cisco live!

Let's go

#CiscoLive

High Density Wi-Fi Design, Deployment, and Optimization

Matt Swartz - Cisco Customer Experience, Distinguished Engineer, CCIE #13232 Josh Suhr - Cisco Customer Experience, Principal Architect, CCIE #39980 BRKEWN-2087

#CiscoLive

Cisco Webex App

Questions?

Use Cisco Webex App to chat with the speaker after the session

How

- Find this session in the Cisco Live Mobile App
- 2 Click "Join the Discussion"
- 3 Install the Webex App or go directly to the Webex space
- 4 Enter messages/questions in the Webex space

Webex spaces will be moderated by the speaker until June 9, 2023.

	Catalyst 9000 Series Switching Family * technologies, and features in the Catalyst 9000 Switches. Speaker(s) Kenny Lei
	Cisco Systems, Inc. Technical Market
	Intermediate (596) Tracks Networking (220)
	Session Type >> Breakout (453) SHOW 2 MORE ▼ Wobox
	Image: Second
https://d	ciscolive.ciscoevents.com/ciscolivebot/#BRKE

cisco ile

N-2087

Agenda

- Designing RF for High Client
 Densities
- HD Wi-Fi Configuration Tips
- HD Wi-Fi Engineering Toolkit

Josh Suhr

Principal Architect, Cisco CX CCIE #39980 (Wireless)

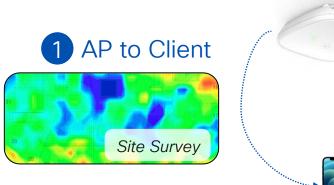
First HD WiFi Project: Sporting Kansas City, 2011 Husband, recent dad, soccer fan, beer & pizza connoisseur

cisco

Matt Swartz

Distinguished Engineer, Cisco CX CCIE #13232 (R/S, Wireless)

First HD WiFi Project: New York Yankees, 2008 Husband, dad, mountain biker, beer connoisseur


cisco ive!

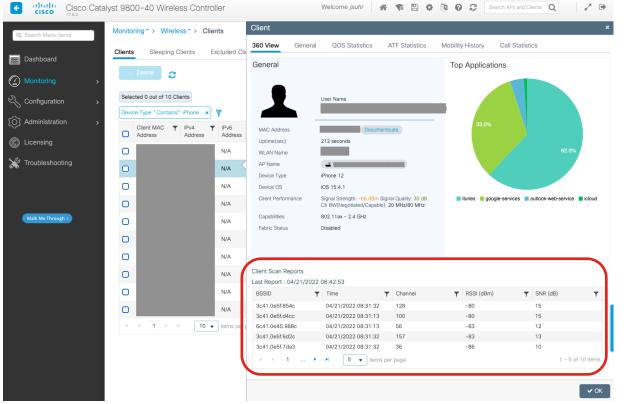
Key Trends in High Density Wi-Fi

- Wi-Fi 6 new hardware and HD improvements
- Software-defined antenna (C9104)
- 6GHz / Wi-Fi 6E more spectrum!!!
- More devices per user
- Auto authentication & OpenRoaming

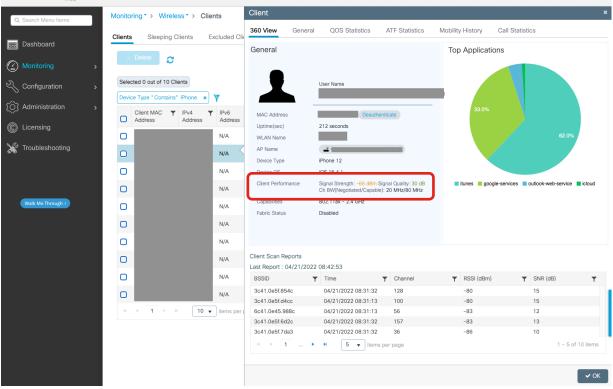
Designing for the 3 Key RF Relationships

Designing for the 3 Key RF Relationships

Designing for the 3 Key RF Relationships


Name	Slot	Channel	Power Level	Power dBm	Neigh. Name	Neigh. Slot	Neigh. Channel	Neigh. Power	Compensated Power
AP12	1	112	6	4	AP1	1	52	-42	-57
AP12	1	112	6	4	AP2	1	144	-51	-66
AP12	1	112	6	4	AP3	1	120	-53	-65
AP12	1	112	6	4	AP4	1	100	-53	-65
AP12	1	112	6	4	AP5	1	124	-57	-66
AP12	1	112	6	4	AP6	1	60	-61	-73
AP12	1	112	6				136	-62	-74
AP12	1	112		- 4	AP8	1	44	-69	-69
AP12	1	112		M	CA	H	104	-79	-85
AP12	1	112		v. v	\sim	<u> </u>	60	-80	-89
P12	1	112	6				153	-81	-84

*Bonus points: Client <-> Client - harder to influence



How Clients Hear AP's - C9800 UI

Client Scan Report shows how this client hears all AP's within range

How AP's Hear Clients – C9800 UI

Client Performance readings show how the currently associated AP hears this client

How AP's Hear Clients: Catalyst AP

For a table of all clients on an AP, at AP CLI:

Telnet/SSH to AP and use "show dot11 clients" for immediate client RSSI readings of ALL clients associated to the specified radio

ap#show dot11 c	lients			
AP Mode - Local				
Client MAC SI	ot ID WLA	AN ID	AID WLAN Name RSSI Maxrate	NGB
FC:F8:AE:60:98:3	34 1	3	1 AbrahamLinksys -47 MCS82SS	No
00:24:D7:7E:48:[08 1	3	2 AbrahamLinksys -54 M23 N	D
78:F8:82:EF:2E:A	.0 1	3	3 AbrahamLinksys -37 MCS82SS	No
84:38:35:42:E1:F	0 1	3	4 AbrahamLinksys -71 MCS82SS	No

How AP's Hear Clients: Catalyst AP

For a detail on a single client, at AP CLI:

Telnet/SSH to AP and use "show controller d <0|1> client <mac-addr>" for immediate client RSSI readings of a single client

10#sho contro	oller d 1 client FC:F8:AE:60:98:34						
<clip></clip>	<clip></clip>						
Additional info	o for client FC:F8:AE:60:98:34						
RSSI: -47							
<clip></clip>	-						
Statistics for c	client FC:F8:AE:60:9 <mark>8:34</mark>						
mac	<clip> stats_ago e piration</clip>						
FC:F8:AE:60:9	98:34 <clip> 0.700 0</clip>						
L							

How long ago were these stats updated (in sec)?

How AP's Hear Clients: Meraki AP

Network Home V	CLIENTS Joshua-Ds-iPł	none 🖌
Network-wide		Configure
	Clients	General
Wireless	Раскет сартиге	Administration
Organization	Event log	Alerts
	Map & floor plans	Group policies
		Users
		Add devices

cits	u: Meraki		
*	Network Home V	CLIENTS Joshua-Ds	s-iPhone 🖌
\$	Network-wide	0	ponections Performance Timeline
(;	Wireless		
	Organization	Status SSID	 associated since May 3 07:55 5g
		Access point Splash	Josh's Office AP topology N/A
		Signal	50dB (channel 48, 5 GHz)
		Device type, OS	iPhone 13 Pro, iOS16.4.1 🍽
		Capable Wi-Fi standards	802.11ax - 2.4 and 5 GHz, 802.11r, Fastlane capable details
		Tools	history packet capture disconnect client
		Notes	1
		Current client	connection

It All Starts with Layer 1: RF Design

Antenna Selection:

Decide which antenna is right for the job.

Consider:

- Density of clients to be served
- Available mounting assets
 - Within 65'/20m of furthest client (or 200'/60m with C-ANT9104)

Antenna Placement:

Where will this antenna provide the best throughput and <u>most</u> <u>reliable</u> service?

Consider:

- Line of sight
- Isolation from ambient RF
- Angle of incidence to client devices

Antenna S	Selection	Beamwidth	Use Case
	Dual-Band "Narrow" 8x8 Patch Antenna AP: 9130AXE Antenna: C-ANT9103	2.4/5GHz 75/70° Az 70/70° Elev	Augmentation and short-distance HD coverage (15'/5m - 30'/10m to clients)
	Dual-Band "Wide" Patch Antenna AP: 3802E/P, 9120AXE/P, 9130AXE Antenna: AIR-ANT2566P4W-R	2.4/5GHz 105/125°Az 70/60°Elev	Augmentation and short-distance HD coverage (< 30' / 10m to clients)
	Dual-Band "Narrow" Patch Antenna AP: 3802E/P, 9120AXE/P, 9130AXE Antenna: AIR-ANT2566D4M-N	2.4/5GHz 65/65°Az 65/65°Elev	Augmentation and short-distance HD coverage (15'/5m - 30'/10m to clients)
	Dual-Band High Density Antenna C-ANT9104 (Antenna + Integrated AP)	70/70° 2.4GHz 80/25° 5GHz (Wide) 25/25° 5GHz (Narrow)	Primary overhead coverage (i.e. seating areas; <u>> 30'/10m,</u> <200'/60m to clients)

Meraki AP & Antenna Selection: Directional

Part No.	Туре	5GHz Beam (Az)	5GHz Beam (Elev.)
MA-ANT-25	Patch	75 deg	84 deg
MA-ANT-27	Sector	65 deg	18 deg
AIR-ANT2513P4M-N	Array	31 deg	27 deg

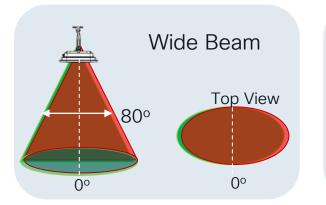
(*Coming Soon: 9166D1)

Cisco Catalyst C-ANT9104 – Stadium Antenna + Integrated AP

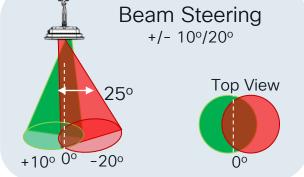
- The C-ANT9104 antenna is designed specifically to solve challenges encountered in stadium/Large Public Venue/High Client Density environments.
- Dual 5 GHz on two individual 5 GHz 4x4 Arrays
- Configurable electronic beam steering as well
 as Narrow and Wide modes of the antenna
- Catalyst C9800 release 17.6.1 adds
 configuration support for these new controls

cisco /

Three generations of High-Density WiFi Stadium Antennas


cisco live!

C-ANT9104: Key Things to Know


Cover Clients from Longer Distances (up to 200' line-of-sight)
AP + Antenna all-in-one, no enclosures required, outdoor-rated
Beam Switching & Beam Steering; switch between narrow/wide, meet needs of multiple different coverage types
Band-Locked Slots & Tx Power Implications Tight RF patterns, minimal sidelobes, RF Isolation = no RRM

cisco live!

C-ANT9104: Software-Configurable Beams

Wide sector beamwidth Dual 4x4 5GHz (80°x25°) 2.4 GHz (75°x85°) 8 dBi gain Narrow sector beamwidth Dual 4x4, 5 GHz (25°x25°) 10 dBi gain Software defined beam steering Each 5GHz 4x4 can steer +/- 10°,20° off center

5GHz Software Defined Beamwidth and Direction

C-ANT9104: Deployment Checklist

Physical Install:

- All-In-One no enclosures needed
- Portrait vs landscape
- Physical orientation of higherpower slot
- Channel & power planning

Determine initial beam configuration (surveys / prediction)

- Define Radio Profiles & RF Tags
- Less (or no) RX-SOP optimization needed

[Slot 1] [Slot 2] UNII-2e / 12 channels: 17dBm UNII-1 / 4 channels: 21dBm UNII-3 / 5 channels: 23dBm UNII-2 / 4 channels : 17dBm

C-ANT9104: Configuration (GUI)

Cisco Catalyst 9800-40 Wireless Controller Visio Welcome <i>jsuhr</i> & S D & D O C Search APs and Clients O P			Cisco Catalyst 9800-40 Wireless Controller Welcome jaultr 🕷 🏶 🖄 🖗 🕲 🕫 🙄 Search Alls and Cleans Q. 🖍 🖗				
	weicome jsun	Edit Radio Profile	Search APs and Clients	Q. Search Menu Items	Configuration * > Tags & Profiles * > Tags	Edit RF Tag	×
Q. Search Menu Items	Configuration * > Tags & Profiles * > RF/Ra	Name*	M4-Wide	and Dashboard	Policy Site RF AP	A Changes may result in loss	of connectivity for clients that are associated to APs with this RF Tag.
Dashboard	RF Radio	Description	Enter Description	Monitoring >	+ Add × Delete	Name*	Ticketing-M4
Monitoring >	+ Add X Delete	Antenna Beam Selection	Not Configured Wide Beam	Configuration	RF Tag Name BBH	Description	for Ticketing 9104s
Configuration	Radio Profile Name		Narrow Beam	 Administration > Licensing 	Press Suites	5 GHz Band RF Profile 2.4 GHz Band RF Profile	RFP_Ticketing_5 • RFP_Event_Plaza •
O Administration	M4-Narrow-10 M4-Narrow-20		Narrow from centre 10 Narrow from centre 20	Troubleshooting	Concourse Mezzanine Ticketing	5 GHz Slot 1 Radio Profile	M4-Narrow-20 •
C Licensing	M4-Narrow-Boresight	Number of antenna to be enabled	8		Bowl Field BBH_Outdoor	2.4 GHz Slot 0 Radio Profile	M4-Wide v
X Troubleshooting	default-radio-profile I ▶ ▶ 10 ▼ items per p 			Walk Me Through >	EastBowl-RFP Ticketing-M4	<	
					H 4 1 2 F H 10 V items per page		
Walk Me Through >							
		Cancel	Update & Apply to Device			Cancel	Update & Apply to Device

Create **Radio Profiles**, one for each beam configuration you plan to use

*Note: "Number of antenna to be enabled" can be set to 8

Create new or edit existing **RF Tags** and assign the Radio Profiles to each slot as desired

*Note: 2.4GHz Slot 0 is always "Wide"

C-ANT9104: Configuration (CLI)

1 Define RF Profile(s):

ap dot11 5ghz rf-profile MP1-5 high-density rx-sop threshold custom -85 channel chan-width 20 rate RATE_12M supported rate RATE_18M mandatory rate RATE_24M supported rate RATE_6M disable rate RATE_9M disable no shutdown

2 Define Radio Profile(s):

wireless profile radio M4-Wide antenna beam-selection wide antenna count 8 wireless profile radio M4-Narrow-10 antenna beam-selection narrow tilt 10 antenna count 8 wireless profile radio M4-Narrow-20 antenna beam-selection narrow tilt 20 antenna count 8 wireless profile radio M4-Narrow-Boresight antenna beam-selection narrow antenna count 8

3 Build RF tags and assign Radio Profile(s):

wireless tag rf MP1-rf-tag 5ghz-rf-policy MP1-5 dot11 24ghz slot0 radio-profile default-radio-profile dot11 5ghz slot1 radio-profile M4-Narrow-10 dot11 5ghz slot2 radio-profile M4-Narrow-10

ap filter name "M4 Portrait Narrow 10" ap name-regex MP1 tag policy policy-tag-1 tag rf MP1-rf-tag tag site site-tag-1 ap filter priority 50 filter-name "M4 Portrait Narrow 10"

OR

ap f4bd.9ed1.4700 policy-tag policy-tag-1 rf-tag MP1-rf-tag site-tag site-tag-1

9166D1 Wi-Fi 6 Access Point

Cisco® Catalyst® 9166D1-x

Directional, Tri-Radio with 12 Spatial Streams!

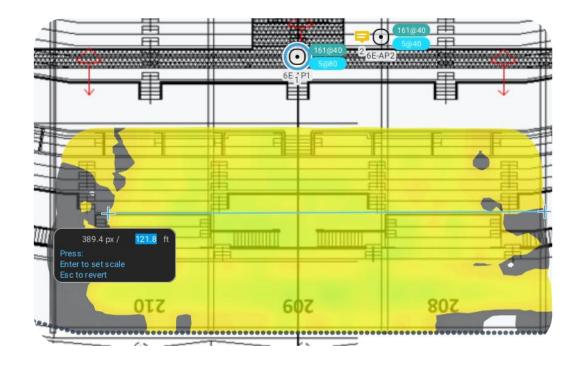
Penta-Radio Architecture

- 1. 2.4 GHz Client Radio: 4x4:4SS
- 2. 5 GHz Client Radio: 4x4:4SS
- 3. 6 GHz Client Radio 4x4:4SS (XOR to 5GHz)
- 4. Dedicated tri-band auxiliary radio
- 5. 2.4 GHz loT Radio

Directional antenna architecture

- 2.4+5 GHz: 6 dBi gain (70x70 deg), 6 GHz: 8 dBi (60x60)
- Same X,Y as CW9166I and only 0.1cm taller!
- Wide support for pan/tilt combinations

Internet of Things Capabilities


- Built-In Environmental Sensors
- Application Hosting Technology
- USB port with 4.5 W power output

5 Multigigabit (mGig) PoE Port

Optional DC Power

9166D 6GHz Cell Size @ 55' Height

- 121' cell width @ -63dBm
- 5GHz beam is slightly wider than 6GHz beam
- At >30'/10m mount height, consider "overlay" with 9104 for 5GHz

cisco ile

Industry's Best And Broadest Wi-fi 6E And Wi-Fi 6 Portfolio

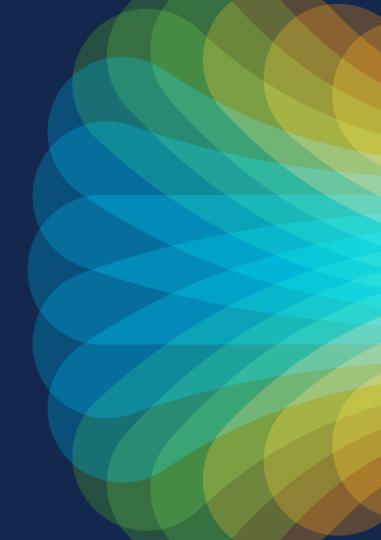
Assess environmental RF coverage using the Catalyst 9136l's site survey mode

Puts AP in standalone mode and enables it to broadcast 2.4-, 5-, and 6-GHz SSIDs and have clients join via internal DHCP.

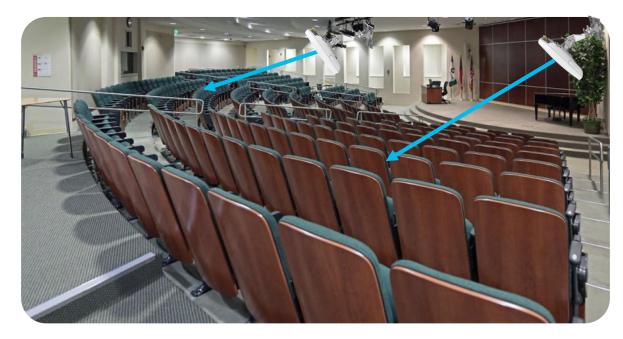
Supports WebUI access for easy configuration and viewing of various RF metrics for RF coverage and planning.

Supports configuration of channel number, channel width, Tx power, SSID, and data rates.

Cisco outdoor AP portfolios


cisco live!

Catalyst 9124AXI-x and 9124AXD-x initially available in US and Canada only. Worldwide availability set for Summer calendar year 2021.


** Available second half 2021
 #CiscoLive BRKEWN-2087
 © 2023 Cisco and/or its affiliates, All ric

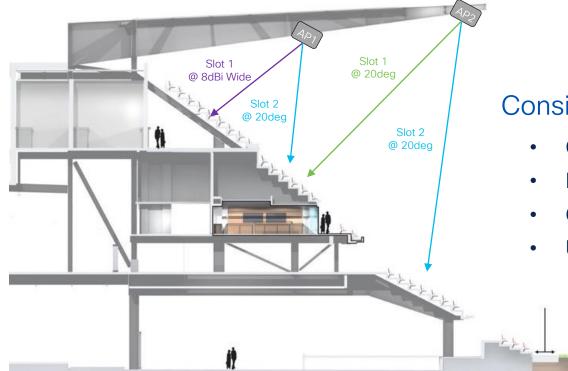
Antenna Placement

Classrooms & Auditoriums

Directional antennas: more coverage cells in the same physical area, better control of the RF environment

Directional antennas strongly preferred over omnis

cisco ive

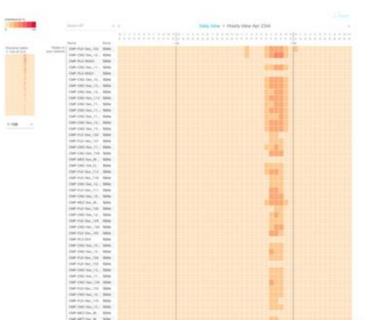

Conference Halls, Airports

High Density Open Areas - Conference Halls, Classrooms

- Omnis not preferred for open areas where high capacity is needed
- Create smaller cells with directional antennas mounted above, aimed directly downward
- Understand RRM implications of this type of design

Stadiums & Large Public Venues

Consider:


- Overhead / Line-of-Sight
- Distance to Clients
- Cell Size & Overlap
- Under seat as backup option

cisco lite

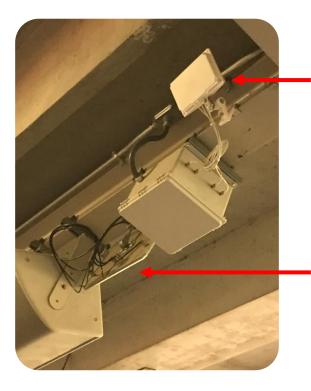
Performance Comparison

Under seat/Omni

Overhead/Directional

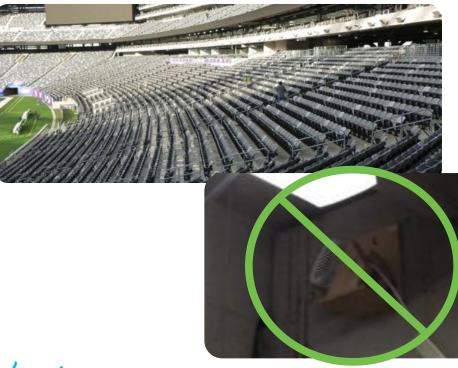
cisco / ile !

Creative AP/Antenna Mount Examples



cisco livel

Multiple Coverage Areas with 1 AP


"Wide" Patch Antenna

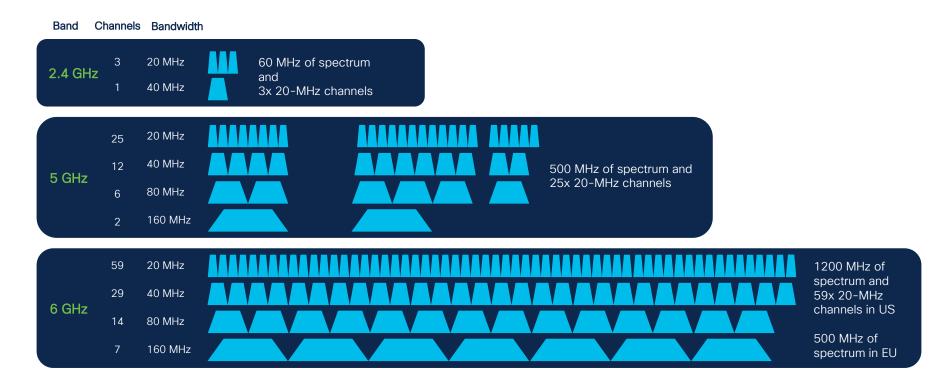
"Narrow" High-Gain Antenna

Antenna Placement: What Not To Do

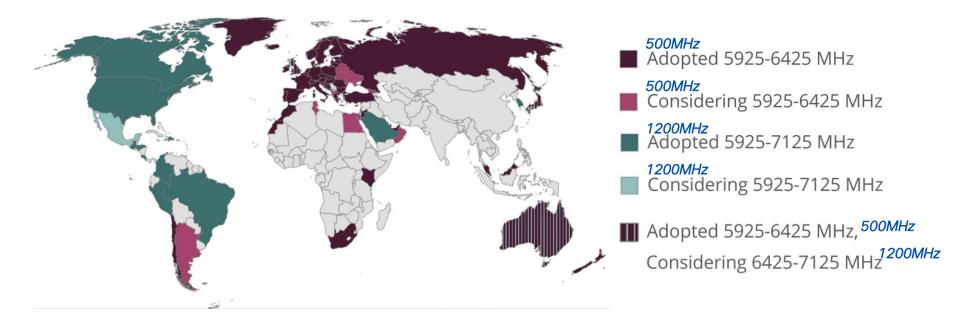
Challenging Areas

Avoid long-distance shots with poor angle of incidence / line of sight to each client

Avoid obstructions in front of your antennas


cisco ile

Wi-Fi 6E Deployment Considerations



6 GHz is the biggest Wi-Fi spectrum expansion ever

6GHz Availability - A Global View

https://www.wi-fi.org/countries-enabling-wi-fi-in-6-ghz-wi-fi-6e

cisco / ile

Deploying and migrating to Wi-Fi 6E Key Considerations

6GHz SSID Discovery

- Active Scanning is less practical too many channels
- Reduced Neighbor Report announces 6GHz capable networks for passive detection
- Different device types discover 6GHz networks differently testing is important

Examples:

- Google Pixel 6: <u>https://www.jiribrejcha.net/2022/11/google-pixel-6-wi-fi-6e-scanning-and-6-ghz-ssid-discovery/</u>
- iPad Pro: https://www.jiribrejcha.net/2022/11/ipad-pro-wi-fi-6e-scanning-and-6-ghz-ssid-discovery/

Security Requirements

- WPA3 is required for Wi-Fi 6E networks
- OpenRoaming can make the transition easier

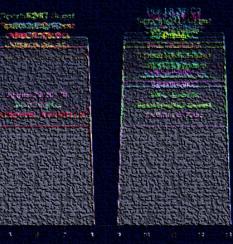
Architecting Next Generation Wireless Network with Catalyst Wi-Fi 6E Access Points - BRKEWN-2024
Anand Gurumurthy, Technical Marketing Engineering Technical Leader, Cisco Systems, Inc.

This session deep dives into the newly introduced Wi-Fi6E standard in 6GHz band. It begins with an overview of the 6GHz band and the worldwide regulations and then dives into the specifics of WI-FI 6E protocol including device classes and AP discover, The session covers aspects of the protocol optimization introduced for the clients to discover the WLANs and AP in 6 GHz band. Security in the GGHz WI-FI 6E world is now mandated with WPA3 This session covers the key WI-FI 6E security takeaways that the end user needs to be aware of. This session also covers technical deep dive of the new converged WI-FI 6E Access Point and walks through the deployment options with Ongreen and Cloud, features, capabilities, power requirements and migration. Wi-Fi 6E Glossary

RNR: Reduced Neighbor Report FILS: Fast Initial Link Setup PSC: Primary Scanning Channel

Maximize your Spectrum

Limit SSIDs (reduce management traffic)


- Integrate existing networks
- Optimize PHY Rates

Renthing MC - States 2000 (Durant The Observation Renthing MC (Durant

- Monitor Noise Floor & use power adjustments
- Remove barriers to entry

Sport Real Guest

Sec Gues

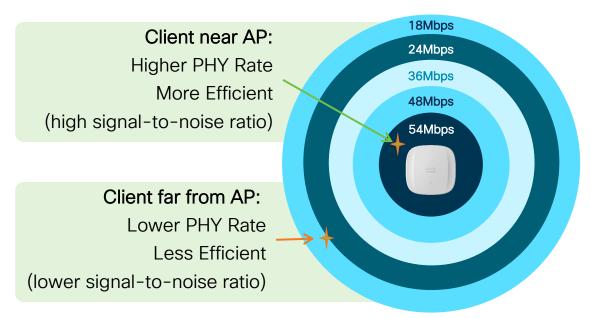
Maximizing the Spectrum

Avoiding Excessive Management Traffic

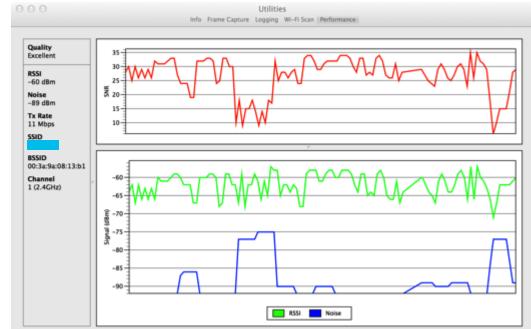
Protocols							ф
🗉 🤇		📮 🗋 Toj	Protocols	: 44			
			Top Pr	otocols			✓ Others
Probe Rsp							
Probe Req							_
HTTPS							
Beacon							
Ack		-					
HTTP							
BA	ĩ.						
Null Data	1						
DNS	ī -						
RTS	ñ -						
Others	D.						. <u> </u>
	o	1,000,00	2,000,000	3,000,000	4,000,000	5,000,000	6,000,000

- Always aim for 1 SSID
 - Especially in high density areas
- More SSID's = Worse Performance
- Why?
 - Each SSID requires a separate beacon
 - Each SSID will beacon at the minimum mandatory data rate
 - Radios will respond to null probe requests for each broadcast SSID
 - Exponential amounts of airtime wasted!

Maximizing the Spectrum Integrate Existing WLANs


- Common to see various existing WiFi deployments in venues
- Efficient HD WLANs are deployed holistically – one infrastructure
- Benefits?
 - Configuration consistency
 - Airtime efficiency
 - Legacy management traffic that once chewed up 30-40% of airtime typically drops to < 1% of airtime

cisco ile


Maximizing the Spectrum PHY Rate Tuning: Why PHY Rates Matter

- Tune your Minimum Mandatory and Supported data rates to optimize airtime
- Higher rates require higher SNR don't be too aggressive
- Leave 1 or 2 rates below your Minimum Mandatory rate as "supported" to provide a "soft landing" and allow some SNR flexibility
- Generally, no need to adjust MCS rates (client compatibility)
- Common starting points (5ghz): 18mbps Minimum Mandatory, 12mbps Supported, <12 disabled, >18 Supported

Maximizing the Spectrum RSSI vs. SNR

- Check your noise floor in each band during peak usage
 - Packet captures with a NIC that you trust (MacBook Pro, etc.)
 - Fluke AirCheck
 - Spectrum Expert
 - Metageek Chanalyzer for Clean Air

Maximizing the Spectrum

Ease-of-Use & Client Induced Interference

- Ask yourself how difficult is it to get on your WiFi network?
- Ease-of-use directly impacts airtime efficiency
- Low take rate = lots of probe request noise (1mb, max power, all channels)
 - Results in Client Induced Interference
- A device on the network is <u>far</u> less damaging than a device off the network!
- Make captive portals easy, implement OpenRoaming, etc.

Agenda

- Designing RF for High Client
 Densities
- HD Wi-Fi Configuration Tips
- HD Wi-Fi Engineering Toolkit

Josh Learns Things The Hard Way

...or, everybody has a plan until you're 40 years old and changing your first diaper

cisco ille

cisco live!

cisco live!

1) I was overconfident
 2) I didn't read the manual!

Fast forward to 6 years later...

cisco live!

Surprise!

This time, I decided to read the "manual(s)"...

Surprise!

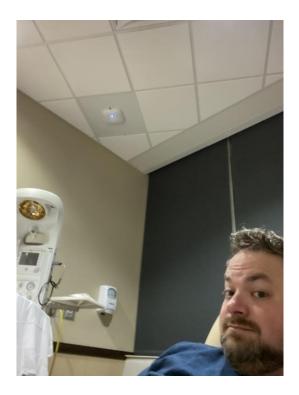
THE WHOLE BRAIN CHILD

NO BAD KIDS

#PROVINC

BUTHER OF THEM! THE

WHAT T



The big day...

cisco live!

The big day...

cisco live!

The big day...

cisco live!

The books were great, but...

cisco live!

There is no better teacher than real life experience ☺

Now for some of our hardlearned experiences...

The Basics: RF Profiles, TPC, DCA

cisco live!

First - a handy (free!) tool: WCAE

- Wireless Config Analyzer Express (WCAE) is an extremely valuable tool when validating and optimizing a Cisco Wi-Fi deployment
- Feed your WLC config output to WCAE and it will help you:
 - Find and troubleshoot problems quickly
 - Identify top areas for RF optimization
 - Check configs against best practices
 - RRM overview with the RF Summary

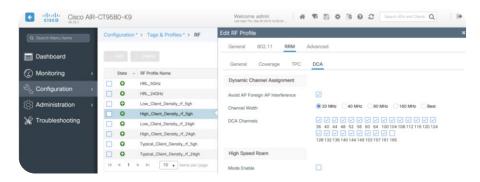
Generated:2023-01-30 11:06			
WCAE Version:0.12			
Total Message Counts			
Errors:		9	
Warnings:		30	
Informational:		21	
Program Execution			
Parsing Errors:		0	
Processing Errors:		17	
Configuration Charles			
Configuration Checks:	Controller Checks Results		
	APs Checks Results		
Controller:		Client Audit	AP Information
	Data Summary	AppleIOS	APs Configuration
	Log Summary	Cisco 8821	APs Slot Configuration
	Upgrade Advisor	Drager	APs Interface Status
	Best Practices	Spectralink	APs RF Summary 2.4GHz
	WLAN Summary	Vocera	APs RF Summary 5GHz
	Interface Summary		APs RF Summary 6GHz
	RF Profiles 2.4 GHz		APs RF Health Details
	RF Profiles 5 GHz		APs NDP Summarization 2.4G
	RF Profiles 6 GHz		APs NDP Summarization 5GHz
	Site Tags		APs RF Neighbors 2.4GHz
	Hardware State		APs RF Neighbors 5GHz
	Resources		and the base of the base of the
	Client Types		6GHz Predictive Planning
	AAA Server Details		AP Channel Config Export
	WNCD Load Distribution Tag/Policy Usage		
	RF Stats 2.4GHz		
	RF Stats 5GHz		
	RF Stats 6GHz		
	RF Health 2.4GHz		
	RF Health 5GHz		
	RF Health 6GHz		
	Channel Stats 2.4GHz		

Download: https://developer.cisco.com/docs/wireless-troubleshooting-tools/

More info: Cisco Live US 2022 - BRKEWN-3006

High Density WLAN Features & Configurations

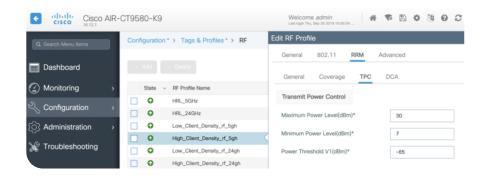
	Con	figuratio	n *	> Tags & Profiles * > RF								
Dashboard	+	Add										
Monitoring >		State	ų.	RF Profile Name	~	Band	÷	Description	1			
Configuration		0		HRL_5GHz		5 GHz						
Configuration >		0		HRL_24GHz		2.4 GHz						
Administration →		0		Low_Client_Density_rf_5gh		5 GHz		pre configu	red Lov	w Client Density rf		
<i>n</i> . –		0		High_Client_Density_rf_5gh		5 GHz		pre configu	red Hig	h Client Density r		
Troubleshooting		0		Low_Client_Density_rf_24gh		2.4 GHz		pre configu	red Low	w Client Density rf		
		0		High_Client_Density_rf_24gh		2.4 GHz		pre configu	red Hig	h Client Density r		
		0		Typical_Client_Density_rf_5gh		5 GHz		pre configu	red Typ	sical Density rfpro		
		0		Typical_Client_Density_rf_24gh		2.4 GHz		pre configu	red Typ	pical Client Densit		


Network Home ~	Overview RF profiles			
> Network-wide				
P Wireless		Basic Indoor Profile	1	DEFAULT INDOOR
		Applied to 6 APs. Overrides appli	ed to 6/6 of these AP	s.
Corganization			2.4 GHZ	5 GHZ
		Channel assignment	Auto	Auto
	New Profile	AutoPower max	30	30
		AutoPower min	5	23
		Min. bitrate	Per SSID	Per SSID
		Channel width		40
		CHANGE DEFAULT PROFILE	COPY	/ EDIT

- WiFi deployments are not "one-size-fits-all"
- Use RF Profiles on both Catalyst and Meraki deployments for granular RF control
 - Configure network-wide channel parameters: remove channels as needed, set channel widths
 - Configure transmit power min/max: ensure balance, avoid "client magnets"
 - Configure RX-SOP thresholds to selectively reduce radio sensitivity where needed
- On C9800, plan Site Tags to balance APs across processes

Channel Planning with RF Profiles

- Plan channels with Dynamic Channel Allocation (Catalyst) or AutoChannel (Meraki) via RF Profile
- If needed eliminate unusable channels for business-critical areas (DFS, etc)
- Reserve channels for use by other systems


Catalyst Tip: Identifying Potentially Unhealthy Channels <u>WCAE</u> - 'APs RF Summary' tab - "High Channel Changes" column

С	D	G	н	1	J	К	L	М	N	0	v
Model 🔻	Mode 🔻	Chann 🔻	TX Pow 🔻	TX Power dB	Total Clients 🔻	RX SOP 🔻	CH Utils 🔻	CH TX Util% 🔻	CH RX Util%	Channel Changes 🔻	High Channel Chang
C9130AXI-B	Client Serving	108	3	9	18	medium(-78)	50	3		18	Yes
C9130AXI-B	Client Serving	140	2	12	8	medium(-78)	73	50		20	Yes
C9130AXI-B	Client Serving	52	2	11	17	medium(-78)	46	5		20	Yes
C9130AXI-B	Client Serving	64	2	11	4	medium(-78)	11	0		25	Yes
C9130AXI-B	Client Serving	100	3	9	12	medium(-78)	49	2		30	Yes
C9130AXI-B	Client Serving	44	5	9	7	medium(-78)	47	8		23	Yes
C9130AXI-B	Client Serving	100	3	9	13	medium(-78)	38	7) 19	Yes
C9130AXI-B	Client Serving	56	2	11	22	medium(-78)	46	17		. 28	Yes
C9130AXI-B	Client Serving	132	3	9	14	medium(-78)	37	8		32	Yes
C9130AXI-B	Client Serving	52	2	11	15	medium(-78)	45	1		18	Yes
C9130AXI-B	Client Serving	56	2	11	23	medium(-78)	42	7	1	25	Yes
C9130AXI-B	Client Serving	116	3	9	9	medium(-78)	24	3		22	Yes
C9130AXE-B	Client Serving	52	2	15	0	medium(-78)	2	0) 19	Yes
C9130AXE-B	Client Serving	36	2	19	0	medium(-78)	1	0		20	Yes
C9130AXE-B	Client Serving	56	2	15	0	medium(-78)	1	0		30	Yes
C9130AXE-B	Client Serving	149	2	20	0	medium(-78)	2	0		22	Yes
C9130AXE-B	Client Serving	124	2	15	88	medium(-78)	78	19	1	70	Yes
C9130AXE-B	Client Serving	48	2	20	0	medium(-78)	2	0		66	Yes
C9130AXE-B	Client Serving	36	2	19	0	medium(-78)	2	0) 19	Yes
C9130AXE-B	Client Serving	44	2	20	0	medium(-78)	2	0		21	Yes
C9130AXE-B	Client Serving	108	2	15	0	medium(-78)	1	0		25	Yes
C9130AXE-B	Client Serving	149	2	20	0	medium(-78)	1	0		21	Yes

"<u>High Channel</u> <u>Change: Yes</u>" triggered for radios with more than 4 channel changes per day

Balancing Transmit Power with RF Profiles

- TPC (Catalyst) and AutoPower (Meraki)
- Ensures AP-to-AP consistency (no "client magnets") and 2.4GHz to 5GHz balance (5GHz hotter, 2.4GHz cooler)
- TPC/AutoPower Min lower power limit specified for a given radio. TPC/AutoPower will never adjust power below this level.
- TPC/AutoPower Max upper power limit specified for a given radio. TPC/AutoPower will never adjust power above this level.

Identifying Possible Power Imbalance

WCAE - 'APs RF Summary' tab - "TX Power dBm" and "Total Clients" columns

Name 🖵	Slot 🚽	Band 🗸	Channel 🖵	TX Power 🚽	TX Power dBm	Total Clients	
AP1	1	5	100	1		17	21
AP1	2	5	48	1		23	70

6dB power difference = client imbalance

Refer to AP power tables to determine max TX power per UNII band

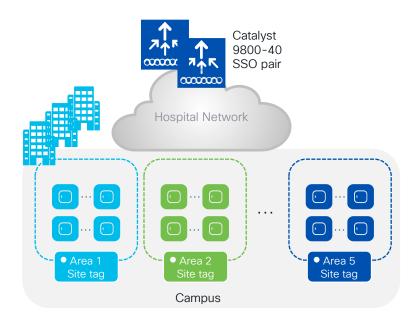
Use "show controller" on a sample AP for all details

Selecting Channel Width with RF Profiles

	Welcome Last login Thu, 3	admin Sep 26 2019 16:56:5	a_ 1		¢	1 O	C	Search APs and Clients Q	•
Ed	lit RF Profile	e							×
	General	802.11	RRM	Advanced					
	General	Coverage	TPC	DCA					
	Dynamic Ch	nannel Assig	nment						
	Avoid AP For	eign AP Interl	erence						
	Channel Wid	th		● 20 N	(Hz	0 40 MHz	080	MHz 0160 MHz Best	
	DCA Channe	ls		✓ ✓ 36 40 ✓ ✓ 128 13	44 48 44 48 2 136 14	52 56 2 2 56 40 144 149] 🖸 🗖	

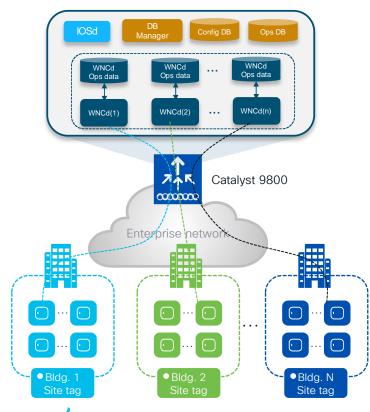
	General 2.4 GHz 5 GHz	
Home ~	5 GHz radio settings	
Network-wide	Turn off 5 GHz radio See band selection above.	
Wireless	Channel width Auto Manual	
Organization	A	
	Manual 5 GHz channel width	
	Disable auto channel width by manually selecting a channel width for the APs	in this profile
	20 MHz (channels)	
	Recommended for High Density deployments and environments expecte to encounter DFS events. More unique channels available, reducing chan of interference.	
	O 40 MHz (0 channels)	
	For low to medium density deployments.	
	 B0 MHz (0 channels) 	
	For low density areas with few or zero neighboring networks. Higher bandwidth and data rates for modern devices. Increases risk of interfere problems.	nce

5GHz


- In general, 20MHz channels provide the most channel reuse (capacity) for high density environments
- Wider channels may be used selectively in more isolated areas – smaller classrooms, lobbies, conference rooms, etc.

6GHz

- Heavily dependent on regulatory domain
- Note! Higher channel width results in higher max Tx power for data frames (but not beacons – remember when surveying!)

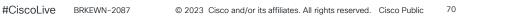

C9800 Site Tag Design in High Density

- Custom Site Tags deterministically distribute APs across C9800 processes, aka "WNCd's"
- Always use Custom Site Tags not Default to ensure load is balanced in a predictable way
- 500 APs per Site Tag is the rule of thumb, BUT...
- Platform limits on AP count per Site Tag will differ from "ideal limits" in High Density / High Roam frequency environments
- Recommended AP count per Site Tag will vary based on the environment
 - <u>Consider roaming patterns</u> and minimize roaming between Site Tags

Refer to the C9800 Best Practices guide for the latest guidance

Site Tags – Design considerations

Important facts:


- Distributing APs (and clients) across custom Site Tags (and thus WNCd's) gives better scale and performance
- In large public venues, avoid having more Site Tags than # of WNCd's

• The number of WNCd varies from platform to platform:

Platform	# of WNCD instances
EWC (on AP or C9k switch)	1
C9800-L	1
C9800-CL (small)	1
C9800-CL (medium)	3
C9800-40	5
C9800-CL (large)	7
C9800-80	8

Refer to the <u>C9800 Best Practices</u> guide for the latest guidance

The following command shows the # of WNCDs processes: 9800#sh processes platform | inc wncd

Site Tag Limitations

Platform	Maximum number of APs per site tag*
C9800-80, C9800-CL (medium and large)	1600
C9800-40	800
Any other C9800 platform	Equal to the maximum number of APs supported

Platform	Recommended number of site tags
C9800-80	8 or a multiple (16, 24,)
C9800-CL (large)	7 or a multiple (14, 21,)
C9800-40	5 or a multiple (10, 15,)
C9800-CL (medium)	3 or a multiple (6, 9,)

Always refer to the C9800 Best Practices guide for the latest guidance

cisco life

71

Helpful Site Tag Monitoring Commands

show wireless stats ap loadbalance summary

- Shows summary of APs assigned to each WNCd

#sho DTLS drop - 380	w wireless stat	s ap loadbalance	summary
WNCD	APs Discovered	APs Joined	APs Timedout
0	179	179	8715

show wireless loadbalance tag affinity wncd <wncd-number>

- Shows which site tags are assigned to each WNCd

Tag	wireless loadbalance ta Tag type	g affinity wncd 0 No of AP's Joined
	SITE TAG SITE TAG	177 1

Other 9800 Tips: L2/L3

On 9800's - **Don't assign an IP Address to SVI's** without good reason! (Can quickly overwhelm upstream L3 hops)

Primary reasons you may need an SVI:


- mDNS
- DHCP Relay (uncommon in High Density)

If you need an SVI - plan Layer 3 scale upstream accordingly!

https://www.cisco.com/c/en/us/products/collateral/wireless/catalyst-9800-series-wireless-controllers/guide-c07-743627.html

The (Not So) Secret High Density Weapon: RX-SOP

cisco ive!

What if...

I put AP's wherever I needed them... I used all the right antennas...

I surveyed and optimized and surveyed and optimized again...

...but my Channel Utilization is still really high, with almost no "real" traffic?

Vendor		Signal	Noise	SNR	Channel	Channel Utilization	 Clients
😑 Cis	sco Sys	-85 dBm	-96 dBm	11 dB	48	90%	
😑 Cis	sco Sys	-70 dBm	-96 dBm	26 dB	153	89%	
😑 Cis	sco Sys	-74 dBm	-96 dBm	22 dB	153	89%	
😑 Cis	sco Sys	-74 dBm	-96 dBm	22 dB	153	89%	
😑 Cis	sco Sys	-74 dBm	-96 dBm	22 dB	153	89%	
😑 Cis	sco Sys	-90 dBm	-96 dBm	6 dB	144	87%	
😑 Cis	sco Sys	-78 dBm	-96 dBm	18 dB	157	86%	
😑 Cis	sco Sys	-64 dBm	-96 dBm	32 dB	1	84%	
😑 Cis	sco Sys	-70 dBm	-96 dBm	26 dB	153	82%	
😑 Cis	sco Sys	-76 dBm	-96 dBm	20 dB	153	80%	
😑 Cis	sco Sys	-86 dBm	-96 dBm	10 dB	161	80%	
😑 Cis	sco Sys	-80 dBm	-96 dBm	16 dB	153	80%	
😑 Cis	sco Sys	-64 dBm	-96 dBm	32 dB	44	79%	
😑 Cis	sco Sys	-62 dBm	-96 dBm	34 dB	44	79%	
😑 Cis	sco Sys	-64 dBm	-96 dBm	32 dB	44	79%	
😑 Cis	sco Sys	-80 dBm	-96 dBm	16 dB	153	78%	
😑 Cis	sco Sys	-74 dBm	-96 dBm	22 dB	153	77%	
😑 Cis	sco Sys	-70 dBm	-96 dBm	26 dB	153	76%	
😑 Cis	sco Sys	-80 dBm	-96 dBm	16 dB	153	76%	
😑 Cis	sco Sys	-80 dBm	-96 dBm	16 dB	153	76%	
😑 Cis	sco Sys	-80 dBm	-96 dBm	16 dB	153	76%	
😑 Cis	sco Sys	-70 dBm	-96 dBm	26 dB	153	76%	
😑 Cis	sco Sys	-80 dBm	-96 dBm	16 dB	153	75%	
😑 Cis	sco Sys	-78 dBm	-96 dBm	18 dB	153	75%	
😑 Cis	sco Sys	-78 dBm	-96 dBm	18 dB	153	74%	

What does it do?

Reduces "receive" sensitivity of the AP to a pre-determined power level

Example: ignore everything coming into the radio at lower than -80dBm, because those devices are unlikely to be in our cell

Why is it helpful?

Allows us to transmit more often to clients in our intended cell

• 802.11 is a "polite" protocol


- 802.11 is a "polite" protocol
- I must <u>listen</u> before I start to <u>talk</u> I will not talk <u>until it's "quiet" on my channel</u>

- 802.11 is a "polite" protocol
- I must listen before I start to talk I will not talk until it's "quiet" on my channel
- In dense deployments, you <u>will</u> have co-channel AP's in range of each other

- 802.11 is a "polite" protocol
- I must listen before I start to talk I will not talk until it's "quiet" on my channel
- In dense deployments, you <u>will</u> have co-channel AP's in range of each other
- RX-SOP optimization helps us tune out the <u>most distant</u> co-channel transmissions

- Be careful and make small adjustments
 - Generally, start in the -80's

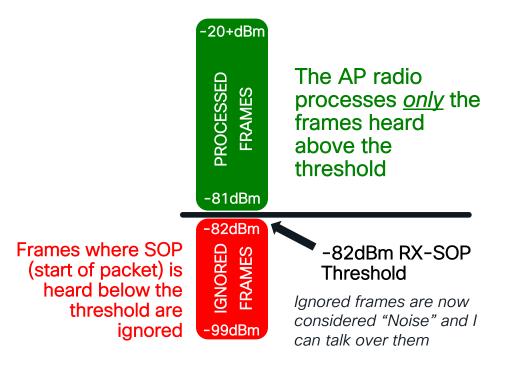
- Be careful and make small adjustments
 - Generally, start in the -80's
- Remember adjusting the RX-SOP threshold doesn't impact the actual RF energy on the channel, but it does impact APs' sensitivity to it
 - High Channel Utilization still affects all clients

- Be careful and make small adjustments
 - Generally, start in the -80's
- Remember adjusting the RX-SOP threshold doesn't impact the actual RF energy on the channel, but it does impact APs' sensitivity to it
 - High Channel Utilization still affects all clients
- WiFi6, WiFi6E, and/or use of C9104 may reduce the need for RX-SOP in some environments; continue to monitor your Channel Utilization and adjust as needed

Without Custom RX-SOP Threshold

(Default / "Auto" Radio Sensitivity) -20+dBm

Radio processes everything that it can hear – any frame with enough SNR PROCESSED FRAMES


-99dBm

cisco /

Without Custom RX-SOP Threshold (Default / "Auto" Radio Sensitivity)

Radio processes everything that it can hear – any frame with enough SNR PROCESSED FRAMES

With Custom RX-SOP Threshold

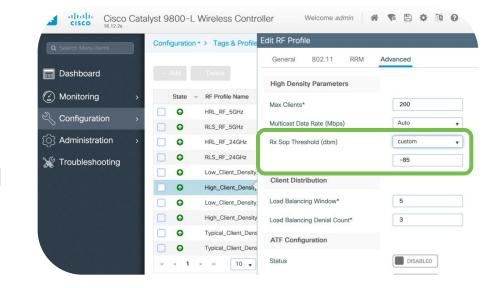
HOW TO: Optimize RX-SOP Thresholds

Choose client devices and representative areas to test

Create a temporary SSID on <u>one AP</u> in the test area so your client

doesn't roam

(see hidden slides for tips on AireOS / 9800)


2

Monitor the AP's view of test clients throughout the cell (from WLC UI, WLC CLI, or AP CLI)

Pad the worst reading by another 15dB or more = initial RX-SOP threshold

Example: Worst AP-observed RSSI value is -72; initial RXSOP threshold with 15dB cushion = -87(or higher)

HOW TO: Optimize RX-SOP Thresholds (9800)

- 1. Pick the client device(s) you want to test
- 2. Pick the representative area(s) you want to test
- 3. Create a new temporary WLAN and Policy Tag
- 4. Assign the Policy Tag to the test AP
- 5. Join your client device(s) to the new SSID and monitor how the AP hears your client(s) (from AP CLI "show controller d 1 client <mac-addr>")
- 6. Test for "worst case scenario" bodies between device and AP, furthest corner of the cell, etc. Continually check RSSI from AP side.
- 7. Take your "worst" RSSI value, add a 10–15dB cushion, and use that as your initial RXSOP threshold for that cell type (set in RF Tag)

Example: Worst RSSI value is -72; initial RXSOP with 15dB cushion = -87

Review: How AP's Hear Clients

For a detail on a single client, at AP CLI:

Telnet/SSH to AP and use "show controller d <0|1> client <mac-addr>" for immediate client RSSI readings of a single client

10#sho controller d 1 client FC:F8:AE:60:98:34
<clip></clip>
Additional info for client FC:F8:AE:60:98:34
RSSI: -47
<clip></clip>
Statistics for client FC:F8:AE:60:98:34
mac <clip> stats_ago e piration</clip>
FC:F8:AE:60:98:34 <clip> 0.700 0</clip>

How long ago were these stats updated (in sec)?

HOW TO: Optimize RX-SOP Thresholds (AireOS)

- 1. Pick the client device(s) you want to test
- 2. Pick the **representative area(s)** you want to test
- 3. Create a new temporary SSID and a new AP Group
- 4. Add the AP's you want to test to the new AP group
- 5. Join your client device(s) to the new SSID and monitor how the AP hears your client(s) (from AP CLI "show controller d 1 client <mac-addr>")
- 6. Test for "worst case scenario" bodies between device and AP, furthest corner of the cell, etc. Continually check RSSI from AP side.
- 7. Take your "worst" RSSI value, add a 10-15dB cushion, and use that as your **initial RXSOP threshold** for that cell type

Example: Worst RSSI value is -72; initial RXSOP with 15dB cushion = -87

HOW TO: Optimize RX-SOP Thresholds

A key takeaway:

Be conservative and make small adjustments!

cisco / ile

Cloud-Managed High Density

Cloud-Managed High Density

disto Meraki	Q Search Dashboard
Network Home V	Independent firmware versions have been published for Meraki and Catalyst-based switches, including MS390s & Migrated C9300 switches. Learn more or Upgrade Now
Network-wide Wireless	Health WiRLESS
Organization	Image: Clients all - 54.82 GB (4 29.72 GB, † 25.09 GB) (4 Applications
	23 Mb/s 15 Mb/s 00 Mb/s 0 Mb/s
	1200 1400 1800 2000 2200 0000 0200 6400 6600 6600 1000 Macra a Policy * Search * 61 client devices Add client * Download as
	□ Status Description Last seen Usage OS IPV4 address Policy MAC address SSID ▲
	Image: self-cae-dc:d6:a1 Jun 2 07:28 104.6 MB Other 192.1681.209 normal ae:1c:ae:dc:d6:a1 5g
	□ ♥ JOSUHR-M-42PD Jun 2 10:41 4.20 GB Apple iPhone 192.168.1.61 normal a0:78:17:77:95:8a 5g

Can be ideal for:

Classrooms Theaters & Auditoriums Hotspots

Be aware of:

Switched Network Capacity (L2 / L3) Roaming Domains & Expected Roaming Experience

Cloud-Managed High Density

Network Home ~	Configuration overview ssiDs Showing 6 of 15 S	SSIDs. <u>Show all my</u>
Network-wide		5g
	Enabled	enabled 🟮
Wireless	Name	rename
	Access control	edit setting
Organization	Encryption	PSK (WPA2
	Sign-on method	None
	Bandwidth limit	unlimited
	Client IP assignment	Local LAN
	Clients blocked from using LAN	no
	Wired clients are part of Wi-Fi network	no
	VLAN tag 🚯	n/a
	VPN	Disabled
	Splash page	
	Splash page enabled	no
	Splash theme	n/a

Similarly to "traditional" Catalyst networks:

- Manage AP Tx power appropriately
- Tune PHY rates _
- Limit SSID count per AP as much as possible
- Optimize channels —

ę

(Please z

Leverage RX-SOP (carefully, when needed)

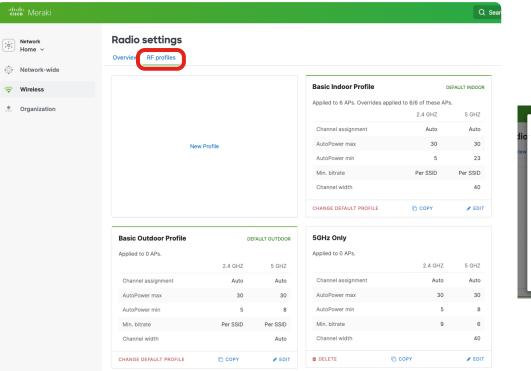
*

(• •

RF Optimization: Radio Settings Overview

Network Home ~	Overview RF p	tings profiles		
Network-wide	BAND	CHANNEL	AP TAG	A
╤ Wireless	Monitor		Configure	
	Overview		SSIDs	
. Organization	Access points		Access control	
	Air Marshal		Firewall & traffic shaping	
	Location heatmap		Splash page	
	Splash logins		SSID availability	
	PCI report		IoT radio settings	
	Bluetooth clients		Radio settings	
	RF spectrum		Hotspot 2.0	

Network Home ~	Radio s	ettings RF profiles					
Network-wide	BAND	CHANNEL	AP TAG	AP M	ODEL	RF PROFILE	REGULATORY DOMAIN
Wireless	All	▼ All	₹ All	⊸ All	*	All 👻	FCC Edit
Organization	Search by AP	name 12 F	Radios			Update auto ch	annels Edit settings
	Status 🖲	AP name	Channel 🔻	Ch. Width (MHz	Target powe (dBm) 🕲	r Transmit power (dBm) 🖲	RF Profile
		Basement AP	157 (Auto)	40	23 - 30	25	Basic Indoor Profile
		Deck AP	149 (Auto)	40	23 - 30	25	Basic Indoor Profile
	•	Josh's Office AP	48 (Auto)	40	23 - 30	25	Basic Indoor Profile
	•	Main Floor Office AP	36 (Auto)	40	23 - 30	23	Basic Indoor Profile
	•	Basement AP	11 (Auto)	20	5 - 30	11	Basic Indoor Profile
		Deck AP	11 (Auto)	20	5 - 30	14	Basic Indoor Profile
		Josh's Office AP	6 (Auto)	20	5 - 30	23	Basic Indoor Profile
	•	Main Floor Office AP	1 (Auto)	20	5 - 30	8	Basic Indoor Profile


RF Optimization: Radio Settings Overview

[†] ¢-* Home ∽	Radio so	ettings RF profiles					
Network-wide	BAND	CHANNEL	AP TAG	AP MO	DEL	RF PROFILE	
Wireless	All	▼ All	▼ All	▼ All	*	All 👻	REGULATORY DOMAIN
Organization	Search by AP	name 12 I	Radios			Update auto ch	annels Edit settings
	🗆 Status 🖲	AP name	Channel 🔻	Ch. Width (MHz)	Target power (dBm) 🚯	Transmit power (dBm) ()	RF Profile
		Basement AP	157 (Auto)	40	23 - 30	25	Basic Indoor Profile
	•	Deck AP	149 (Auto)	40	23 - 30	25	Basic Indoor Profile
	•	Josh's Office AP	48 (Auto)	40	23 - 30	25	Basic Indoor Profile
	•	Main Floor Office AP	36 (Auto)	40	23 - 30	23	Basic Indoor Profile
		Basement AP	11 (Auto)	20	5 - 30	11	Basic Indoor Profile
	•	Deck AP	11 (Auto)	20	5 - 30	14	Basic Indoor Profile
		Josh's Office AP	6 (Auto)	20	5 - 30	23	Basic Indoor Profile
	•	Main Floor Office AP	1 (Auto)	20	5 - 30	8	Basic Indoor Profile

- Sortable / Filterable table for radio settings per AP
- Channel
- Width
- Min/Max Power
- Current Power
- RF Profile

cisco ille

RF Optimization: **RF** Profiles

Create an RF Profile Auditorium Profile Classroom Profile For auditorium deployments For classroom deployments. Provides accommodating a large number of good coverage and optimizes client devices. Limits coverage area per AP roaming. New Profile From Scratch and optimizes client roaming. Customize Customize **Open Office Profile Conference Room Profile Outdoors Profile** For open office deployments. For conference room deployments. For outdoor deployments. Prioritizes Balances performance and coverage. Provides good coverage and coverage and connectivity for distant encourages client roaming once and legacy clients. outside of the room. Customize Customize Customize

· Network	General 2.4 GHz 5	GHz
Home ~		
Network-wide	Channel assignment method	Unless manually overridden, AutoChannel will assign radios to channels with low interference. Change channels used by AutoChannel
Wireless		
Organization	Radio transmit power range (dBm)	Transmit shorter distance Transmit farth
organization		

cisco live!

Network	General 2.4 GHz	5 GHz
🖸 Home 🗸		
Network-wide	Channel assignment method	Unless manually overridden, AutoChannel will assign radios to channels with low interference. Change channels used by AutoChannel
Wireless		
Organization	Radio transmit power range (dBm)	Transmit shorter distance Transmit farther
		2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 28 27 28 29 30
	Set RX-SOP	
	Min. received power	
	(RX-SOP)	

diulio Meraki						
Network	General 2.4 GHz	5 GHz				
Home ~						
Network-wide	Channel assignment method	Unless manually overridden, AutoChannel w Change channels used by AutoChannel	ill assign radios to channels with low interferer	nce.		
😴 Wireless		Change channels used by Autochannel				
Organization	Radio transmit power range (dBm)	Transmit shorter distance	т	ransmit farther		
		2 3 4 5 6 7 8 9 10 11 12 13 1	4 15 16 17 18 19 20 21 22 23 24 25 26 2	7 28 29 30		
	Set RX-SOP					
	Min. received power (RX-SOP)					
			USE OF THIS OPTION CAN CAUSE SEVE YOUR WIRELESS IMPLEMENTATION	RE		
		You should only use this option if you understanding of the nuances of RX a site survey.	(-SOP and have conducted Min.	received power SOP)	Disabled Enabled	
			Proceed		Listen for clients farther away	Ignore we
					-65 -84 -93 -92 -91 -90 -89 -88 -87 -86 -85 -84 -83 -82 dBm	-81 -80 -79 -78 -77 -76 -75 -74 -73 -72 -71 -70 -69 -68

-67 -66 -65

Min. received power	Disabled	Enabled				
	Listen for clients farth	er away				Ignore weaker clients
	0					
	-95 -94 -93 -92 -91 -9) -89 -88 -87 -86 -85 -8	-83 -82 -81 -80 -70 -78	8 -77 -76 -75	-7/1 -73 -72 -	-71 -70 -69 -68 -67 -66 -65
	dBm	5 65 66 67 66 65 6	03 02 01 00 78 70	, ,, ,, ,, ,,	14 75 72	dBm

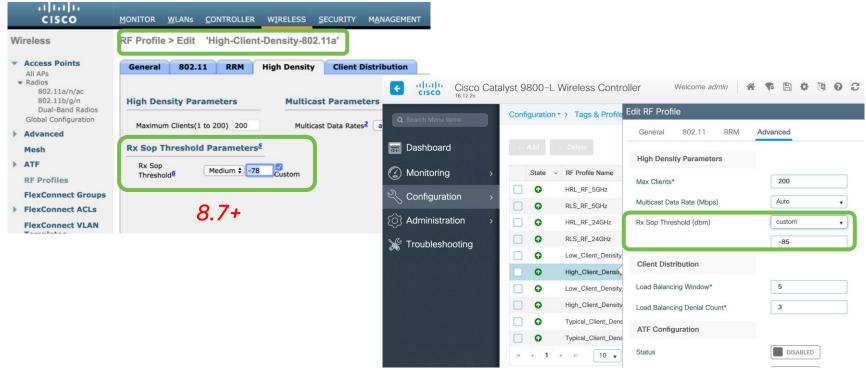
cisco ive!

Monitoring Client RSSI @ AP for RXSOP Testing

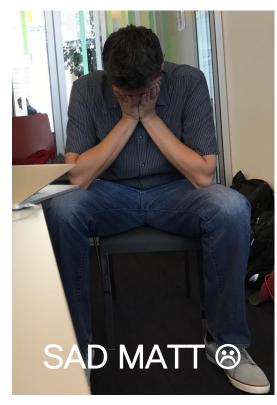
Network Home ~	CLIENTS Joshua-Ds-iPł	none 🍬
Network-wide	Institute	Configure
	Clients	General
Wireless	Раскет сартиге	Administration
Organization	Event log	Alerts
	Map & floor plans	Group policies
		Users
		Add devices

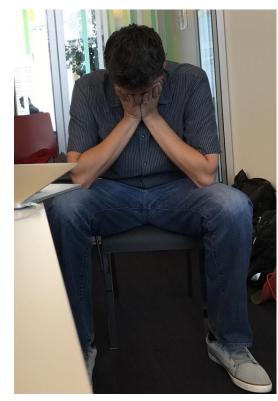
disdi Meraki	
Network Home ~	CLIENTS Joshua-Ds-iPhone 🖌
Network-wide	Overview Connections Performance Timeline
Wireless	Status 🗇 associated since May 3 07:55
Organization	SSID 5g Access point Josh's Office AP topology Splash N/A
	Signal 50dB (channel 48, 5 GHz)
	Device type, iPhone 13 Pro, iOS16.4.1 P
	Capable Wi-Fi 802.11ax - 2.4 and 5 GHz, 802.11r, Fastlane capable details standards
	Tools history packet capture disconnect client
	Notes d
	Current client connection

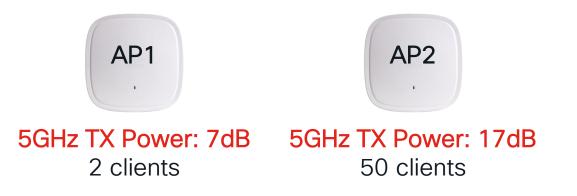
Wired Network Considerations

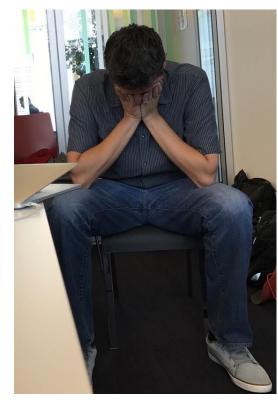

- Roaming domains: Meraki roaming basics
 - Roaming is either concentrator-based or distributed
 - Most viable in large HD networks means 'hard' roams across subnets
- Switched network capacity (throughput & L2 / MAC handling)

Common High Density Mistakes



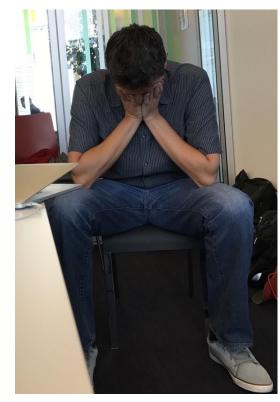

Tuning RX-SOP Thresholds: GUI



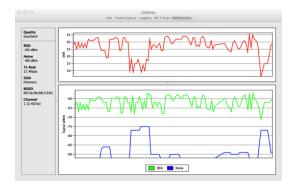

cisco live!

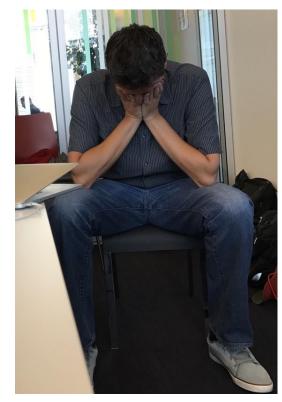
AP-to-AP transmit power imbalance (causes "Magnet" / overloaded AP's)

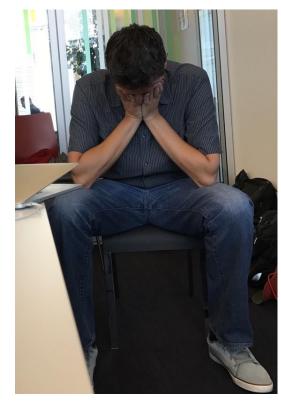
Note: This also applies to the dual-5GHz C9104!

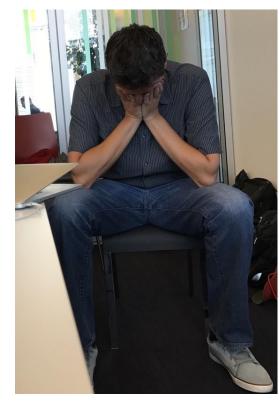


 AP-to-AP transmit power imbalance (causes "Magnet" / overloaded AP's)


 2.4GHz to 5GHz transmit power imbalance (draws dual-band clients to 2.4GHz)


2.4GHz: 13dB 20 dual-band clients 5GHz: 7dB 0 dual-band clients


- AP-to-AP transmit power imbalance (causes "Magnet" / overloaded AP's)
- 2.4GHz to 5GHz transmit power imbalance (draws dual-band clients to 2.4GHz)
- □ Transmit power too low to overcome noise floor



- AP-to-AP transmit power imbalance (causes "Magnet" / overloaded AP's)
- 2.4GHz to 5GHz transmit power imbalance (draws dual-band clients to 2.4GHz)
- □ Transmit power too low to overcome noise floor
- □ Channel Utilization high without real traffic

- AP-to-AP transmit power imbalance (causes "Magnet" / overloaded AP's)
- 2.4GHz to 5GHz transmit power imbalance (draws dual-band clients to 2.4GHz)
- □ Transmit power too low to overcome noise floor
- □ Channel Utilization high without real traffic
- Minimum mandatory PHY rate improperly tuned (too high or too low)

- AP-to-AP transmit power imbalance (causes "Magnet" / overloaded AP's)
- 2.4GHz to 5GHz transmit power imbalance (draws dual-band clients to 2.4GHz)
- □ Transmit power too low to overcome noise floor
- □ Channel Utilization high without real traffic
- Minimum mandatory PHY rate improperly tuned (too high or too low)
- Too many SSID's enabled (not using AP Groups to control where SSID's are enabled)
- □ Unusable channels (especially 5GHz)

- AP-to-AP transmit power imbalance (causes "Magnet" / overloaded AP's) TPC
- 2.4GHz to 5GHz transmit power imbalance (draws dual-band clients to 2.4GHz) TPC
- □ Transmit power too low to overcome noise floor TPC
- □ Channel Utilization too high Env. Cleanup / RXSOP
- Minimum mandatory PHY rate improperly tuned (too high or too low) PHY Rate tuning
- Too many SSID's enabled (not using AP Groups to control where SSID's are enabled) Policy Tags

□ Unusable channels (especially 5GHz) DCA

Smartphone Roaming Challenges

- As a rule, smartphones pick the loudest AP, then stick to that AP as long as possible
- Many phones won't go looking for a "better" AP unless things are REALLY bad (low RSSI/SNR)
- We attack this problem with workarounds (Optimized Roaming feature) and standards-based features (11k, 11v, adaptive 11r)
- Standards-based methods are best!!

Rogue APs

- DSL/cable modems
 - Are often auto-configured on "least loaded" channel on 2.4ghz
- MiFi's, Eye-Fi's, and hotspot-enabled smartphones
- Low PHY rates, max power
- Often on overlapping channels due to least-congested channel selection
- Causes exponential load on the air due to probe requests/responses and beacons

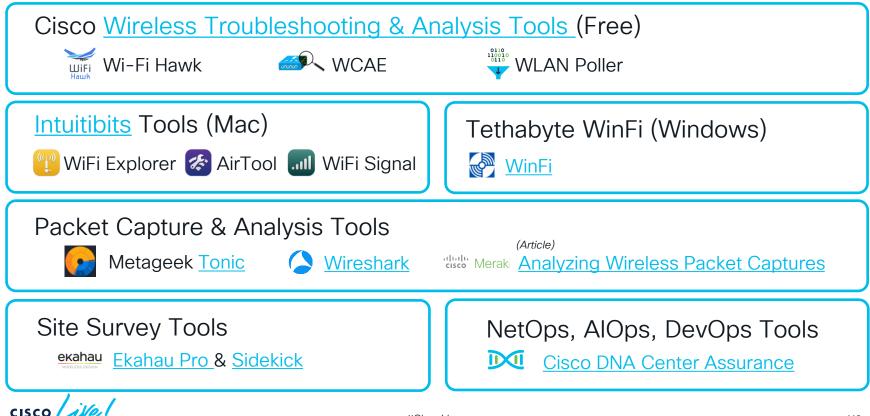
Looks like it belongs... but it doesn't

Non-WiFi Interferers

- Video cameras, wireless audio (Coachcomm, Zaxcom), lighting, pyro, and cryo systems, etc.
- Ever look at a Fluke meter and see zero AP's where you'd expect to see dozens? Non-WiFi Interferers often drown out 802.11 altogether.
- Mitigation: remove them altogether or change frequency if possible

What can we do?

- Develop and Enforce an RF Policy
- Employ an effective RF policy
- Identify:
 - what's permitted in your environment
 - what is not permitted in your environment
 - whom to contact for further information



Agenda

- Designing RF for High Client
 Densities
- HD Wi-Fi Configuration Tips
- HD Wi-Fi Engineering Toolkit

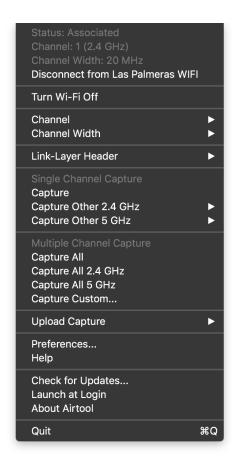
Our Favorite Tools

Wireless Troubleshooting Tools

()	
Overview	Wireless Troubleshooting Tools
Wireless Troubleshooting Tools	In order to help people in the field, doing Wireless networks troubleshooting and RF analysis, the WNG
WLCCA	Escalation, TAC and Development teams have made available several tools to facilitate some of the most
Wireless Config Analyzer	common tasks.
Config Checks and Messages	Wireless Config Analyzer Express - WCAE
Features	Cloud Version
RF Analysis	Mini Desktop Version For access, please request to wcae@cisco.com
RF Health	Next generation, multi platform Wireless Analyzer tool, including checks from WLCCA, and several new
Support	additions
WCAE	Support for AireOS and 9800 IOS-XE controllers, you can use the Cloud version (summary view, all
Wireless Config Analyzer	checks), or the Desktop version, providing a detailed XLS or text report, with RF analysis output, Flex
Express	summarisation and more Now with Windows 10 or Mac OS support.
How to use - Cloud	Wireless Lan Config Analyzer - WLCCA - Download V4.4.14
How to use - mini-Desktop	 For access, please request to wlc-conf-app-dev
Changelog	It is desktop Windows application, oriented primarily towards AireOS controllers Provides around 300+
Support	configuration checks, RF analysis and RF Health evaluation
WLAN Poller	WLAN Poller - Download Windows or Mac OS)
	Bulk data collection script system, focused on capturing debugging data, flash che Chat with Us!

Download: https://developer.cisco.com/docs/wireless-troubleshooting-tools/

Wireless Troubleshooting Tools


- Wireless Config Analyzer Express (WCAE) is an extremely valuable tool when validating and optimizing a Cisco Wi-Fi deployment
- WCAE helps us determine:
 - Configuration consistency across multiple WLC's
 - RF Problem Finder determine likely "problem" RF areas
 - AP Neighbors how do AP's hear each other? Too well, not well enough?
 - Additional views of CleanAir data
 - RRM overview with the RF Summary

Generated:2023-01-30 11:06			
WCAE Version:0.12			
Total Message Counts			
Errors:		9	
Warnings:		30	
Informational:		21	
Program Execution			
Parsing Errors:		0	
Processing Errors:		17	
Configuration Checks:			
	Controller Checks Results APs Checks Results		
Controller:		Client Audit	AP Information
	Data Summary	Apple IOS	APs Configuration
	Log Summary	Cisco 8821	APs Slot Configuration
	Upgrade Advisor	Drager	APs Interface Status
	Best Practices	Spectralink	APs RF Summary 2.4GHz
	WLAN Summary	Vocera	APs RF Summary 5GHz
	Interface Summary		APs RF Summary 6GHz
	RF Profiles 2.4 GHz		APs RF Health Details
	RF Profiles 5 GHz		APs NDP Summarization 2.4G
	RF Profiles 6 GHz		APs NDP Summarization 5GHz
	Site Tags		APs RF Neighbors 2.4GHz
	Hardware State		APs RF Neighbors 5GHz
	Resources		
	Client Types		6GHz Predictive Planning
	AAA Server Details		AP Channel Config Export
	WNCD Load Distribution		
	Tag/Policy Usage		
	RF Stats 2.4GHz		
	RF Stats 5GHz		
	RF Stats 6GHz		
	RF Health 2.4GHz		
	RF Health 5GHz		
	RF Health 6GHz		
	Channel Stats 2.4GHz		
	Channel Stats 5GHz Channel Stats 6GHz		

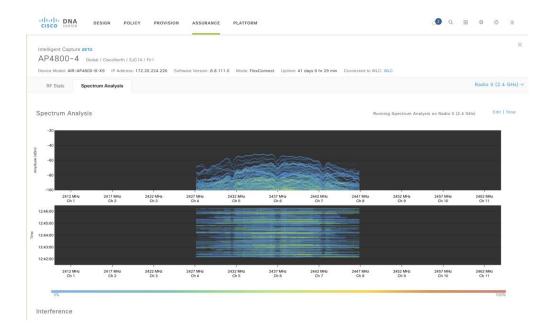
Download: <u>https://developer.cisco.com/docs/wireless-troubleshooting-tools/</u>

Packet Captures

- OmniPeek/Wireshark
 - For packet captures of the WLAN, including beacons and other management traffic
 - Helpful for troubleshooting of problems at the source
- AirTool
 - Free app for Mac simplifies packet capture process
 - <u>https://www.adriangranados.com/ap</u> <u>ps/airtool</u>

Site Surveys

- Ekahau Site Survey Pro
 - Design & Verify
 - Determine differences in coverage that occur as a result of tuning changes


B = 5.1	5.5.5			No. of Lot of Lo	ad and of	1		111	(
	distant Manage		for institutions, a la in	interested.	100	-		1.		
Terry West of				1.0	11.1					
Ing any faces	-	time	North Sprat	12						
autes ())))	C 101411			1	ineres, C.			111		
	Hits Into Manh		×							
ting only for any	Contraction Contraction	MALES	26.0	$\mathbf{\lambda}$	1			1	frame.	
	EN Ins Mall		\land	10						
		PALS.	\sim		_	-			6	
			40.07	2 =		-	-			
the state of the second		NAMES OF TAXABLE PARTY.	AP-87	3 1 ==	-		100		No.	-
	EN IN THE									
long and the log								10	-	
	Contraction of the local division of the loc	-				anne in	-	12	B. 4	1.1.
	Hard ton others on	1			-	-			-	
terplant.	C Later Da									
	and the second second									
	2 No line Property	5								
11.111	Signal	Nois		Channel	Width	Band	Stations		annel Utili	zation
1941 P 19	Signal -55	Nois	36 dB	56	20 MHz	5 GHz	34	13%		zation
	Signal -55 -56	Noit	36 dB	56 100	20 MHz 20 MHz	5 GHz 5 GHz	34 10	13% 60%		zation
	Signal -55 -56 -56	Noit -91	36 dB 35 dB 34 dB	56 100 1	20 MHz 20 MHz 20 MHz	5 GHz 5 GHz 2.4 GHz	34 10 2	13% 60% 74%		zation
	Signal -55 -56 -56 -56 -57 -57	Nois -91 -91 -91 -90 -90	36 dB 35 dB 34 dB 34 dB 34 dB	56 100 1 6	20 MHz 20 MHz 20 MHz 20 MHz	5 GHz 5 GHz 2.4 GHz 2.4 GHz	34 10 2 2	13% 60% 74% 79%		zation
trans to a	Signal -55 - -56 - -57 - -58 -	Nois -91 -91 -90 -90 -91 -91	36 dB 35 dB 34 dB 34 dB 33 dB	56 100 1 6 44	20 MHz 20 MHz 20 MHz 20 MHz 20 MHz	5 GHz 5 GHz 2.4 GHz 2.4 GHz 5 GHz	34 10 2 2 44	13% 60% 74% 79% 48%		zation
	Signal -55 - -56 - -57 - -58 - -60 -	Nois -91 -91 -91 -91 -91 -91	36 dB 35 dB 34 dB 34 dB 33 dB 33 dB 31 dB 31 dB	56 100 1 6 44 64	20 MHz 20 MHz 20 MHz 20 MHz 20 MHz 20 MHz	5 GHz 5 GHz 2.4 GHz 2.4 GHz 5 GHz 5 GHz	34 10 2 2 44 9	13% 60% 74% 79% 48% 22%		zation
trans to a	Signal -55	Nois -91 - -91 - -90 - -91 - -91 - -91 - -91 -	36 dB 35 dB 34 dB 34 dB 33 dB 33 dB 31 dB 31 dB 31 dB	56 100 1 6 44 64 161	20 MHz 20 MHz 20 MHz 20 MHz 20 MHz 20 MHz 20 MHz	5 GHz 5 GHz 2.4 GHz 2.4 GHz 5 GHz 5 GHz 5 GHz	34 10 2 2 44 9 0	13% 60% 74% 79% 48% 22% 0%		zation
trans to a	Signal -55 -56 -56 -57 -58 -60 -60 -61	Nois -91 -91 -90 -91 -91 -91 -91 -91	36 dB 35 dB 34 dB 34 dB 33 dB 33 dB 31 dB 31 dB 31 dB 30 dB	56 100 1 6 44 64 161 161 40	20 MHz 20 MHz 20 MHz 20 MHz 20 MHz 20 MHz 20 MHz 20 MHz	5 GHz 5 GHz 2.4 GHz 2.4 GHz 5 GHz 5 GHz 5 GHz 5 GHz	34 10 2 2 44 9 0 42	13% 60% 74% 79% 48% 22% 0% 18%		zation
trans to a	Signal -55 -56 -57 -58 -60 -61	Nois -91 -91 -90 -91 -91 -91 -91 -91 -91	36 dB 35 dB 34 dB 34 dB 33 dB 33 dB 31 dB 31 dB 30 dB 30 dB 30 dB	56 100 1 6 44 64 161 40 153	20 MHz 20 MHz 20 MHz 20 MHz 20 MHz 20 MHz 20 MHz 20 MHz 20 MHz	5 GHz 5 GHz 2.4 GHz 2.4 GHz 5 GHz 5 GHz 5 GHz 5 GHz 5 GHz 5 GHz	34 10 2 2 44 9 0 0 42 2	13% 60% 74% 79% 48% 22% 0% 18% 28%		zation
	Signal -55 -56 -56 -57 -57 -58 -60 -60 -61 -61	Nois -91 -91 -91 -91 -91 -91 -91 -91 -91 -91	36 dB 35 dB 34 dB 34 dB 33 dB 33 dB 31 dB 31 dB 30 dB	56 100 1 6 44 64 161 101 153 36	20 MHz 20 MHz 20 MHz 20 MHz 20 MHz 20 MHz 20 MHz 20 MHz 20 MHz 20 MHz	5 GHz 5 GHz 2.4 GHz 2.4 GHz 5 GHz 5 GHz 5 GHz 5 GHz 5 GHz 5 GHz 5 GHz	34 10 2 2 44 9 0 42 2 2 0	13% 60% 74% 79% 48% 22% 0% 18% 28% 0%		zation
	Signal -55 -56 -56 -57 -57 -58 -60 -60 -61 -61 -61 -61 -63 -63	Noi: -91 -91 -91 -91 -91 -91 -91 -91 -91 -91	36 dB 35 dB 34 dB 34 dB 33 dB 33 dB 31 dB 31 dB 30 dB	56 100 1 6 44 64 161 161 153 36 108	20 MHz 20 MHz 20 MHz 20 MHz 20 MHz 20 MHz 20 MHz 20 MHz 20 MHz 20 MHz	5 GHz 5 GHz 2.4 GHz 5 GHz 5 GHz 5 GHz 5 GHz 5 GHz 5 GHz 5 GHz 5 GHz	34 10 2 2 44 9 0 0 42 2 2 0 0 35	13% 60% 74% 79% 48% 22% 0% 18% 28% 0% 9%		zation
	Signal -55 -56 -56 -57 -57 -58 -60 -60 -61 -61	Nois -91 -91 -91 -91 -91 -91 -91 -91	36 dB 35 dB 34 dB 34 dB 33 dB 33 dB 31 dB 31 dB 30 dB	56 100 1 6 44 64 161 101 153 36	20 MHz 20 MHz	5 GHz 5 GHz 2.4 GHz 2.4 GHz 5 GHz 5 GHz 5 GHz 5 GHz 5 GHz 5 GHz 5 GHz	34 10 2 2 44 9 0 0 42 2 2 0 0 35	13% 60% 74% 79% 48% 22% 0% 18% 28% 0%		
	Signal -55 -56 -56 -57 -57 -58 -60 -60 -61 -61 -61 -61 -63 -63	Noi: -91 -91 -91 -91 -91 -91 -91 -91 -91 -91	36 dB 35 dB 34 dB 34 dB 33 dB 33 dB 31 dB 31 dB 30 dB	56 100 1 6 44 64 161 161 153 36 108	20 MHz 20 MHz 20 MHz 20 MHz 20 MHz 20 MHz 20 MHz 20 MHz 20 MHz 20 MHz	5 GHz 5 GHz 2.4 GHz 5 GHz 5 GHz 5 GHz 5 GHz 5 GHz 5 GHz 5 GHz 5 GHz	34 10 2 44 9 0 42 2 0 35 16	13% 60% 74% 79% 48% 22% 0% 18% 28% 0% 9%		
	Signal -55 -56 -56 -56 -57 -58 -60 -60 -61 -61 -63 -63	Nois -91 -91 -91 -91 -91 -91 -91 -91	36 dB 35 dB 34 dB 34 dB 33 dB 33 dB 31 dB 31 dB 30 dB 30 dB 30 dB 30 dB 28 dB 28 dB 1	56 100 1 6 44 64 161 40 153 36 108 161	20 MHz 20 MHz	5 GHz 5 GHz 2.4 GHz 5 GHz 5 GHz 5 GHz 5 GHz 5 GHz 5 GHz 5 GHz 5 GHz 5 GHz	34 10 2 2 44 44 9 0 0 42 2 0 0 35 16	13% 60% 74% 79% 48% 22% 0% 18% 28% 0% 9% 31%		

Spectrum Analysis

Cisco DNA Center Intelligent Capture

- Layer 1
- Provides a view of real energy on a channel
- Identify interferers of all types
- Critical part of the "big picture"

iOS Wi-Fi Diagnostics with iOS

10:42 🕫 Search	·	
ancel	Install Profile	Install
	FiFi Performance Diagnostics	
Signed by	AppleCare Profile Signing Certificate	
	Enable WiFi daemon and driver diagno Internal Settings Logging Settings Unknown Payload	ostic mode
More Det	ails	>
	Remove Downloaded Profile	

g Diagn	ostics
BSSID	aa:17:d8:ff:e8:3f
Channel	149 (40MHz)
Signal Strength	-46 (Strong)
Channel utilization is low.	
Security	WPA2 Personal
Captive	No
Deployment	Multi AP
Motion	Moving
CONNECTIVITY	
Gateway	9ms
Internet	47ms
Responsiveness	Test
COEXISTENCE	
AWDL Mode	Inactive
Bluetooth	Idle
Scan	Inactive

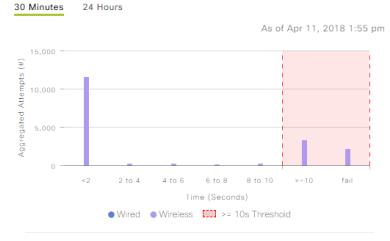
Diagnostics Profile for installation on iOS devices extends on-device WiFi diagnostics capabilities

More Info:

https://tidbits.com/2022/04/22/use-applesnetworkquality-tool-to-test-internetresponsiveness/

Profile Download:

https://developer.apple.com/servicesaccount/download?path=/iOS/iOS_Logs/MegaWifiP rofile.mobileconfig


Note: Profile auto-expires after 7 days and must be re-installed when needed

Cisco DNA Center Assurance

Broad applicability to High Density deployments

Client Attempts by Onboarding Times

- iOS Analytics
- Detailed client onboarding analysis
- Aironet Active Sensor support
- Intelligent Capture
- Network Time Travel

...and much more!

View Details

https://clnv.s3.amazonaws.com/2018/usa/pdf/BRKEWN-2034.pdf

Key Takeaways

- Design the RF environment with appropriate antennas and sensible physical placements
- Employ HD-focused WLC feature configurations such as RF Profiles for more flexible and robust designs
- Understand the key outside factors that may impact a live HD WLAN, including enemies of performance
- Get comfortable with Wi-Fi analysis and optimization tools to make informed, data-driven decisions

Fill out your session surveys!

Attendees who fill out a minimum of four session surveys and the overall event survey will get **Cisco Live-branded socks** (while supplies last)!

Attendees will also earn 100 points in the **Cisco Live Challenge** for every survey completed.

These points help you get on the leaderboard and increase your chances of winning daily and grand prizes

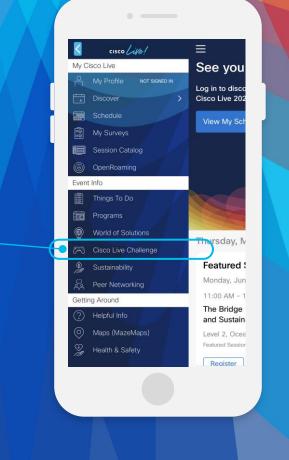
Continue your education

- Visit the Cisco Showcase
 for related demos
- Book your one-on-one Meet the Engineer meeting
- Attend the interactive education with DevNet, Capture the Flag, and Walk-in Labs
- Visit the On-Demand Library for more sessions at <u>www.CiscoLive.com/on-demand</u>

Thank you

#CiscoLive

Cisco Live Challenge


Gamify your Cisco Live experience! Get points for attending this session!

How:

- Open the Cisco Events App.
- Click on 'Cisco Live Challenge' in the side menu.
- Click on View Your Badges at the top.
- Click the + at the bottom of the screen and scan the QR code:

cisco live!

Let's go

#CiscoLive