Let's go cisco live! #CiscoLive

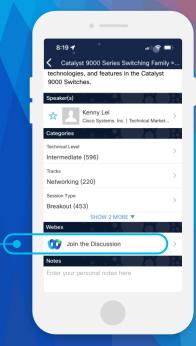
400G to Terabit Optics

What you need to know!

Mark Nowell, Cisco Fellow Errol Roberts, Distinguished Architect

BRKOPT-2699

Cisco Webex App


Questions?

Use Cisco Webex App to chat with the speaker after the session

How

- 1 Find this session in the Cisco Live Mobile App
- 2 Click "Join the Discussion"
- 3 Install the Webex App or go directly to the Webex space
- 4 Enter messages/questions in the Webex space

Webex spaces will be moderated by the speaker until June 9, 2023.

https://ciscolive.ciscoevents.com/ciscolivebot/#BRKOPT-2699

Agenda

- The current state of 400G market adoption
- Successfully deploying 400G
 - Considerations and challenges
- Going beyond 400G
 - New Implementations
 - New Technology
- Where are the standards going?
- Conclusion

Acknowledgements: This presentation would not exist without the inputs, expertise, and patience of many of our Cisco colleagues!

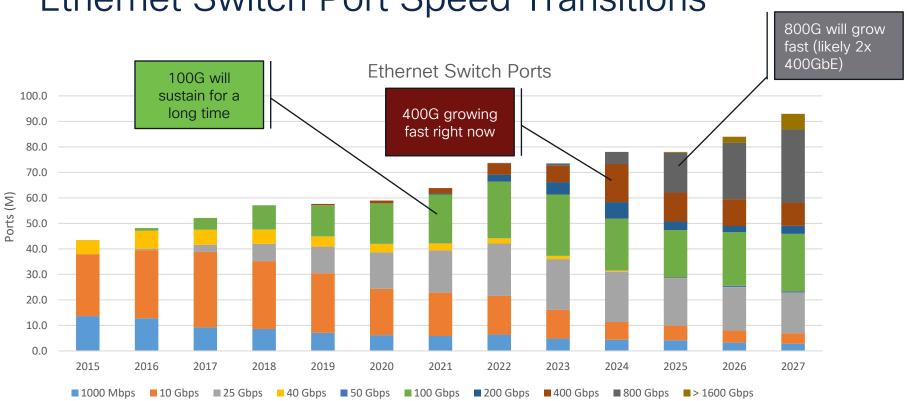
Market dynamics

Network operator top of mind

Increasing capacity and sustainability

Preserve investments in existing optics infrastructure and cabling

Simplify operations and management of optical links



Preparing for capacity expansion

Ethernet Switch Port Speed Transitions

Source: Dell'Oro's Ethernet Switch - Data Center 5 Year Forecast Report 2023-2027

BRKOPT-2699

Market segments adopting higher speeds

Hyperscalers

100G/400G/800G fabrics
Al/ML compute clusters
Disaggregation

Webscalers

Scale-out fabrics
25/50/100G server NICs
Vendor NOS supporting open,
API-based automation

400G/800G

Enterprise

High performance IO AI/ML compute clusters Automation/ Monitoring

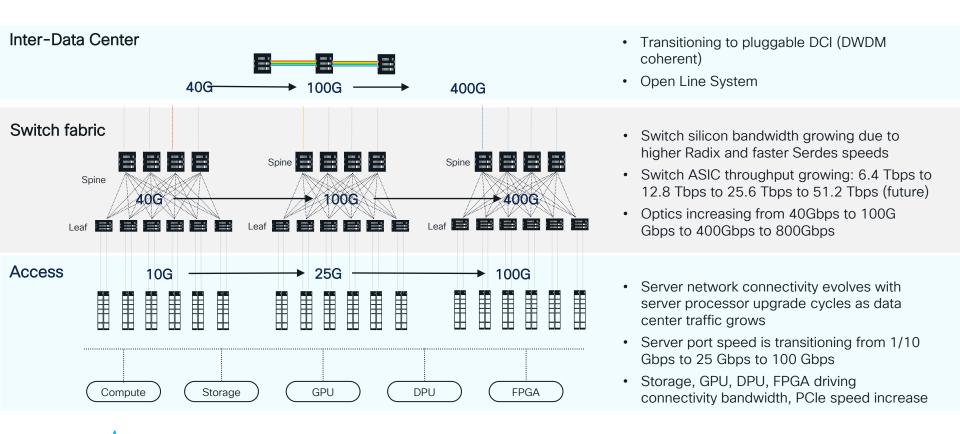
Media providers

Fabric for Media (IPFM)

8K uncompressed video driving
100G endpoints

Need for 400G uplinks

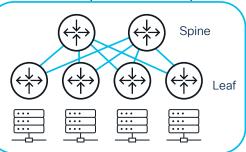
Telco service providers


100G/400G fabrics

Space constrained SP DC and edge locations

Ready for NFV/5G adoption cycle

cisco life!


Speed evolution in the data center

Why move to higher speeds? 400G → 800G example (same is true for 100G→ 400G)

25.6T user capacity using multiple switches with 12.8T ASICs (32x 400 GbE)

50 Gb/s ASIC IO (SerDes) 64 ports of 400GbE (256 ports of 100 GbE)

~3000 Watts 26,280 kWh/year

25.6T user capacity using single switch with 25.6T ASIC (32x 800 GbE)

Up to 87%Energy Savings

83% less space/fans

100 Gb/s ASIC IO (SerDes) 32 ports of 800G (64 ports of 400 GbE 256ports of 100 GbE)

~400 Watts 3,504 kWh/year

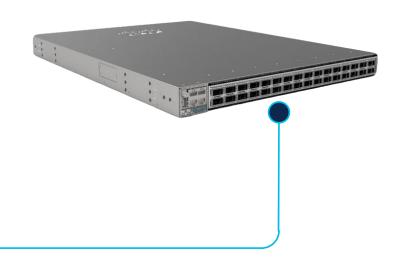
Current state of 400G optics

Cisco and 400 GbE Industry Activities

Standards	IEEE 802.3bs	400 GbE & 200 GbE MAC & Initial Interfaces 50 GbE MAC & Interfaces (also 100 GbE & 200 GbE PMDs) 400 GbE MMF (BiDi and SR8) Extended reach (40km) 50 GbE, 200 GbE, 400 GbE 100GbE Coherent 80km 100G-FR, 100G-LR, 400G-FR4, 400G-LR4-6 100GE serdes 100/200/400GE MMF (100Gb/s short wavelength)
	OIF400ZR ✓ / 802.3cw disco	400 GbE Coherent 120km / 400 GbE Coherent 80km
	802.3df	200G/400G/, 800G Ethernet Task Force @ 100Gb/s per lane
	802.3dj	200G/400G/800G/1.6T Ethernet Task Force @ 200Gb/s per lane
	802.3dk	Greater than 50 Gb/s Bidirectional Optical Access PHYs Task Force.
MSAs*	100G Lambda MSA 🔽	100G-FR, 100G-LR, 400G-FR4, 400G-LR4
	QSFP-DD MSA	400G/800G/1.6T Form factor
	OSFP MSA Illulia	400G/800G/1.6T Form factor
	SFP-DD MSA ✓	100G Form factor
	DSFP MSA.	Alternative 100G Form Factor (Mobile)
	400G-BiDi MSA	400 GbE MMF BiDi

^{*} Multi-Source Agreements - new ones all the time. Not all get wide industry adoption

Flexibility of 400G pluggable modules


Copper cables

Multimode Fiber – 100m

Single Mode Fiber inside DC – 500m & 2km

Single Mode Fiber Campus – 10 km

Outside plant, DCI – 100-1000 km

BRKOPT-2699

400 GbE modules and use cases Full portfolio of interfaces available for use

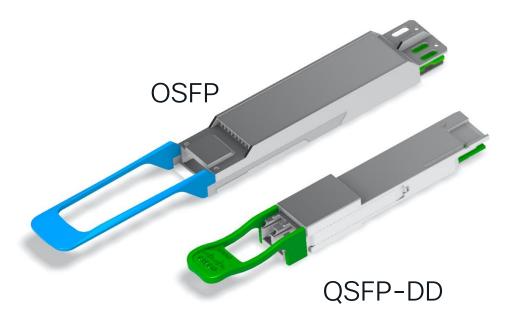
Distance					
Dist	3+ m	100 m	500m-2km	10 km	100+ km
Optics	400G-CR8 8x 50G-CR 400G-AOC(30m)	400G-SR8 400G-SR4.2 400G-DR4	400G-DR4 400G-FR4 4x100G-FR	400G-LR4 4x100G-LR	400ZR 400ZR+
Media	Copper Cables / AOC (Active Optical Cable)	MMF / SMF	SMF	SMF	SMF

What innovations did 400G bring?

New pluggable required to support 400G ports (8-wide)

New Pluggables (QSFP-DD)

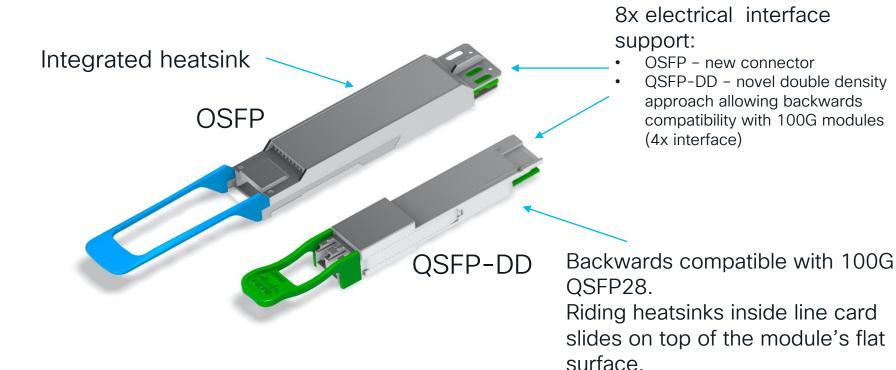
New Modulation: PAM4 (& FEC) Higher speed interfaces adopted PAM4 modulation. Ubiquitous use of FEC.


Long reach
coherent without
any system port
density reduction
→ Routed Optical
Networking

Pluggable Coherent: 400ZR/ZR+ Adoption (stds) of Breakout

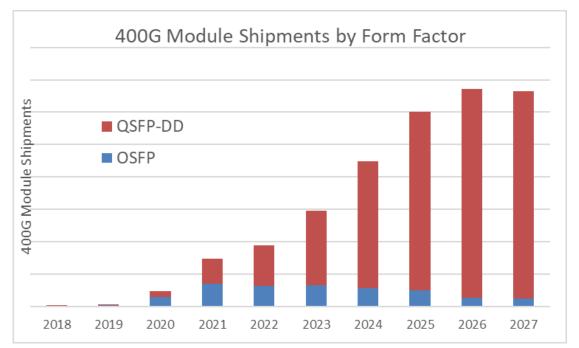
Pluggable modules supporting multiple lower speed interfaces

400G Optical Modules: QSFP-DD or OSFP



Initiated by Cisco, QSFP-DD was proven to address all the technical and market requirements for a successful 400 GbE roll-out.

QSFP-DD is supported by every system vendor and module vendor. Drives economies of scale.


Ultimately, both modules meet all technical requirements (power, cooling, signal integrity). Differences are in alignment to market needs.

400G Optical Modules: QSFP-DD or OSFP

Market share and forecast: QSFP-DD vs OSFP

LightCounting Mega Datacenter Report Database , Aug 2'22

QSFP-DD Dominates 400G

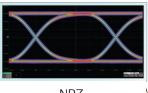
Two phases in module adoption:

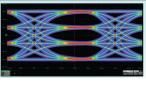
- 1. Early (Hyperscaler) adoption
- 2. Broad market adoption

QSFP-DD's backwards compatibility is the key factor to explain wide adoption

BRKOPT-2699

Technologies used for 400G optics


Enabling higher performance but lowering cost


Modulation

Client optics

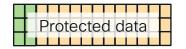
Coherent

optics

NRZ 1 bit/sec/symbol

Coherent QPSK 2 bit/sec/symbol

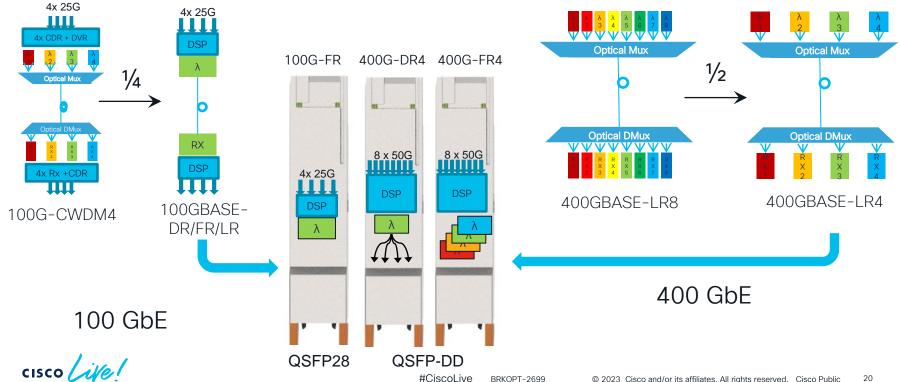
PAM4 2 bit/sec/symbol


Coherent 16-QAM 4 bit/sec/symbol

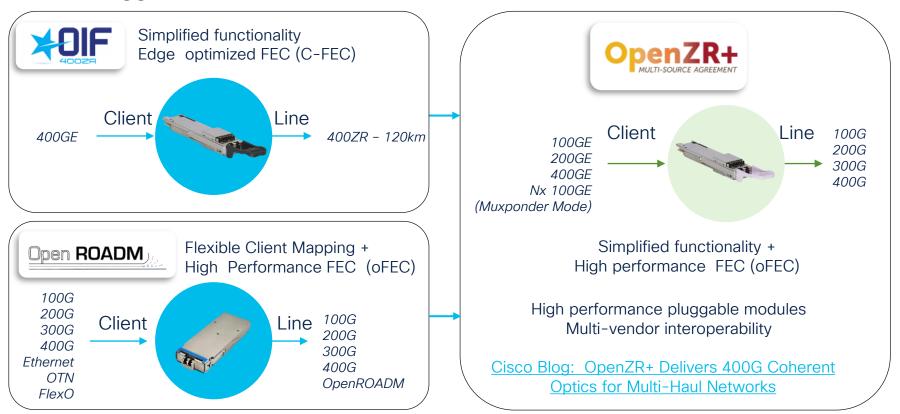
Using more complex modulation allows us to increase the data rate (Gb/s) without increasing the signaling speed (Gbaud)

Forward Error Correction (FEC)

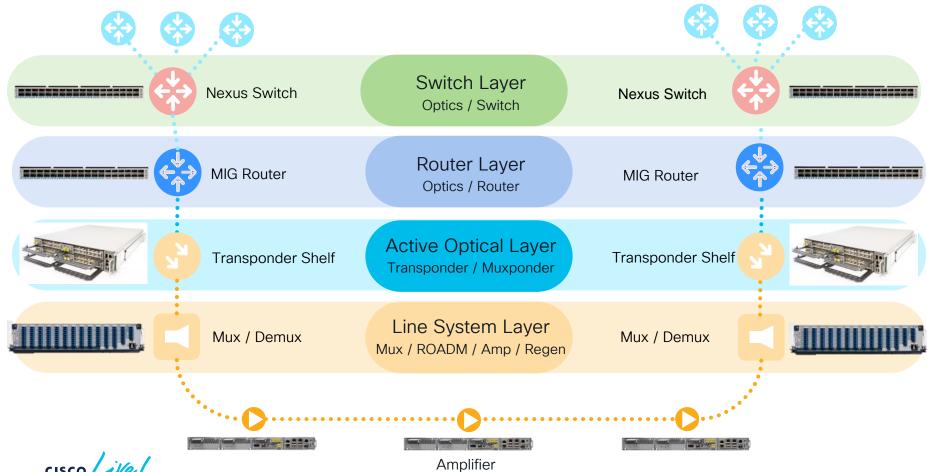
Allows correction of errors at receiver


Enables use of relaxed specs (saves \$) to get same performance or enables much higher performance.

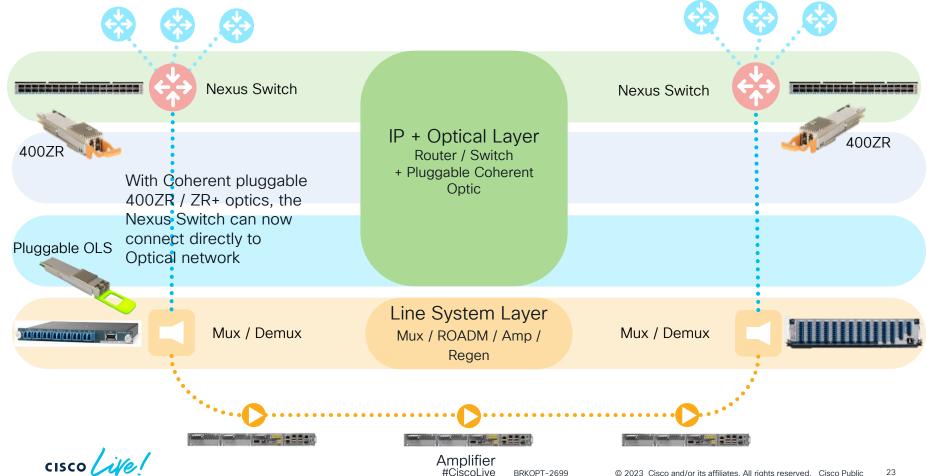
Usually embedded in Ethernet switch ASIC

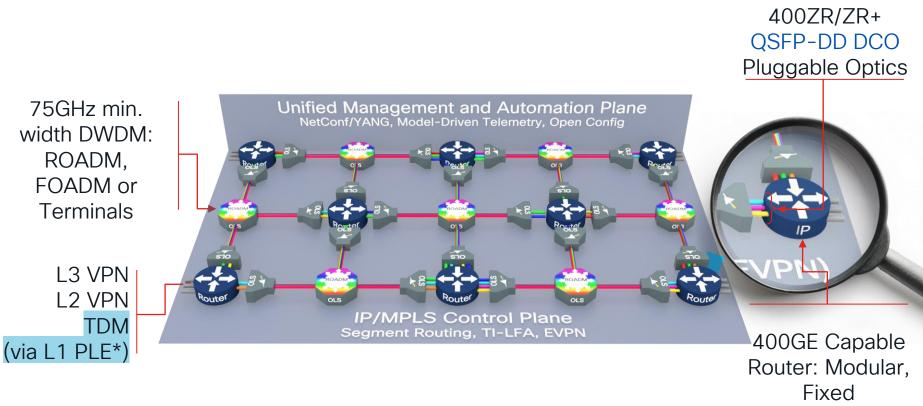

100 Gb/s per wavelength optics

Simplifying 100 GbE and 400 GbE


Standardization

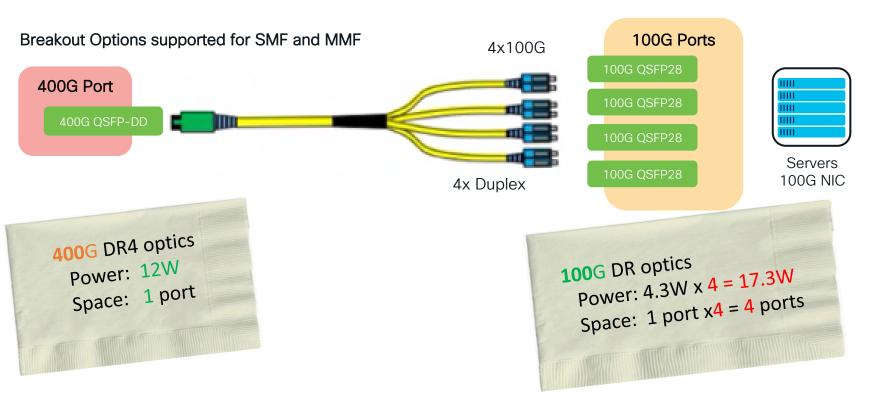
400G Pluggable Coherent - 100+ km to 1000+ km




Traditional DCI Network Architecture

Coherent Pluggable enables a simplified Network Architecture

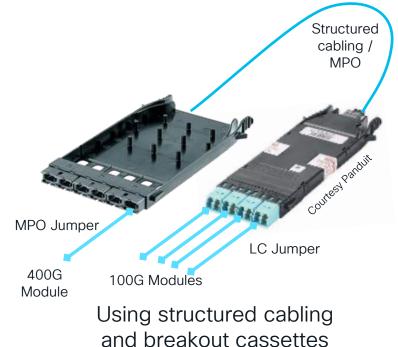
Coherent pluggable enabling Routed Optical Networking

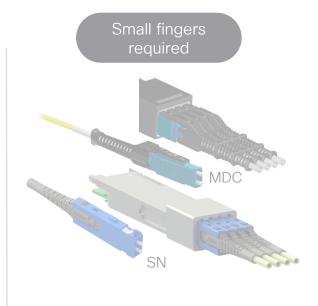


*PLE: Private Line Emulation

Breakout: 400G to 100G connectivity

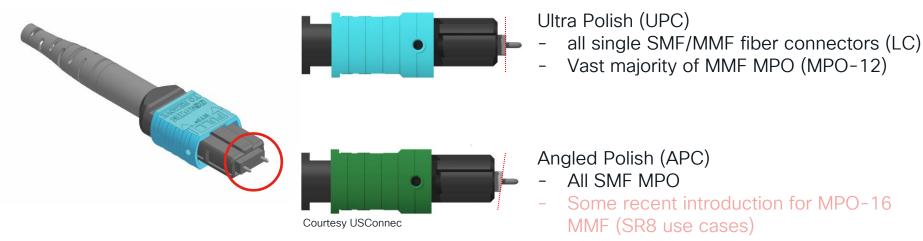
Maximize port efficiency + forward compatibility with 100G single lambda



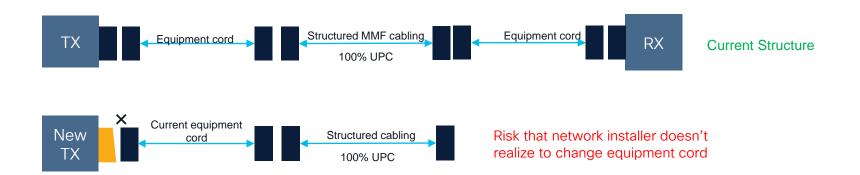


Deploying Breakout

Multiple options exist



New dense VSFF connectors in module nose


Deployment considerations:
Multi-fiber (MPO) connectors: Angled (APC) vs flat polish (UPC)

Some recent 400G MMF specs defined use of MPO APC. Awareness will prevent deployment issues

APC vs UPC deployment usage in MMF

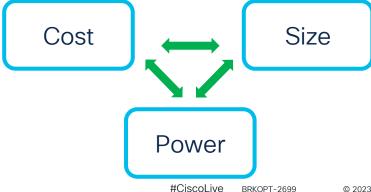
- Incorrect mismatch of PC and APC results in out of spec fiber plant (air gap). Damage risk exists
- MMF modules with APC is limited to MPO-16 based connectors and are being used in Hyperscaler environments for SR8 optics
- Everywhere else uses MPO-12 based connectors using UPC

400G summary

400G pluggable technology is mature today. Standards are complete.

400G brought a lot of innovation that will be extended into next gen

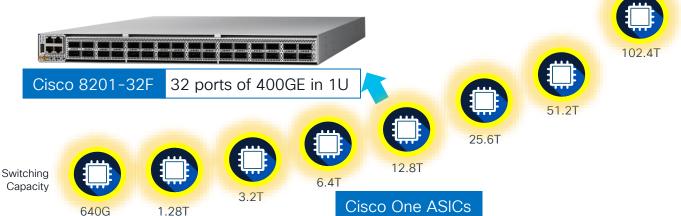
- New QSFP-DD form factor(s) capable of supporting high density at all reaches. Backwards compatible with 100G QSFP28
- High-speed PAM4 optics. Higher integration, lower cost
- Coherent pluggable: 400ZR and 400ZR+ Enables Routed Optical Network architectures
- Mainstream adoption of breakout
 - 400G module as 4x100G (SMF) or 8x 50G (MMF). DAC too.
 - Some deployment considerations with breakout

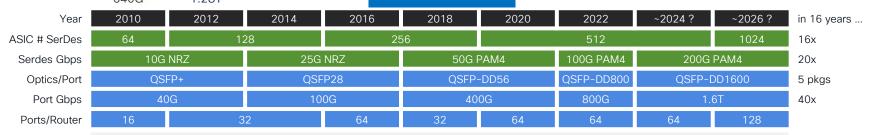


Beyond 400G pluggable and 400 GbE

The function of optics

- The only function of Optics is to extend the interfaces from one ASIC/Switch to another
- Therefore, it is the ASIC roadmaps which primarily matter, and the role of optics is to keep up - without causing too many issues
- Unfortunately, optics does have challenges that affect what can be built:




It's all about ASICs, SerDes, and Optics

← 204.8T is 16x the bandwidth of 12.8T

320x increase in switching bandwidth over 16 years

ASIC density continues to redefine how products are built. Gates & GHz. SerDes & Interconnect. Optics & wavelengths.

Optics (ports) follow ASIC roadmap

0)		
onfig	1 RU*	32p @ 800G
	I RU"	QSFP-DD800, OSFP _{800G}
0	2 RU 64p @ 400G QSFP112	64p @ 400G
×e		QSFP112

	1 RU	32p @ 1.6T
	I RU	1.6T pluggable
	2 RU	64p @ 800G
		QSFP-DD800, OSFP _{800G}

1 RU	32p @ 3.2T
	3.2T pluggable
2 RU	64p @ 1.6T
ZRU	1.6T pluggable

800G does not necessarily mean 800 GbE

25.6T

SERDES

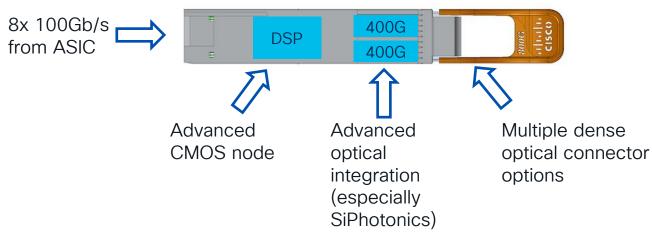
-ixed Configs

100G

X256

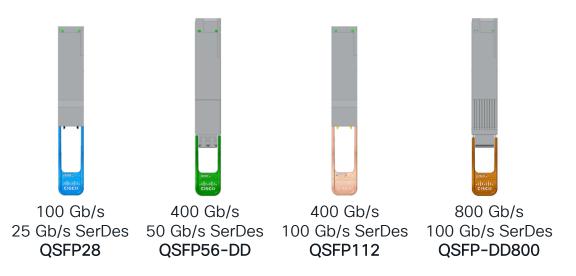
	1 RU	32p @ 800G
	I KU	QSFP-DD800, OSFP _{800G}
	2 RU	64p @ 400G
		QSFP112

25.6T ASIC roadmap and system density requirements drive to 800G ports


- Dominant interest in 800G module today is to support 2x 400 GbE breakout
- No immediate network need for 800 GbE
 - Although IEEE working on it (more later)
- 800G modules have the same issues:
 - Thermals and Signal integrity
 - Backwards compatibility?

QSFP-DD800 supporting dense 400 GbE (aka breakout)

QSFP-DD::


- 800G form factor enables an economical way to implement 400 GbE
 - Maximize the return on investment on the 400 GbE building blocks

Implementing Dense 400 GbE

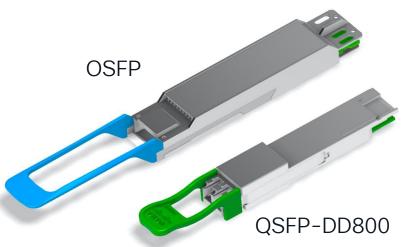
The QSFP module story continues

Powerful backwards compatibility

QSFP-DD800

Thermals

30W confirmed. No issues with any variant


Electrical

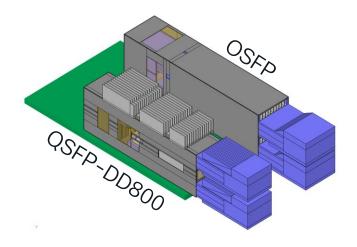
· 100 Gb/s confirmed

Integration

- Continued CMOS node migration:
 7nm → 5nm
- · SiPhotonics continues to mature

800G Optical Modules: QSFP-DD or OSFP (again)

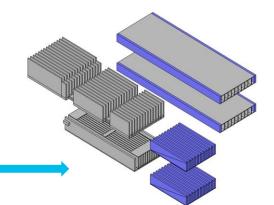
Both variants support all the technical requirements:


- 32 ports in 1 RU is feasible
- Electrical signal integrity @ 8x 100 Gb/s
- Thermal cooling capabilities up to 30W

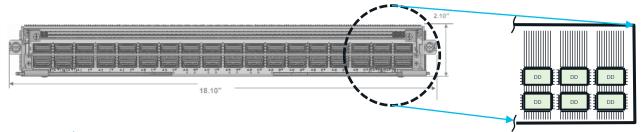
Breakout optical connector options¹

800G Optical Modules: QSFP-DD or OSFP (again)

Showing two modules inserted into upper and lower ports in a cage.

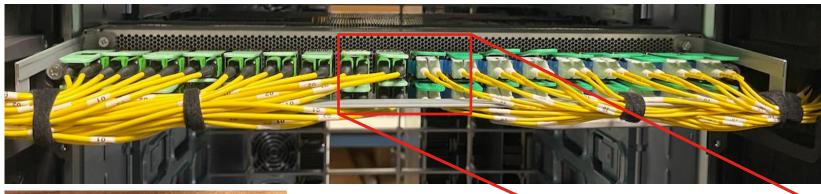

External heatsinks as part of cage (QSFP-DD) or integrated (OSFP)

800G Optical Modules: QSFP-DD or OSFP (again)


Removing modules and cages to just show the heatsink differences.

QSFP-DD based system can provide a much higher heatsink volume. Easier to cool.

Heatsink tradeoffs: QSFP-DD allows heatsinks to scale with thermal design need

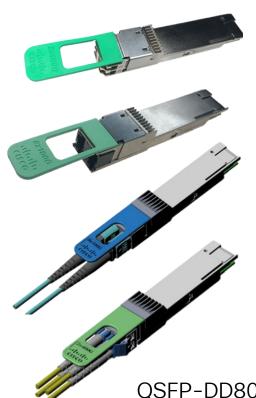

OSFP design was developed before coherent pluggable modules or 800G/1600G were considered viable

Every linecard can be optimally designed to match user needs

25.6T Systems using QSFP-DD800

1RU 32 port QSFP-DD800

2x400G Dual MPO Dual LC


Market adoption forecast for 800G modules

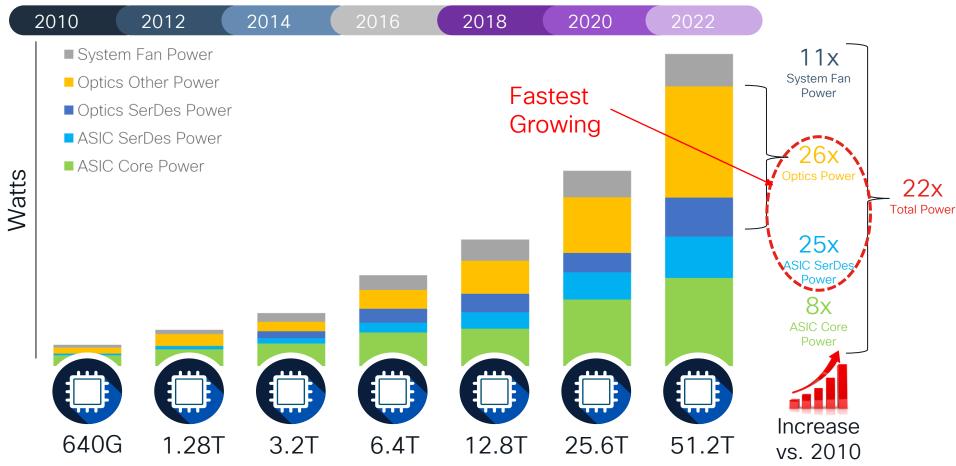
QSFP-DD800 **OSFP 800** 400G adoption X Market alignment **Backwards** Only to OSFP 400 Compatibility Thermal performance Fixed Adaptable Technical Electrical performance details equivalent 2x optical connector support

Expect QSFP-DD800 broad adoption

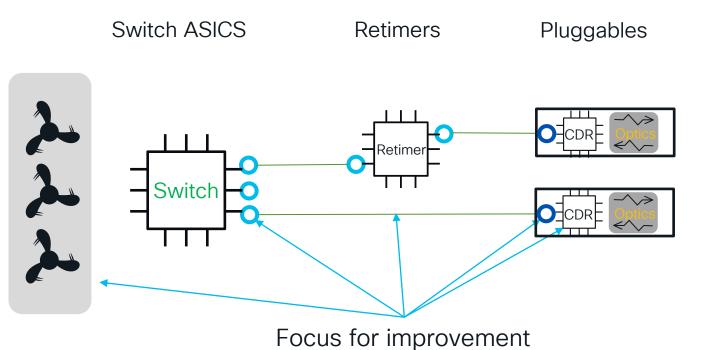
QSFP-DD800 Ready for the Next Generation

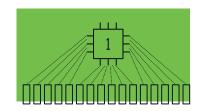
- Port is backward compatible to QSFP+, QSFP28, QSFP56, QSFP112, QSFP-DD
- Support 2x400G, 8x100G designs
- QSFP-DD will support over 30W of power dissipation
- Flexibility of a riding heatsink
- Increased heatsinking area for more power handling
- Wide variety of optical connector options
- Supports Dual MPO-12 & Dual Duplex LC to leverage existing cabling
- Availability of all variants is in progress
 - 8x 100 GbE (SMF and Copper Cables)
 - 2x 400 GbE (SMF and Copper Cables)
 - MMF still under investigation

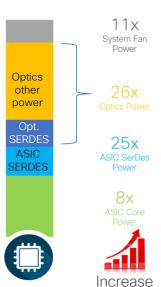
QSFP-DD800 leverages QSFP the industry's cornerstone high speed form factor for the next generation of networking equipment


What's next for optical interconnect?

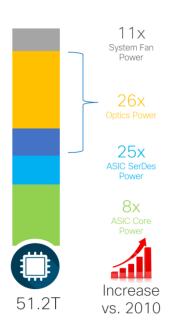
Going faster has some challenges

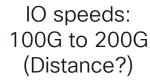


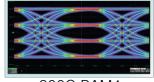



Relentless Advancement – 80x BW over 12 Years

Interconnect and power




51.2T

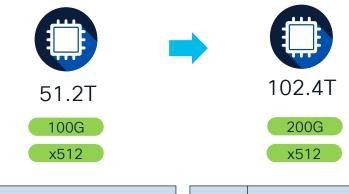

vs. 2010

Addressing > 800G

Growing power remains a challenge

200G PAM4

Is this the time for Co-packaged optics?



Can pluggables continue?

Requirements for 1.6T pluggable

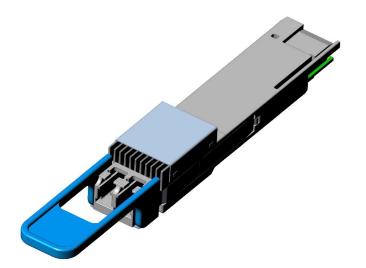
2x800 GbE, 4x400 GbE

1 RU	32p @ 1.6T	
1 RU	OSFP-XD _{1.6T}	_
2 DI I	64p @ 800G	
2 RU	QSFP-DD800, OSFP ₈₀₀	

1 RU	32p @ 3.2T
TRU	OSFP-XD _{3.2}
2 RU	64p @ 1.6T
Z RU	QSFP-DD1600 OSFP _{1.6T}

Same system design density and speed requirements with 200Gb/s SERDES.

 QSFP-DD and OSFP roadmaps will extend to 1.6T


New entrant (just to add to the mix)

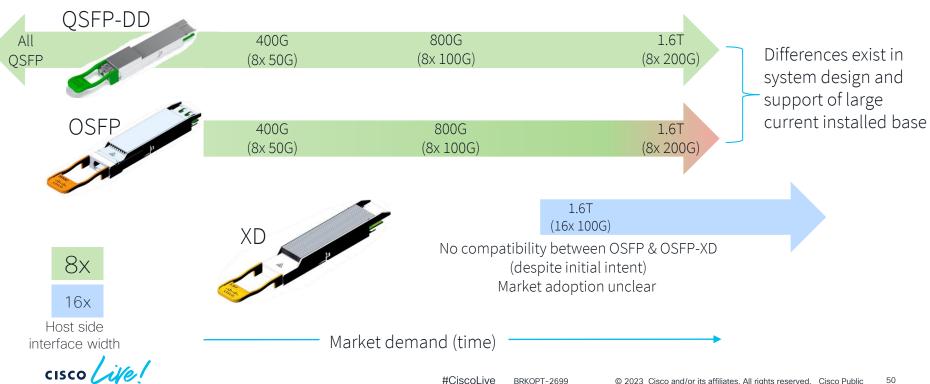
- OSFP-XD
 - New 16x100G connector
 - Despite name not compatible with OSFP
 - Solves the 51.2T 1RU "problem" but market shifting to 2RU
 - Some good design work that may be useful in future

#Ciscol ive

The good news: Clear path to QSFP-DD1600

QSFP-DD MSA already working on QSFP-DD1600

Module form factor allows innovation on:


- Connector optimization
- Cage design
- Heatsink and thermal design
- System design

QSFP28 → QSFP-DD → QSFP-DD1600

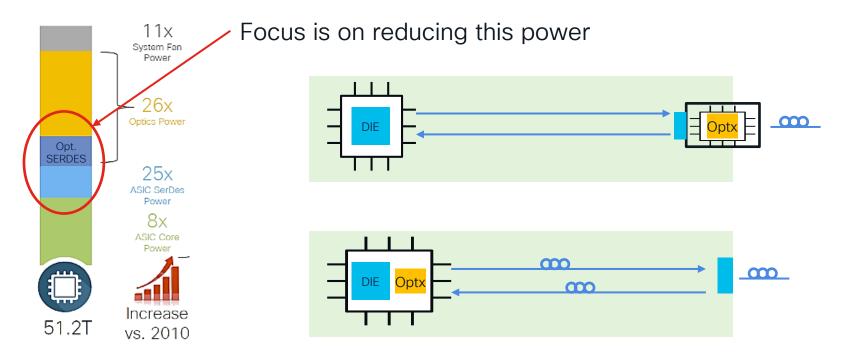
Path ahead

Pluggable optics roadmap continues and extends beyond 800G

Linear drive optics

Current (Retimed)

- DSP fully equalizes electrical & optical signals
- Enables broad interoperability
 - Host/Port/Module
- Full telemetry & loopbacks possible
- FEC Monitoring or Partitioning possible
- But this adds power


Linear (Non-retimed)

Chip

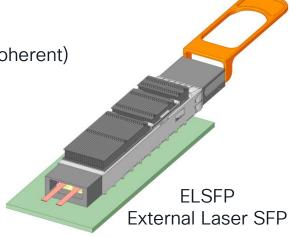
- Power reduction due to absence of equalization
- Performance is based on quality of every component in link (engineered link)
 - Optics, Serdes, PCB, connectors
 - Varies port to port
- Interoperability isn't "broad" any more
- No telemetry or loopback

Beyond Pluggable: Co-Packaged Optics

Beyond Pluggable: Co-Packaged Optics

Cisco 25.6T CPO system demonstrated @ OFC'23

• 25-30% power reduction

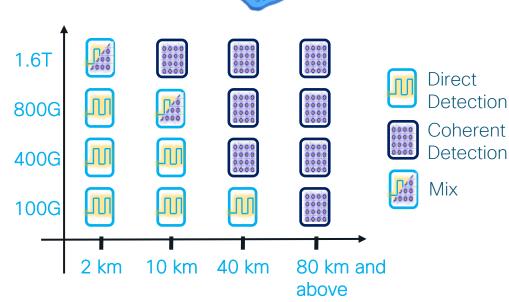


Fiber connectors

Optical power source (ELSFP)

Co-Packaged Optics

- Co-packaged (CPO) and Near-packaged (NPO) variants can provide power reductions. Silicon Photonics required.
- Some early industry standardization in flight. Goal to establish interoperable components → new "ecosystem"
- System configs would likely be:
 - 100% optics
 - 50% co-packaged optics / 50% pluggable ports (copper cables, coherent)
- Operational considerations:
 - Pluggable external laser power sources (reliability, thermals)
 - Reduced overall power
 - Reduced port flexibility



Maintaining reach at higher speeds

Direct Detect and Coherent technology will continue to be used

- 800G, 1.6T and beyond
- Coherent pushing towards shorter reaches.
 Not only in DWDM but also Grey applications
- Focus shifting from performance enhancements (\$\$\$) to interoperable interfaces and pluggables
- Coherent multivendor Interop more and more prevalent
 - 100G DWDM interop, OIF 400ZR, OpenZR+, OpenROADM, ITU SG15/Q11

Road ahead for Coherent MSA pluggable

Today **Future**

Expanding applications for 400G pluggables

50G SerDes 16-22W

Next-Gen 800G and 400G LH pluggables

50G/100G SerDes

22-30W

1.6T Coherent for DC, carrier networks

100G/200G SerDes

25-40W

Where are the standards going?

Cisco's Focus: Compatibility and Standards

- Network operators require compatibility as they transition and adopt next generation technologies
- Cisco focuses on standard interfaces as much as possible to enable these smooth transitions

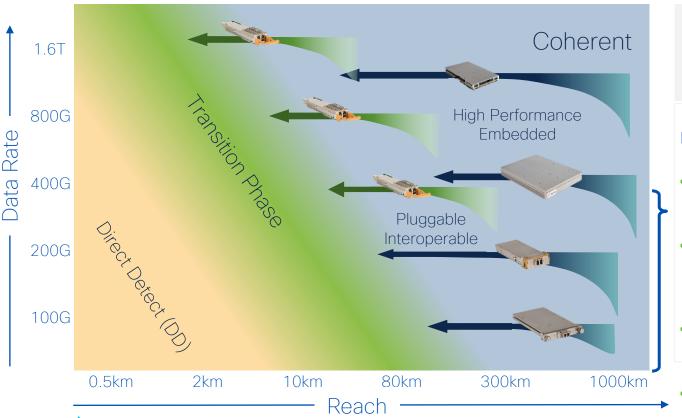
Standards Landscape

The interconnect industry is working to standardize what is needed. Standardization required to ensure interoperability

Optical Internetworking Forum

- Extending the 400ZR work
- 800ZR in definition (targets same application as 400ZR)
- New: 800LR shorter reach coherent (10km)
- Module management (CMIS)

IEEE 802.3df and 802.3dj


 The foundational Ethernet standards for 800 GbE and 1.6 TbE

Form factors

- Form factor MSAs as we have covered already:
 - QSFP-DD, OSFP-XD, OSFP
- OIF is working on copackaging implementation definitions

Coherent Technology Trends - Shorter Reaches

Edge applications driving transition towards shorter reach coherent solutions & industry standardization

Industry Momentum for Pluggable DCO Driven by Edge and Access

- OIF
 - Metro DCI 400ZR standard
 - •800LR 10KM in works
- IFFF
 - 100GbE & 400GbE beyond 80km reach
 - •800 GbE -10km & 40km
- CableLabs
 - Adopted 100G & 200G
 Coherent Access Standard
- Open ROADM
 - 100G/200G/300G/400G

IEEE 802.3df/3dj are working on 800 GbE and 1.6 TbE

Task Force underway. Initial specs being adopted.

Major themes:

- 1) 100 Gb/s based. (P802.3df)
 - 800 GbE based on an 8x 100 Gb/s approach (optical and electrical)
- 2) 200 Gb/s based (P802.3dj)
 - 800 GbE (4x 200 Gb/s) and 1.6 TbE (8x 200 Gb/s) (optical and electrical)
 - Will include 200 GbE and 400 GbE variations (useful for breakout)
- 3) Coherent solutions will be defined for 10 km and 40km
- 4) New standard reach 2km parallel SMF

802.3df & 802.3dj: Adopted Objectives

Ethernet Rate	Assumed Signaling Rate	AUI	Cu Cable	MMF 50m	MMF 100m	SMF 500m	SMF 2km	SMF 10km	SMF 40km	
200 Gb/s	200 Gb/s	Over 1 lane	Over 1 pair			Over 1 Pair	Over 1 Pair			
400 Gb/s	100 Gb/s						Over 4 Pair			
	200 Gb/s	Over 2 lanes	Over 2 pairs			Over 2 Pair				
800 Gb/s	100 Gb/s	Over 8 lanes	Over 8 pairs							
	200 Gb/s	Over 4 lanes	Over 4 pairs			Over 4 pairs	 Over 4 pairs Over 4 λ's 			
	800 Gb/s							Over 1 pair	Over 1 pair	
1.6 Tb/s	100 Gb/s	Over 16 lanes								
	200 Gb/s	Over 8 lanes	Over 8 pairs			Over 8 pairs	Over 8 pairs			ļ

Technology Reuse

802.3df

Leverage existing or work-inprogress 100 Gb/s per lane (e.g. 3cu, 3ck, 3db) to higher lane counts

802.3dj

Develop 200 Gb/s per lane electrical signaling for 1/2/4/8 lane variants of AUIs and electrical PMDs

Develop 200 Gb/s per optical fiber for 1/2/4/8 fiber based optical PMDs and 4 lambda WDM optical PMD

Coherent signaling technology

800 GbE/1.6 TbE Timelines

IEEE 802.3df and 802.3dj timelines

- 8x 100 Gb/s variants: Specifications mature now. Std complete mid-2024
- 4x 200Gb/s variants: Baselines adopted later this year, Std complete 2026
- Coherent variants: Baselines later this year, Std complete 2026

OIF is making good progress on standardizing 800G coherent for:

- ZR (~100km) estimated completion 1H'24
- LR (~10km) estimated completion 1H'25

Wrap up

Summary

- 400G forced a lot of innovation. Today the market is growing & the technology is mature
 - Wide adoption QSFP-DD pluggable form factor for non-coherent and coherent interfaces. Enables new network architectures (routed optical networking)
- 800G is building on that innovation fully using 100 Gb/s technology. Market is starting to deploy.
 - Power is a dominant challenge, Breakout becoming the norm (2x 400 GbE etc.)
 - Reuse existing fiber infrastructure
 - Continued backward compatibility with QSFP-DD800
- Beyond 800G prediction of the death of pluggables is premature
 - 1.6T → QSFP-DD1600 will continue to support.
 - New implementations under development (co-packaged, linear).
- IEEE defining next phase of foundational specifications today 800 GbE & 1.6 TbE

Fill out your session surveys!

Attendees who fill out a minimum of four session surveys and the overall event survey will get **Cisco Live-branded socks** (while supplies last)!

Attendees will also earn 100 points in the **Cisco Live Challenge** for every survey completed.

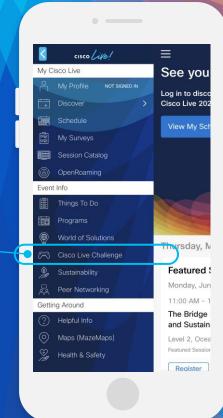
These points help you get on the leaderboard and increase your chances of winning daily and grand prizes

Continue your education

- Visit the Cisco Showcase for related demos
- Book your one-on-one Meet the Engineer meeting
- Attend the interactive education with DevNet, Capture the Flag, and Walk-in Labs
- Visit the On-Demand Library for more sessions at www.CiscoLive.com/on-demand

Thank you

Cisco Live Challenge


Gamify your Cisco Live experience! Get points for attending this session!

How:

- Open the Cisco Events App.
- 2 Click on 'Cisco Live Challenge' in the side menu.
- 3 Click on View Your Badges at the top.
- 4 Click the + at the bottom of the screen and scan the QR code:

Let's go cisco live! #CiscoLive