new devices are upgraded, configured, and available for management without any manual interaction 100's 1000's of devices deployed and configured with zero touch



Day 0 workflow IOS XE will use the option 67 for ZTP first then the option 150 for Auto Install

Auto Install is the "backup" for ZTP

option 67 for ZTP python script

Python3 script + Guest Shell Software upgrade + EEM Download and apply pre-generated config option 150 for AutoInstall CLI config

Auto Install CLI config Set basic device config



## ZTP MSDC customer use case - details

#### DHCP server configuration with both options 67 and 150 configured

option bootfile-name "http://10.85.134.66/ztp.py"; option tftp-server-name "10.85.134.66";

#### option 67 for ZTP.py with Guest Shell and python3

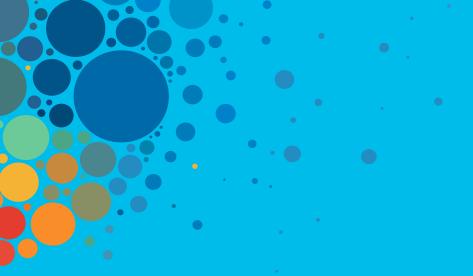
Define software images, version, and checksum Define HTTP server and version to use Check if software upgrade is required Install and cleanup with EEM applets Download config file for the device type from HTTP One pre-generated config file for each type Apply with "copy device.cfg running-config"

#### option 150 for cisconet.cfg for DHCP Auto Install

Hostname: autoinstall\_config Same featureset is configured

Pre-generated config files ASR1001-HX.cfg Hostname: AR1001-HX-default C9300.cfg

Hostname: C9300 default


C9500.cfg Hostname: C9500 default

| ASR1001-HX.cfg |
|----------------|
| C9300-24P.cfg  |
| C9500-24Q.cfg  |
| cisconet.cfg   |
| cisconet.vfg   |
| ztp.py         |

#### Configured and enabled features

Logs the output to flash/ztp.log

Console password, Enable AAA + credentials, crypto, SSH, netconf-yang, DHCP on Gi0/0 and/or Gi0, set defaults for TFTP block size, LLDP, MST, logging, IOX, line settings



# Continue your education

- Visit the Cisco Showcase for related demos
- Book your one-on-one Meet the Engineer meeting
- Attend the interactive education with DevNet, Capture the Flag, and Walk-in Labs
- Visit the On-Demand Library for more sessions at <u>www.CiscoLive.com/on-demand</u>

## Cisco learning and certifications

From technology training and team development to Cisco certifications and learning plans, let us help you empower your business and career. www.cisco.com/go/certs



(CLCs) are prepaid training vouchers redeemed directly with Cisco.



#### Learn



#### Train



#### Certify



#### Cisco U.

IT learning hub that guides teams and learners toward their goals

#### Cisco Digital Learning

Subscription-based product, technology, and certification training

#### Cisco Modeling Labs

Network simulation platform for design, testing, and troubleshooting

#### **Cisco Learning Network**

Resource community portal for certifications and learning



#### **Cisco Training Bootcamps**

Intensive team & individual automation and technology training programs

#### **Cisco Learning Partner Program**

Authorized training partners supporting Cisco technology and career certifications

#### Cisco Instructor-led and Virtual Instructor-led training

Accelerated curriculum of product, technology, and certification courses



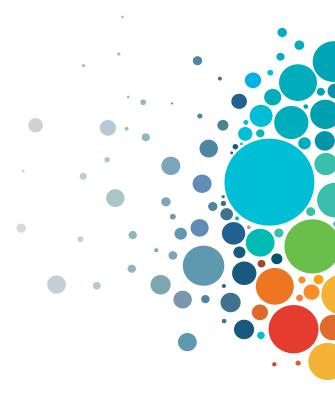
### Cisco Certifications and Specialist Certifications

Award-winning certification program empowers students and IT Professionals to advance their technical careers

#### Cisco Guided Study Groups

180-day certification prep program with learning and support

#### Cisco Continuing Education Program


Recertification training options for Cisco certified individuals

Here at the event? Visit us at The Learning and Certifications lounge at the World of Solutions

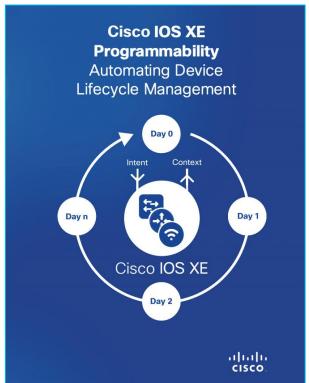


## Technical session surveys

- Attendees who fill out a minimum of four session surveys and the overall event survey will get Cisco Live branded socks!
- Attendees will also earn 100 points in the Cisco Live Game for every survey completed.
- These points help you get on the leaderboard and increase your chances of winning daily and grand prizes.



# Cisco DEVNET




developer.cisco.com



## Cisco IOS XE Programmability - booksprint Book

http://cs.co/programmabilitybook OR https://www.cisco.com/c/dam/en/us/products/collateral/enterprise-networks/nb-06-ios-xe-prog-ebook-cte-en.pdf



| Table of Cor | itents                                    |                                        |                                     |
|--------------|-------------------------------------------|----------------------------------------|-------------------------------------|
|              | Authors                                   | Telemetry                              |                                     |
|              | Acknowledgments                           |                                        | Overview                            |
|              | About this Book                           |                                        | Operational Data                    |
| Introduction |                                           |                                        | Flow Data                           |
|              | Why Programmability Matters               |                                        | Use Cases                           |
|              | Lifecycle of Network Device Operations    |                                        | Subscription Tools                  |
|              | Use Cases                                 |                                        | Data Collectors                     |
|              | Operational Approaches                    | Python                                 |                                     |
|              | Next Steps                                |                                        | Overview                            |
| General Cor  | cepts                                     |                                        | Python WebUI Sandbox                |
|              | Cisco IOS XE                              |                                        | On-Box Python                       |
|              | What is Programmability?                  |                                        | Advanced On-Box Python              |
|              | Application Programming Interfaces (APIs) |                                        | Common Issues                       |
|              | Programming Languages                     | Guest Shell                            |                                     |
|              | Structured Data                           |                                        | Introduction                        |
|              | Data Encoding Formats                     |                                        | Security                            |
| Day 0 Devic  | e Onboarding                              |                                        | Confuration and Updates             |
| ,            | Introduction                              |                                        | Resource Allocation                 |
|              | Zero-Touch Provisioning (ZTP) Scenarios   |                                        | Use Cases                           |
|              | Basic ZTP Workow                          |                                        | Next Steps                          |
|              | Advanced ZTP Workows                      | Application F                          |                                     |
|              | Considerations                            | 7.pp                                   | Introduction                        |
|              | Next Steps                                |                                        | Cisco Application-Hosting Framework |
| YANG         | TOM Grope                                 |                                        | Containers and Virtual Machines     |
| 17410        | Overview                                  |                                        | Use Case                            |
|              | YANG Concepts                             |                                        | Next Steps                          |
|              | YANG Native vs Open Data Models           | Controllers                            | Hext Glops                          |
|              | YANG Data Model Highlights                | Controllers                            | Introduction                        |
|              | YANG Tools                                |                                        | Common Controllers                  |
| Network Dev  |                                           |                                        | Why Use a Controller?               |
| Network Dev  | Overview                                  | DevOps and                             |                                     |
|              | NETCONF                                   | Devops and                             | Introduction                        |
|              | RESTCONF                                  |                                        | Continuous Integration and Delivery |
|              | Comparison of NETCONF and                 |                                        | DevOps Tools                        |
| RESTCONE     |                                           |                                        | Next Steps                          |
| RESTCONF     |                                           | A ==================================== | Next Steps                          |
|              | Next Steps                                | Appendices                             | Additional Resources                |
|              |                                           |                                        |                                     |
|              |                                           |                                        | Acronyms                            |





## Enterprise Networks booksprints

http://cs.co/cat9000book

http://cs.co/sdabook

http://cs.co/wirelessbook

http://cs.co/programmabilitybook

http://cs.co/assurancebook


http://cs.co/sdwanbook







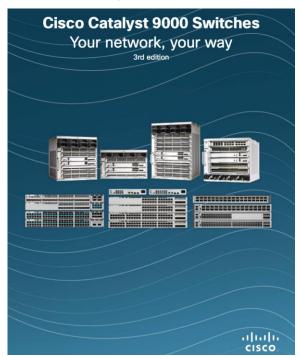








## Cisco Catalyst 9000 Switches - 3rd edition


Cisco Whitepaper: <a href="https://www.cisco.com/c/en/us/products/collateral/switches/catalyst-9000/nb-06-cat9k-ebook-cte-en.html">https://www.cisco.com/c/en/us/products/collateral/switches/catalyst-9000/nb-06-cat9k-ebook-cte-en.html</a>

Direct ebook download: <a href="https://www.cisco.com/c/dam/en/us/products/collateral/switches/catalyst-9000/nb-06-cat9k-ebook-cte-en.pdf">https://www.cisco.com/c/en/us/products/collateral/switches/catalyst-9000/nb-06-cat9k-ebook-cte-en.html</a>

Direct ebook download: <a href="https://www.cisco.com/c/dam/en/us/products/collateral/switches/catalyst-9000/nb-06-cat9k-ebook-cte-en.pdf">https://www.cisco.com/c/dam/en/us/products/collateral/switches/catalyst-9000/nb-06-cat9k-ebook-cte-en.pdf</a>

#### Cisco Whitepaper





#### ebook PDF









Preface

New and Changed Information

∨ Provisioning

Zero-Touch Provisioning

iPXE

 ✓ Shells and Scripting

**Guest Shell** 

Python API

**EEM Python Module** 

✓ Model-Driven Programmability

NETCONF Protocol

RESTCONF Protocol

NETCONF and RESTCONF Service-Level ACLs

gNMI Protocol

gRPC Network Operations Interface

Model Based AAA

Model-Driven Telemetry

In-Service Model Update

✓ Application Hosting

Application Hosting

∨ OpenFlow

OpenFlow

High Availability in OpenFlow Mode

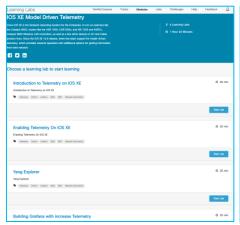


#### Programmability Configuration Guide, Cisco IOS XE Cupertino 17.8.x

**First Published: 2022-04-09** 

Last Modified: 2022-06-01

https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/prog/configuration/178/b\_178\_programmability\_cg.html




BRKEWN-2730

## Learning Lab and Blog: IOS XE MDT



https://developer.cisco.com/learning/modules/iosxe\_telemetry
https://blogs.cisco.com/developer/model-driven-telemetry-sandbox
https://blogs.cisco.com/developer/getting-started-with-model-driven-telemetry
https://youtu.be/QwwZakkWBng





Developer
Explore Model-Driven
Telemetry
Stuart Clark

New learning labs and sandbox

As our journey through network automation grows, so does the need for our network tools. Network Engineers have always been considered the absolute escalation point for any performance diffusites and problems, irrespective whether the root cause is really the network, server, or application. Network Engineers are expected to have the knowledge and tools to isolate and identify the issue, collaborating with other teams such as SRE / AppDev to bring it to resolution and often present this in an RCA (root cause analysis).

One of these great tools which can really help is telemetry. In software, telemetry is used to gather data on the use and performance of applications and application components, e.g. how often certain features are used, measurements of start-up time and processing time, hardware, application crashes, and general usage statistics and/or user behavior.



9800 Wireless LAN controllers, as well as a few other devices in IoT and Cable product lines.

provides network operators with additional options for getting information from their network.

Since the IOS XE 16.6 release there has been support for model driven telemetry, which

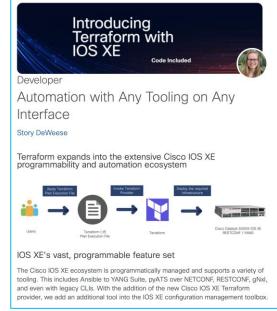


## Terraform blog and resources

Questions? Join the Ask IOS XE Terraform Provider Webex space:

https://eurl.io/#PtsT8eJF




https://github.com/CiscoDevNet/terraform-provider-iosxe/ https://registry.terraform.io/search/providers?namespace=CiscoDevNet



Demo Create a Crypto Tunnel Video: https://www.youtube.com/watch?v=bPS0bhPacDw



Intro to IOS XE Terraform Provider Video: https://www.voutube.com/watch?v=GEY\_hvXimbA



https://blogs.cisco.com/developer/terraformiosxe01





# Thank you





# cisco Live!



