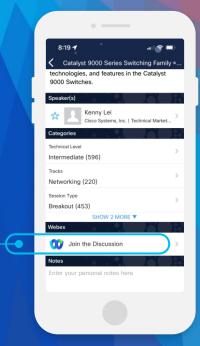
Let's go cisco live! #CiscoLive

Understanding and Troubleshooting Cisco SD-Access Layer 2 Virtual Network

Cheeho Yan, Sr. Technical Leader Howard Haifeng Zhang, TAC Technical Leader BRKTRS-2000

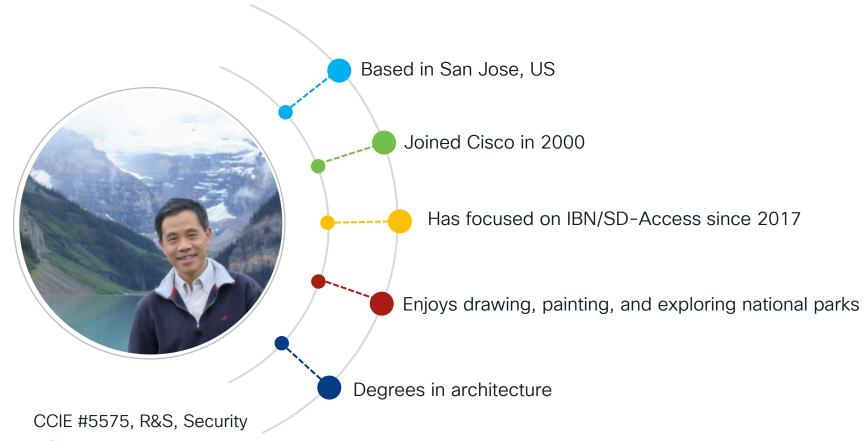
Cisco Webex App


Questions?

Use Cisco Webex App to chat with the speaker after the session

How

- 1 Find this session in the Cisco Live Mobile App
- 2 Click "Join the Discussion"
- 3 Install the Webex App or go directly to the Webex space
- 4 Enter messages/questions in the Webex space


Webex spaces will be moderated by the speaker until June 9, 2023.

https://ciscolive.ciscoevents.com/ciscolivebot/#BRKTRS-2000

Who is Cheeho?

Enabling Services to Meet Business Needs

Go-Kart Tracks

Free-fall Drop Slides

Business Requirement & Solution

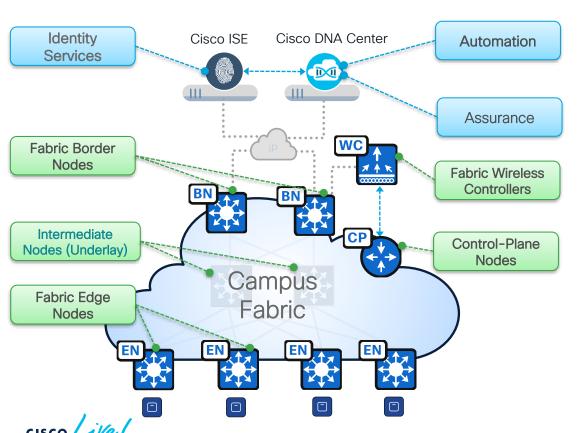
You have deployed or about to deploy SD-Access. You now have one of these new requirements:

- Endpoint entries into the network need to be controlled by a firewall outside the fabric
- Communication between endpoints in different VLANs inside the fabric needs to be inspect by a firewall for compliance
- Venders inside the fabric need to be in their private networks

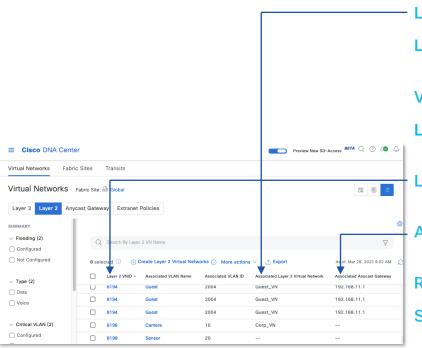
Solution

Layer 2 Virtual Network
(Gateway Outside the Fabric)

Agenda


- Understanding Layer 2 Virtual Network
- Same Segment Forwarding without Flooding
- Same Segment Forwarding with Flooding
- Configuring Layer 2 Virtual Network
- Troubleshooting
- IP-Directed Broadcast
- Design and Implementation Best Practices

Understanding Layer 2 Virtual Network



SD-Access Fabric Roles

- Network Automation Simple GUI and APIs for intent-based Automation of wired and wireless fabric devices
- Network Assurance Data Collectors analyze Endpoint to Application flows and monitor fabric network status
- Identity Services NAC & ID Services (e.g. ISE) for dynamic Endpoint to Group mapping and Policy definition
- Control-Plane Nodes Map System that manages Endpoint to Device relationships
- Fabric Border Nodes A fabric device (e.g. Core) that connects External network(s) to the SD-Access fabric
- Fabric Edge Nodes A fabric device (e.g. Access or Distribution) that connects Wired Endpoints to the SD-Access fabric
- Fabric Wireless Controller A fabric device (WLC) that connects Fabric APs and Wireless Endpoints to the SD-Access fabric

Terminology

L3 VN - Layer 3 Virtual Network, analogous to a VRF in SD-Access

L2 VN - Layer 2 Virtual Network, a virtual switching domain in SD-Access. It is analogous to a VLAN in a traditional network

VNI - Virtual Network Identifier (VXLAN)

L3 VNI - Layer 3 Virtual Network Identifier; as used in SD-Access fabric, a VRF

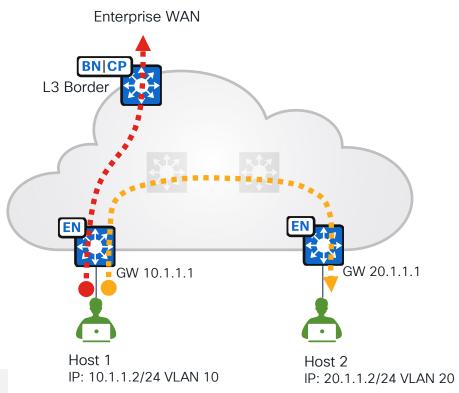
L2 VNI - Layer 2 Virtual Network Identifier; as used in SD-Access fabric, a VLAN

Anycast L3 Gateway – A common gateway used at Edge nodes. It is instantiated as a Switched Virtual Interface (SVI)

RLOC – Routing Locator (LISP)

Silent Host – A Device that does not announce their presence to the network

Sleeping Host – A Device that can move into power-save mode

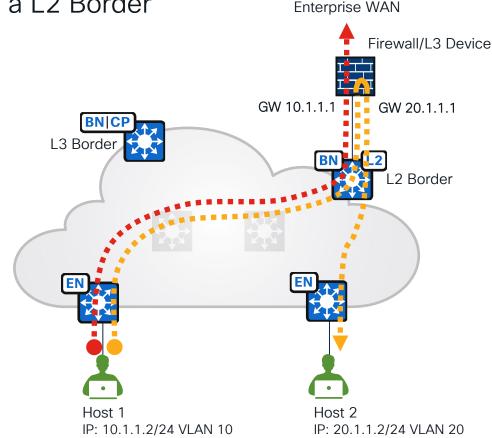


Layer 3 Virtual Network

- Anycast gateway for the endpoints is on the Edges (SVI)
- Anycast gateway config is automated
- Traffic towards WAN passes through L3 Border(s)
- IP address pools are defined in Cisco DNA Center
- Unless configured, L2 flooding is disabled and broadcast, unknow unicast, and multicast (BUM) traffic is not flooded across fabric

Typical Use Cases

• Typical client segments in enterprise networks


Layer 2 Virtual Network

Gateway Outside the Fabric with a L2 Border

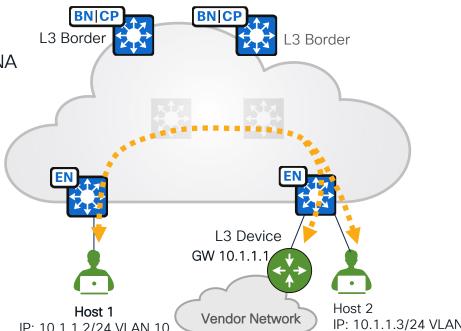
- Gateway for the subnets can be a firewall or a L3 device connected to a L2 Border
- Gateway configs are not covered by Cisco DNA Center
- Traffic towards enterprise WAN passes through L2 Border(s)
- Firewall as the Gateway can inspect inter-VLAN and traffic exiting fabric
- L2 flooding is enabled hence BUM traffic is flooded across fabric

Typical Use Cases

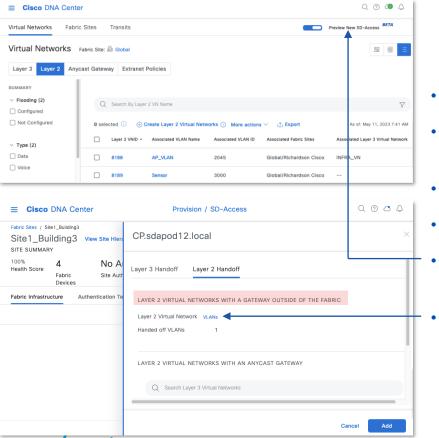
- OT (Operational Technology) segments
- IoT segments
- BMS (Building Management Systems) segments

Layer 2 Virtual Network

Gateway Outside the Fabric without a L2 Border


- Endpoint traffic does not exit to enterprise WAN
- A L2 Border is not required
- Vendors can optionally use a private Gateway connected to the Edge for their networks
- Gateway configs are not covered by Cisco DNA Center
- L2 flooding is enabled hence BUM traffic is flooded across fabric

Typical Use Cases


- Airport shop/restaurant segments
- Shopping mall store segments
- Trade show vendor segments

Enterprise WAN

Layer 2 Virtual Network Feature Overview

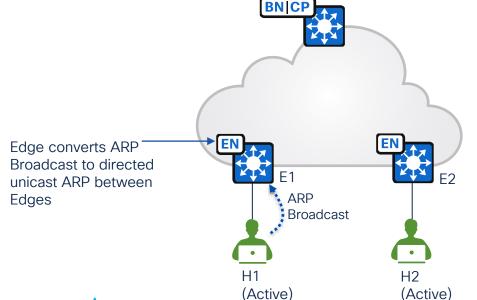
- Feature was introduced in Cisco DNA Center 2.3.3.x
- Wireless support was introduced in 2.3.5.x & IOS-XE 17.10.x
- Does not require a L3 VN
- Removes the overhead of L3 VN association
- Turn on "Preview New SD-Access" to start the L2 VN creation workflow
- VLAN is listed under "LAYER 2 VIRTUAL NETWORKS WITH A GATEWAY OUTSIDE OF THE FABRIC" during Border L2 handoff configuration

L3 VN and L2 VN Comparison

	Layer 3 Virtual Network	Layer 2 Virtual Network	
VNI (Virtual Network Interface)	L3 VNI + L2 VNI	L2 VNI	
Flooding of BUM traffic (by default)	No	Yes	
Gateway	On the fabric Edge (SVI)	Outside the fabric / None	
In-Fabric Inter-VLAN traffic and traffic exiting fabric inspected by firewall	No	Yes (When FW is used as gateway)	
IP address pools configured in Cisco DNA Center	Yes	No	
Same subnet/VLAN endpoint Scale	Very scalable	Number of endpoints in a L2 VN should be limited	
Use Cases	Suitable for segments for most enterprise deployments	 Private isolated VLANs Broadcast is required in a VLAN Gateway needs to be on the firewall 	

BRKTRS-2000

Same Segment Forwarding without Flooding


Forwarding without Flooding

Host Tracking Database

Host Entry (IP) Host Entry (MAC) Location

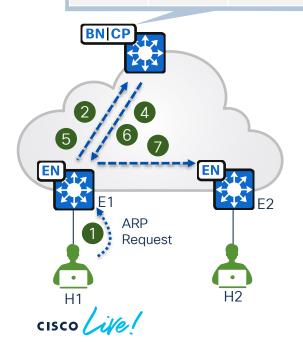
H1 IP H1 MAC E1

H2 IP H2 MAC E2

- Typical in unicast endpoint communication in L3 VN segments as well
- Control Plane node keeps track of active hosts' MAC and IP addresses in the Host Tracking Database for forwarding
- Edge suppresses broadcasts
- BUM traffic is not flooded

Packet Flow

3


H1 Communication with H2

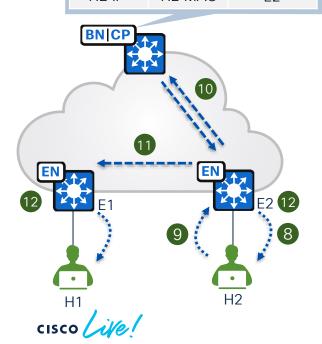
Host Tracking Database

Host Entry (IP) Host Entry (MAC) Location

H1 IP H1 MAC E1

H2 IP H2 MAC E2

- 1 H1 sends ARP request broadcast for H2's MAC address
- 2 E1 intercepts ARP broadcast and contacts CP for H2's address
- 3 CP finds H2's MAC to IP binding in its host tracking database
- 4 CP replies to E1 with H2's MAC address
- 5 E1 gets H2's MAC address and consults CP for the location of H2
- 6 CP replies with H2's location information. E1 installs H2 into its MAP-cache
- 7 E1 coverts ARP broadcast from H1 to a directed unicast and sends it to E2 in the overlay encapsulating it with the L2 VNI

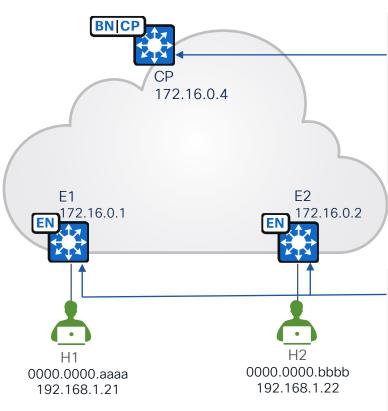

Assumptions:

- Edges do not have remote endpoints in their MAP-cache nor MAC tables initially
- Control Plane node has H1 and H2 in its host tracking database

Packet Flow

H1 Communication with H2

Host Tracking Database Host Entry Host Entry Location (IP) (MAC) H1 IP H1 MAC E1 H2 MAC H2 IP E2



- E2 decapsulates the ARP request and forwards it to H2
- H2 unicasts the ARP response for H1 to E2
- E2 requests and receives from CP the location of H1. E2 installs H1 into its MAP-cache
- E2 sends the ARP response to E1. E1 forwards it to H1
- E1 and E2 use their MAP-cache and the L2 VNI to forward to destination nodes

Assumptions:

- Edges do not have remote endpoints in their MAP-cache nor MAC tables initially
- Control Plane node has H1 and H2 in its host tracking database #CiscoLive

Initial State

Control Plane has in its host tracking database the IP & MAC addresses of the active endpoints and RLOCs

```
CP#show lisp instance-id 8191 ethernet server
Site Name Last
                   Uр
                          Who Last
                                           Inst EID Prefix
         Register
                          Registered
site uci never
                                           8191 any-mac
                   yes# 172.16.0.1:31397 8191 0000.0000.aaaa/48
         00:00:47
                        172.16.0.2:24161 8191 0000.0000.bbbb/48
         00:01:10 yes#
CP#show lisp instance-id 8191 ethernet server address
L3 InstID
            Host Address
                                Hardware Address
    4099
            192.168.1.21/32
                                0000.0000.aaaa
            192.168.1.22/32
    4099
                                0000.0000.bbbb
```

Edges only have the directed connected endpoints in its local database

E1#show device-tracking database								
	Network Address	Link Layer Address	Interface	vlan	age	state	Time	
DH4	192.168.1.21	0000.0000.aaaa	Te1/0/23	1191	146s	REACHABLE	105s	
L	192.168.1.1	0000.0c9f.f8a0	V11191	1191	1500mn	REACHABLE		
E O #	show device-tracl	ring database						
L2#		-	_	_				
	Network Address	Link Layer Address	Interface	vlan	age	state	Time	
ARP	192.168.1.22	0000.0000.bbbb	Gi1/0/47	1191	125s	REACHABLE	126s	
L	192.168.1.1	0000.0c9f.f8a0	V11191	1191	1291mn	REACHABLE	1	

1 H1 wants to communicate to H2. Since they are in the same subnet, H1 sends ARP request broadcast for the MAC address of H2

```
E1#debug arp snooping
Arp Snooping debugging is on

Apr 7 09:00:49.619:
ARP Packet (Te1/0/23/1191)
Src: 0000.0000.aaaa,
Dst: ffff.ffff.ffff,
SM: 0000.0000.aaaa,
SI: 192.168.1.21,
TM: 0000.0000.0000,
TI: 192.168.1.22
```

```
Ethernet II, Src: 00:00:00:00:aa:aa, Dst: ff:ff:ff:ff:ff

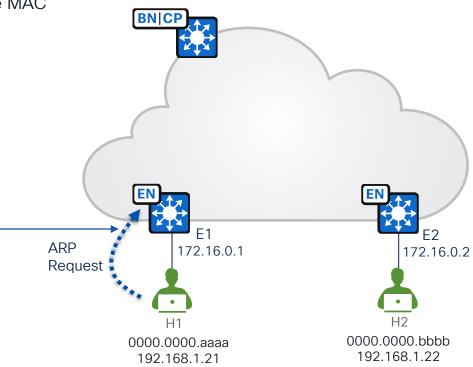
Address Resolution Protocol (request)

Hardware type: Ethernet (1)

Protocol type: IPv4 (0x0800)

Hardware size: 6

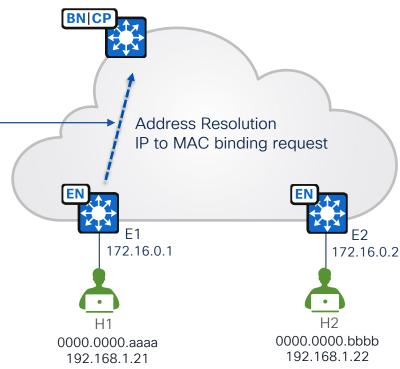
Protocol size: 4


Opcode: request (1)

Sender MAC address: 00:00:00:00:aa:aa

Sender IP address: 192.168.1.21

Target MAC address: 00:00:00:00:00:00


Target IP address: 192.168.1.22
```


BRKTRS-2000

2 E1 intercepts the ARP broadcast and contacts Control Plane node for MAC address of H2

```
E1#debug lisp control-plane map-cache
LISP[REMT ]-0: Map Request: Sending request for IID 8191 EID
             192.168.1.22/32, requester 'AR'.
▶ Internet Protocol Version 4, Src: 172.16.0.1, Dst: 172.16.0.4
▶ User Datagram Protocol, Src Port: 4342, Dst Port: 4342
▶ Locator/ID Separation Protocol
▶ Internet Protocol Version 4, Src: 192.168.1.22, Dst: 192.168.1.22
▶ User Datagram Protocol, Src Port: 4342, Dst Port: 4342
△ Locator/ID Separation Protocol
    0001 .... = Type: Map-Request (1)
  .... = Reserved bits: 0x000
    .... .... .... .... 0 0000 = ITR-RLOC Count: 0
    Record Count: 1
    Nonce: 0xc006a6cd3b58983c
    Source EID AFI: Reserved (0)
    Source FTD: not set
  TTR-RIOC 1: 172.16.0.1
  Map-Request Record 1: Unknown LCAF Type (53)/32
```

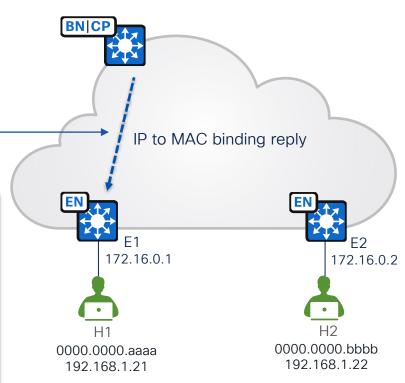

3 Control Plane node consults its Host Tracking Database and finds the IP to MAC binding for H2

Control Plane State

CP#show lisp instance-id 8191 ethernet server Who Last. Inst EID Prefix Site Name Last Uр Registered ID Register site uci never 8191 any-mac 00:00:47 172.16.0.1:31397 8191 0000.0000.aaaa/48 ves# 172.16.0.2:24161 8191 0000.0000.bbbb/48 00:01:10 yes# CP#show lisp instance-id 8191 ethernet server address Host Address L3 InstID Hardware Address 4099 192.168.1.21/32 0000.0000.aaaa 4099 192.168.1.22/32 0000.0000.bbbb

BRKTRS-2000

4 Control Plane node replies back to E1 with the MAC address of H2


```
CP#debug lisp control-plane map-resolver
LISP[MR ]-0: Received Map-Request with 1 records, first EID IID 8191
192.168.1.22/32, source EID UNSPEC, nonce 0x33FFA302-0x81FB070D.
LISP[MR ]-0 IID 8191 Eth-ARP: MS EID 192.168.1.22/32: Sending proxy reply to
172.16.0.1.
```

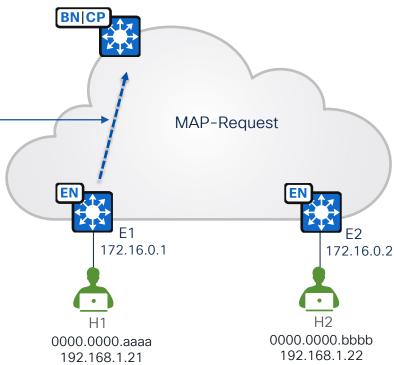
```
    □ Internet Protocol Version 4, Src: 172.16.0.4, Dst: 172.16.0.1

Duser Datagram Protocol, Src Port: 4342, Dst Port: 4342

▲ Locator/ID Separation Protocol

    0010 .... = Type: Map-Reply (2)
    .... 0... ... = P bit (Probe): Not set
    .... .0. .... = E bit (Echo-Nonce locator reachability algorithm enabled): Not set
    .... ..0. .... .... = S bit (LISP-SEC capable): Not set
    .... ...0 0000 0000 0000 0000 = Reserved bits: 0x00000
    Record Count: 1
    Nonce: 0xdacf97ad005f4a87
  Mapping Record 1, EID Prefix: Unknown LCAF Type (53)/32, TTL: 1440, Action: No-Action, Not Authoritative
       Record TTL: 1440
       Locator Count: 1
       EID Mask Length: 32
       000. .... = Action: No-Action (0)
       ...0 .... = Authoritative bit: Not set
       .... .000 0000 0000 = Reserved: 0x000
       0000 .... = Reserved: 0x0
       .... 0000 0000 0000 = Mapping Version: 0
       EID Prefix AFI: LISP Canonical Address Format (LCAF) (16387)
     EID Prefix: Unknown ICAF Type (53)
    ▶ Locator Record 1, RLOC: 00:00:00:00:bb:bb, Unreachable, Priority/Weight: 1/100, Multicast Priority/Weight: 1/100
```


Once E1 gets the MAC address for H2, it again consults the Control Plane node on where H2 is located

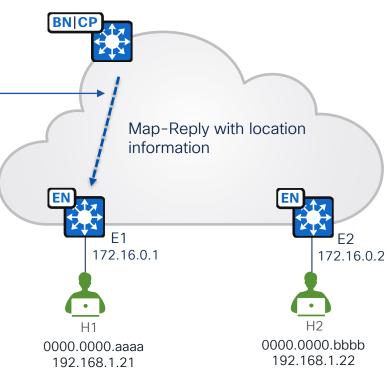

```
E1#debug lisp control-plane map-cache
LISP[REMT ]-0 IID 8191: Schedule processing of Map-Requests from
             'remote EID prefix' in IPv4.
LISP[REMT ]-0: Map Request: Sending request for IID 8191
              EID 0000.0000.bbbb/48, requester 'remote EID prefix'.
Internet Protocol Version 4, Src: 172.16.0.1, Dst: 172.16.0.4
▶ User Datagram Protocol, Src Port: 4342, Dst Port: 4342
▶ Locator/ID Separation Protocol
▶ Internet Protocol Version 4, Src: 0.0.0.0, Dst: 0.0.0.0
▶ User Datagram Protocol, Src Port: 4342, Dst Port: 4342

△ Locator/ID Separation Protocol

     0001 .... = Type: Map-Request (1)
   .... = Reserved bits: 0x000
     .... .... .... .... 0 0000 = ITR-RLOC Count: 0
     Record Count: 1
     Nonce: 0x849ff6be688dcc66
     Source EID AFI: LISP Canonical Address Format (LCAF) (16387)

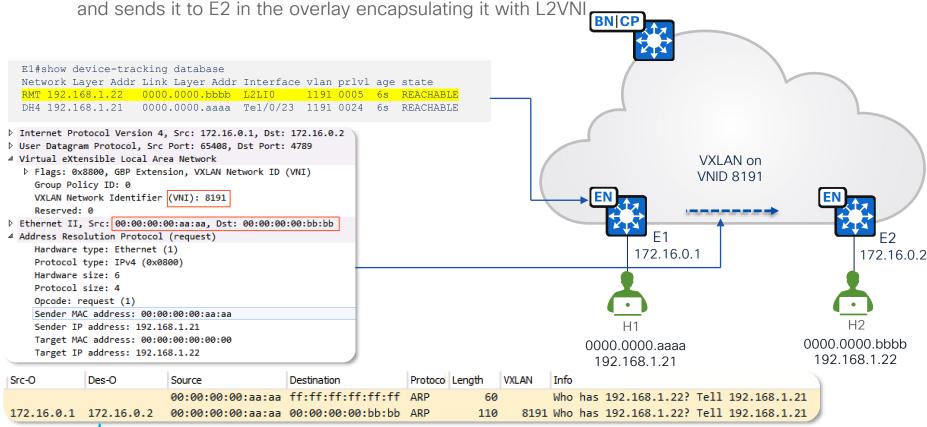
    Source EID: [8191] 00:00:00:00:aa:aa

   ▶ ITR-RLOC 1: 172.16.0.1
   ▶ Map-Request Record 1: [8191] 00:00:00:00:bb:bb/48
   ▶ Map-Reply Record
```

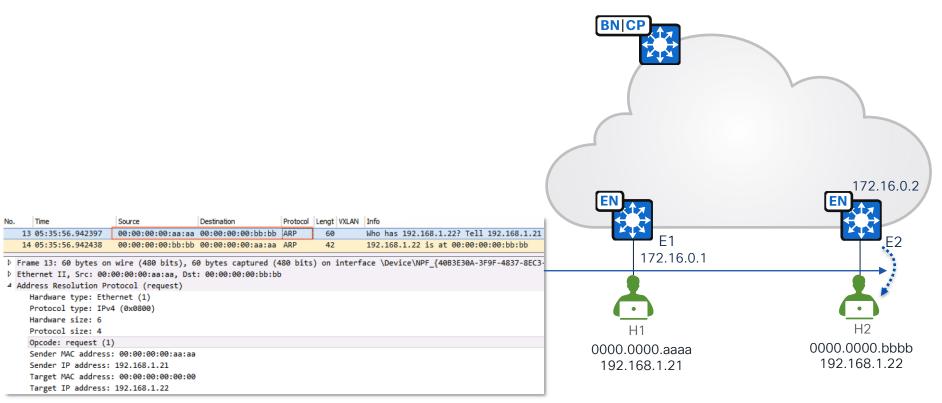


6 Control Plane node replies with H2's location information. E1 installs H2 into its MAP-cache

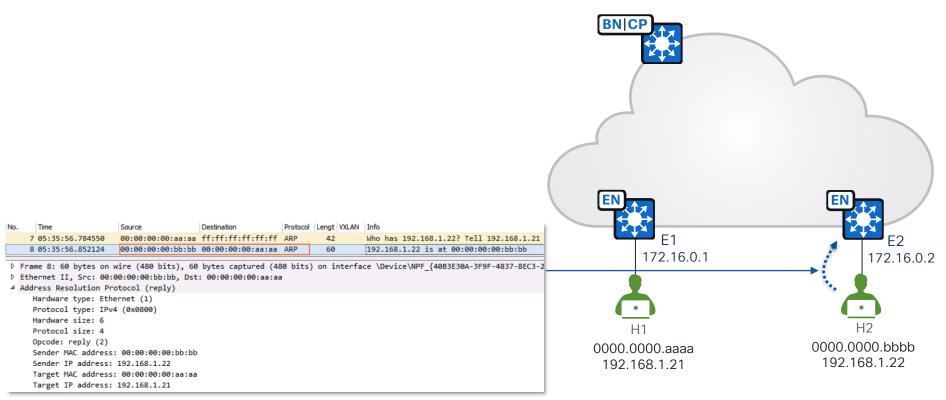
```
CP#debug lisp control-plane map-resolver
            ]-0: Received Map-Request with 1 records, first EID IID 8191
 LISP[MR
                    0000.0000.bbbb/48, source EID 0000.0000.aaaa,
             ]-0 IID 8191 MAC: MS EID 0000.0000.bbbb/48: Sending proxy
 LISP[MR
                    reply to 172.16.0.1
Internet Protocol Version 4, Src: 172.16.0.4, Dst: 172.16.0.1
Duser Datagram Protocol, Src Port: 4342, Dst Port: 4342


△ Locator/ID Separation Protocol

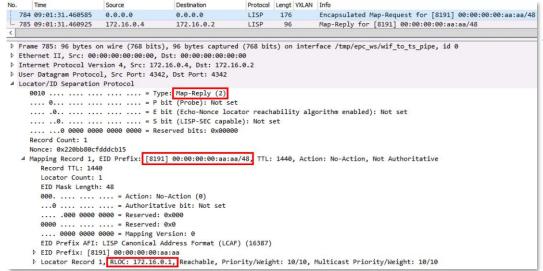
    0010 .... = Type: Map-Reply (2)
    .... 0... ... = P bit (Probe): Not set
    .... .0. .... = E bit (Echo-Nonce locator reachability algorithm enabled): Not set
    .... .0. .... = S bit (LISP-SEC capable): Not set
    .... ...0 0000 0000 0000 0000 = Reserved bits: 0x00000
    Record Count: 1
    Nonce: 0x849ff6be688dcc66
  4 Mapping Record 1, EID Prefix: [8191] 00:00:00:0b:bb/48, TTL: 1440, Action: No-Action, Not Authoritative
      Record TTL: 1440
      Locator Count: 1
      EID Mask Length: 48
      000. .... = Action: No-Action (0)
       ...0 .... = Authoritative bit: Not set
      .... .000 0000 0000 = Reserved: 0x000
      0000 .... = Reserved: 0x0
      .... 0000 0000 0000 = Mapping Version: 0
      EID Prefix AFI: LISP Canonical Address Format (LCAF) (16387)
    ▶ EID Prefix: [8191] 00:00:00:00:bb:bb
    ▶ Locator Record 1, RLOC: 172.16.0.2, Reachable, Priority/Weight: 10/10, Multicast Priority/Weight: 10/10
```

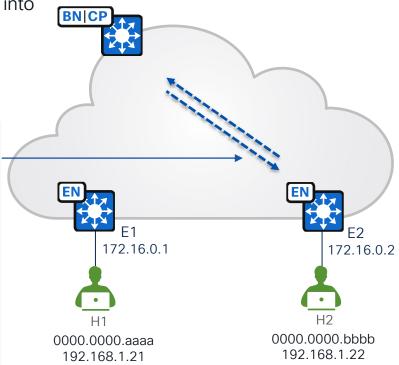



7 E1 coverts ARP broadcast from H1 to a directed unicast and sends it to E2 in the overlay encapsulating it with L2

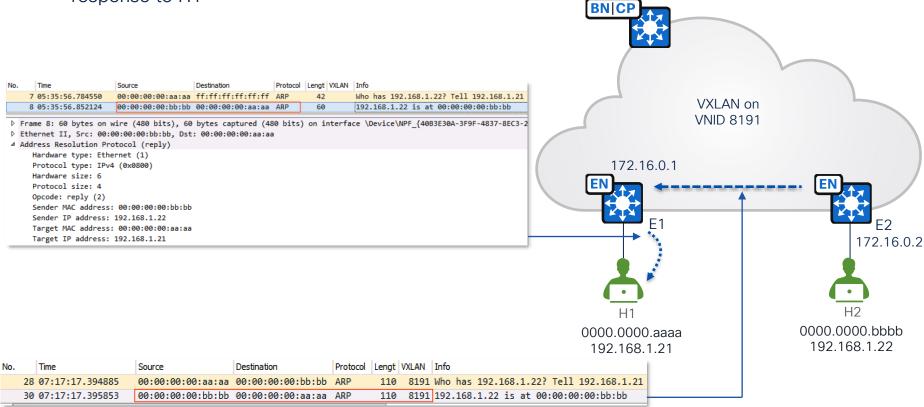


8 E2 decapsulates the ARP request and forwards it to H2

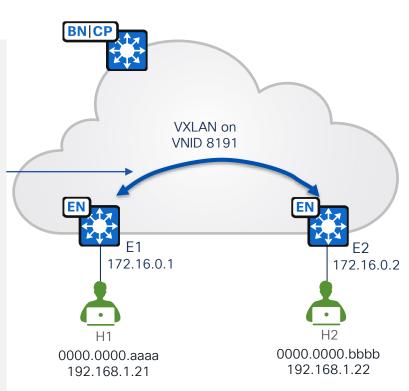



9 H2 unicasts the ARP response for H1 to E2

E2 sends MAP-Request for the location of H1 to Control Plane nodes, and receives MAP-Reply. E2 installs H1 into its MAP-cache



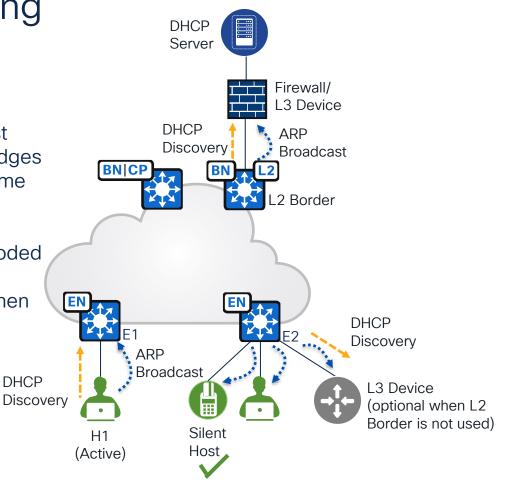
H2 unicasts the ARP response to H1. E1 forwards the ARP


response to H1

12 Edge nodes will use the map-cache and L2 VNI to forward to destination node

```
E1#show lisp instance-id 8191 ethernet database Local Entry
0000.0000.aaaa/48, dynamic-eid Auto-L2-group-8191, inherited from default
locator-set rloc xxxxxxxx
  Uptime: 2d18h, Last-change: 2d18h
  Domain-ID: local
  Service-Insertion: N/A
  Locator Pri/Wgt Source
                                State
  172.16.0.1 10/10 cfg-intf site-self, reachable
E1#show lisp instance-id 8191 ethernet map-cache Remote Entry
LISP MAC Mapping Cache for LISP 0 EID-table Vlan 1191 (IID 8191), 1
entries
0000.0000.bbbb/48, uptime: 00:17:05, expires: 23:42:54, via map-reply,
complete
             Uptime
  Locator
                      State Pri/Wgt
                                        Encap-IID
 172.16.0.2 00:17:05 up 10/10
E1#show mac address-table vlan 1191
         Mac Address Table
Vlan
       Mac Address
                        Type
                                    Ports.
1191
       0000.0000.aaaa
                        DYNAMIC
                                    Te1/0/23
                                                      Local Entry
1191
       0000.0000.bbbb
                       CP LEARN
                                    L2LI0
                                                      Remote Entry
```


Same Segment Forwarding with Flooding

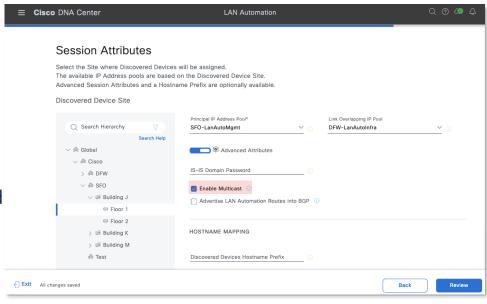


Forwarding with Flooding

Broadcast, unknown unicast, and multicast (BUM) traffic is forwarded to all ports of Edges & the L2 Border (if used) belong to the same **VLAN**

Endpoint DHCP Discovery packets are flooded

 Silent hosts will be known by the fabric when they respond to ARP broadcast



BRKTRS-2000

DHCP

Enabling Underlay Multicast Using Lan Automation

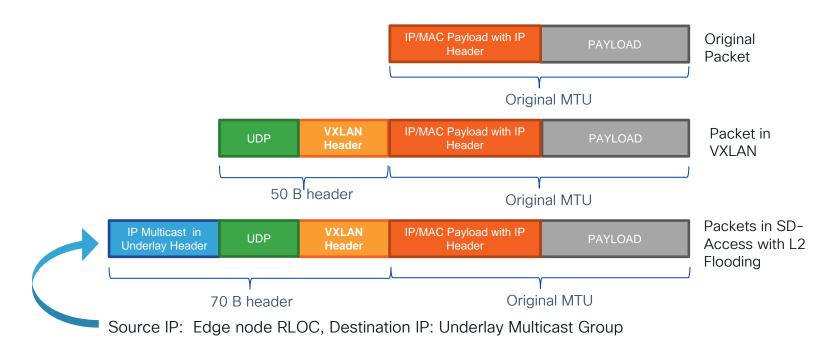
- Multicast needs to be enabled in the underlay for L2 Flooding to work
- The underlay is configured with PIM ASM and the seed devices are selected as Anycast Rendezvous Points (RPs)
- When additional edge nodes are added using Lan Automation, they are configured to use the RP

Enabling Underlay Multicast Using Manual Config

RP Devices (typically redundant Border Nodes)

```
ip multicast-routing
!
interface Loopback60000
  ip address <loopback60000 IP address> 255.255.255.255
  ip router isis
  ip pim sparse-mode
!
interface Loopback0
  ip pim sparse-mode
!
ip pim rp-address <loopback60000 IP address >
  ip pim register-source Loopback0
!
ip msdp peer <loopback0-other-rp> connect-source Loopback0
```

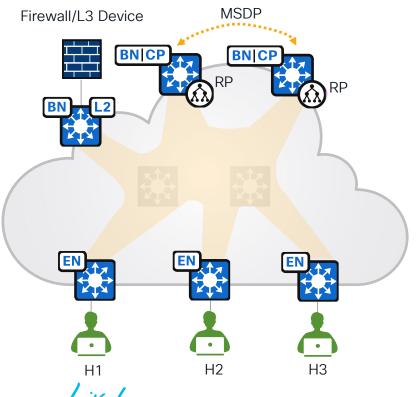
Non-RP Underlay Devices


```
ip multicast-routing
ip pim rp-address <rp IP address>
ip pim register-source Loopback0
interface Loopback0
ip pim sparse-mode
```

Fabric L3 Interfaces

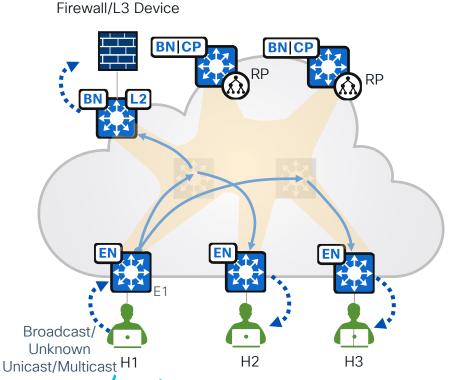
ip pim sparse-mode

L2 Flooding Packets in SD-Access



Total header size for L2 flooding packets is 70 Bytes. Needs to be accounted for when designing underlay MTU size

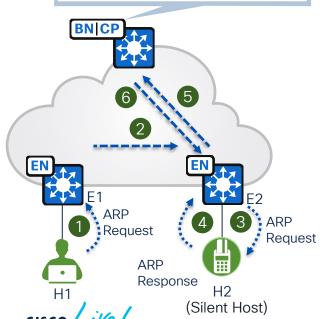
L2 Flooding in SD-Access


Upon Underlay Multicast Enablement

- Rendezvous Points (RPs) are in the underlay
- MSDP between RPs exchanges information about sources
- PIM-SM is enabled in underlay between fabric devices

L2 Flooding in SD-Access

Packet Flows


- When BUM traffic reaches E1, it is encapsulated in VXLAN and sent over via a dedicated multicast group in the underlay
- The underlay devices are responsible for replicating traffic
- All Edge nodes and L2 Borders receive traffic originated by E1

Packet Flow

H1 Communication with H2

Host Tracking Database

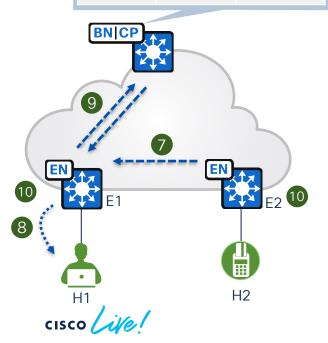
Host Entry (IP)	Host Entry (MAC)	Location
H1 IP	H1 MAC	E1
H2 IP	H2 MAC	E2

- H1 sends ARP request broadcast for H2's MAC address
- ARP broadcast is flooded to all Edges including E2 & L2 Border (if used) due to underlay multicast
- E2 decapsulates the ARP request and forwards it to H2
- H2 sends an ARP response for H1 to E2. E2 installs H2's IP and MAC addresses into its local database
- E2 sends MAP-Registration to CP for H2. Other endpoints can start to communicate with the once-silent host
- E2 requests and receives from CP the location of H1. E2 installs H1 into its MAP-cache

Assumptions:

- Edges do not have remote endpoints in their MAP-cache nor ARP tables initially
- Control Plane node does not have H2 in its host tracking database #Ciscol ive BRKTRS-2000

Packet Flow

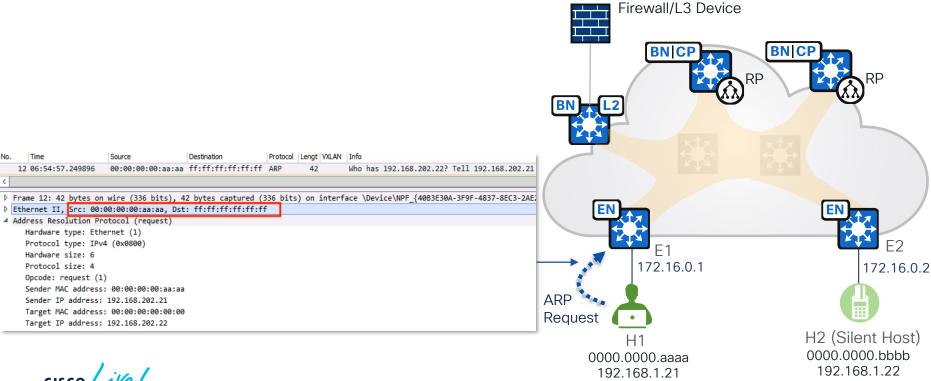

H1 Communication with H2

Host Tracking Database

Host Entry (IP) Host Entry (MAC) Location

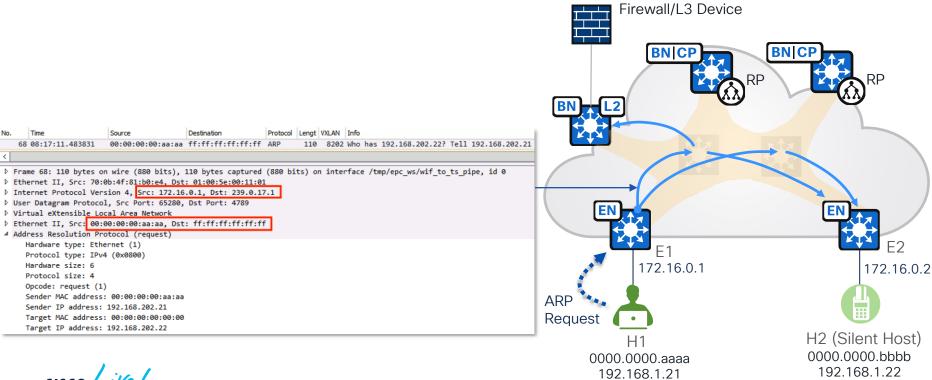
H1 IP H1 MAC E1

H2 IP H2 MAC E2



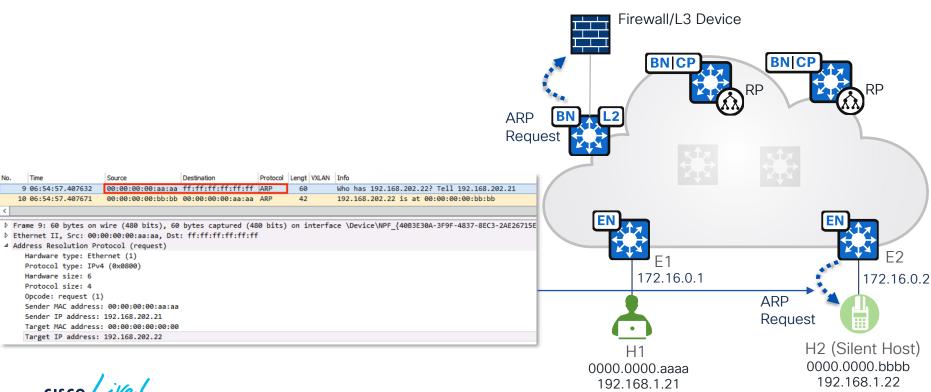
- 7 E2 sends ARP response to E1
- 8 E1 decapsulates and forwards the ARP response to H1
- E1 requests and receives from CP the location of H2. E1 installs
 H2 into its MAP-cache
- 10 E1 and E2 use their MAP-cache and the L2 VNI to forward to destination nodes

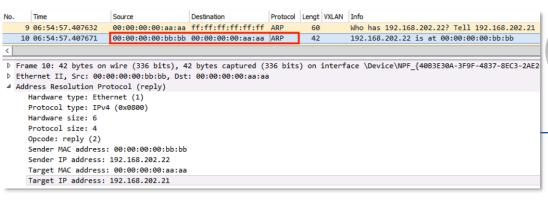
Assumptions:

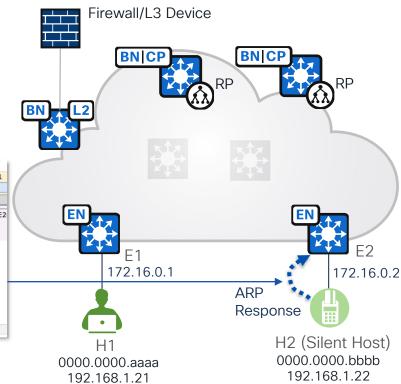

- Edges do not have remote endpoints in their MAP-cache nor ARP tables initially
- Control Plane node does not have H2 in its host tracking database

H1 sends ARP request broadcast for H2's MAC address

BRKTRS-2000

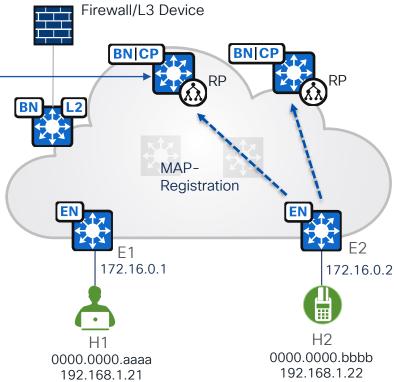

ARP broadcast request is flooded to all Edges including E2 and L2 Border (if used) due to underlay multicast



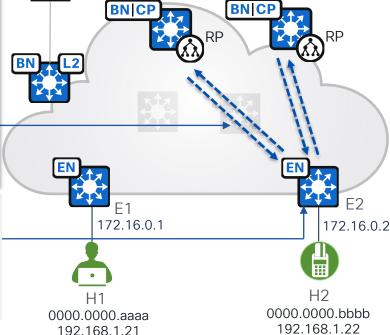

BRKTRS-2000

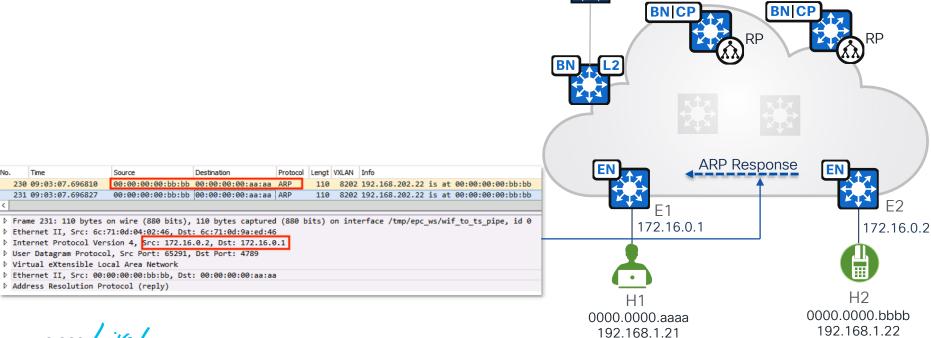
E2 sends the ARP request to H2

4 H2 sends an ARP response for H1 to E2



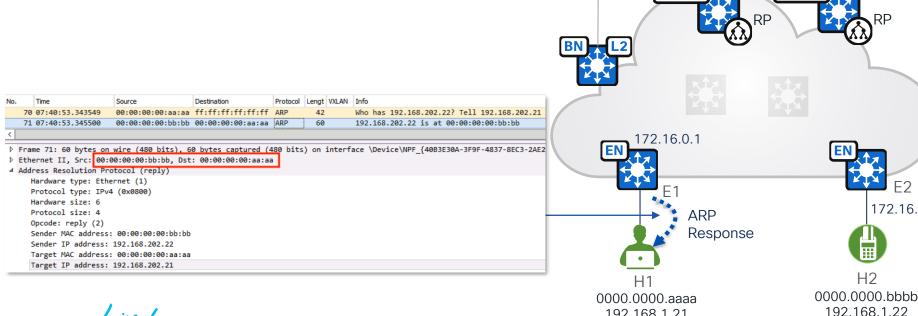
5 E2 sends MAP-Registration to Control Plane nodes for H2. Other endpoints can start to communicate with the once-silent host


CP#show lisp instance-id 8202 ethernet server LISP Site Registration Information * = Some locators are down or unreachable # = Some registrations are sourced by reliable transport Site Name Last Who Last Inst EID Prefix Uρ Register Registered ID site uci 8202 never no any-mac 172.16.0.1:54628 0000.0000.aaaa/48 00:34:48 ves# 8202 172.16.0.2:28358 0000.0000.bbbb/48 00:34:48 8202 00:31:07 yes# 172.16.0.4:33024 8202 f4bd.9e84.6e42/48


6 E2 requests and receives from Control Plane nodes the location of H1. E2 installs H1 into its MAP-cache

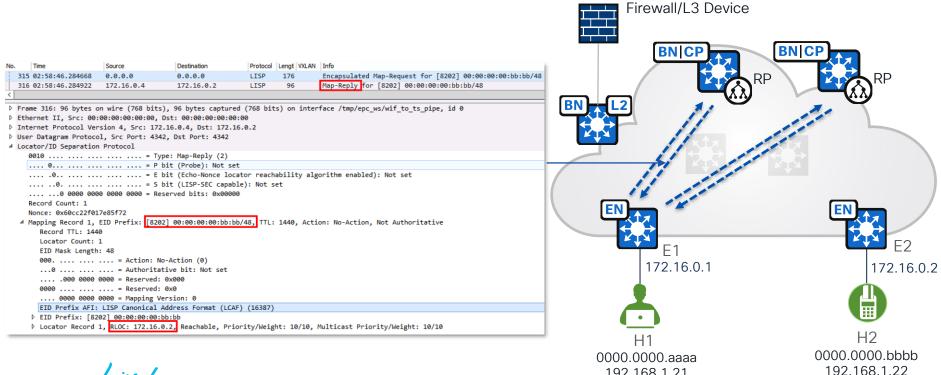
```
Protocol Lengt VXLAN Info
  439 08:36:15.397159
                   0.0.0.0
                                   0.0.0.0
                                                   LISP
                                                                   Encapsulated Map-Request for [8202] 00:00:00:00:aa:aa/48
 440 08:36:15.397457
                    172.16.0.4
                                   172.16.0.2
                                                   LTSP
                                                                   Map-Reply for [8202] 00:00:00:00:aa:aa/48
▶ Frame 440: 96 bytes on wire (768 bits), 96 bytes captured (768 bits) on interface /tmp/epc ws/wif to ts pipe, id 0
DEthernet II, Src: 00:00:00:00:00:00, Dst: 00:00:00:00:00:00
▶ Internet Protocol Version 4, Src: 172.16.0.4, Dst: 172.16.0.2
D User Datagram Protocol, Src Port: 4342, Dst Port: 4342
4 Locator/ID Separation Protocol
    0010 .... = Type: Map-Reply (2)
    .... 0... ... = P bit (Probe): Not set
    .....0...... = E bit (Echo-Nonce locator reachability algorithm enabled): Not set
    .... ..0. .... = S bit (LISP-SEC capable): Not set
    .... ...0 0000 0000 0000 0000 = Reserved bits: 0x00000
    Record Count: 1
    Nonce: 0xe664a39d75592ce4
  Mapping Record 1, EID Prefix: [8202] 00:00:00:00:aa:aa/48, TTL: 1440, Action: No-Action, Not Authoritative
      Record TTL: 1440
      Locator Count: 1
      EID Mask Length: 48
      000. .... = Action: No-Action (0)
      ...0 .... = Authoritative bit: Not set
      .... .000 0000 0000 = Reserved: 0x000
      0000 .... = Reserved: 0x0
      .... 0000 0000 0000 = Mapping Version: 0
      EID Prefix AFI: LISP Canonical Address Format (LCAF) (16387)
    ▶ EID Prefix: [8202] 00:00:00:00:aa:aa
    ▶ Locator Record 1, RLOC: 172.16.0.1, Reachable, Priority/Weight: 10/10, Multicast Priority/Weight: 10/10
 E2#show lisp instance-id 8202 ethernet map-cache
LISP MAC Mapping Cache for LISP 0 EID-table Vlan 1202 (IID 8202), 2 entries
0000.0000.aaaa/48, uptime: 00:12:28, expires: 23:47:31, via map-reply, complete
   Locator
                   Uptime
                                 State Pri/Wgt
                                                           Encap-IID
   172.16.0.1 00:12:28 up
                                            10/10
0000.0000.cccc/48, uptime: 00:07:55, expires: 23:52:05, via map-reply, complete
   Locator
                   Uptime
                                 State Pri/Wqt
                                                           Encap-IID
   172.16.0.4 00:07:55 up
```


Firewall/L3 Device


E2 sends ARP response to E1

Firewall/L3 Device

E1 decapsulates and forward the ARP response to H1



Firewall/L3 Device

192.168.1.21

172.16.0.2

E1 requests and receives from Control Plane nodes the location of H2. E1 installs H2 into its MAP-cache

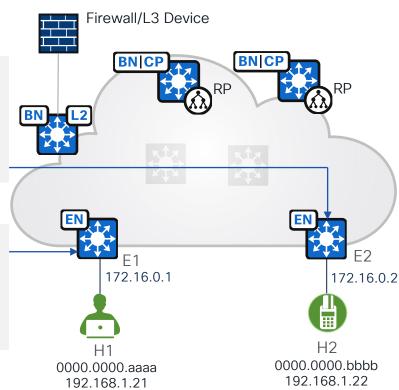
192.168.1.21

E1 and E2 use their MAP-cache and the L2 VNI to forward to destination nodes

E2#show lisp instance-id 8202 ethernet map-cache

LISP MAC Mapping Cache for LISP 0 EID-table Vlan 1202 (IID 8202), 2 entries

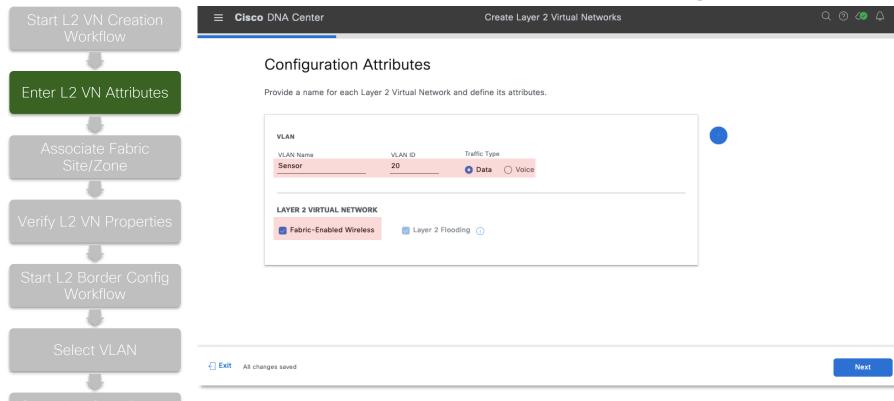
0000.0000.aaaa/48, uptime: 00:00:50, expires: 23:59:10, via map-reply, complete Locator Uptime State Pri/Wqt Encap-IID 172.16.0.1 00:00:50 up 10/10 0000.0000.cccc/48, uptime: 00:00:15, expires: 23:59:45, via map-reply, complete Uptime State Pri/Wgt Encap-IID Locator 172.16.0.4 00:00:15 up


E1#show lisp instance-id 8202 ethernet map-cache

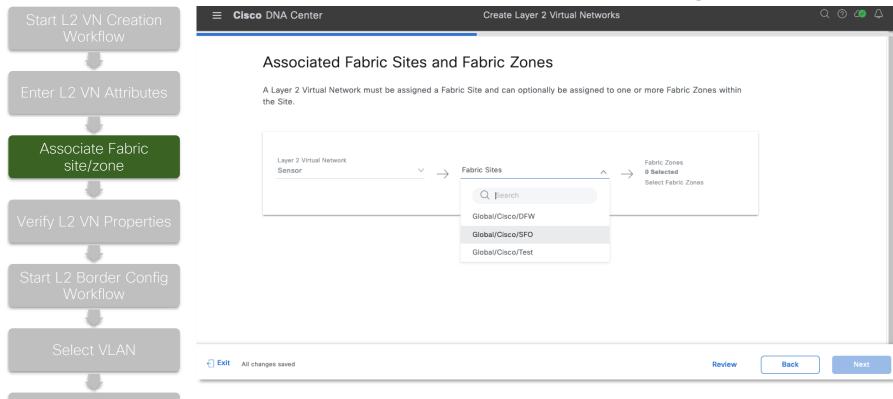
LISP MAC Mapping Cache for LISP 0 EID-table Vlan 1202 (IID 8202), 2 entries

10/10

0000.0000.bbbb/48, uptime: 00:12:28, expires: 23:47:31, via map-reply, complete Locator Uptime State Pri/Wqt Encap-IID 172.16.0.2 00:12:28 up 10/10 0000.0000.cccc/48, uptime: 00:07:55, expires: 23:52:05, via map-reply, complete Locator Uptime State Pri/Wqt Encap-IID 172.16.0.4 00:07:55 up 10/10


Configuring Layer 2 Virtual Network

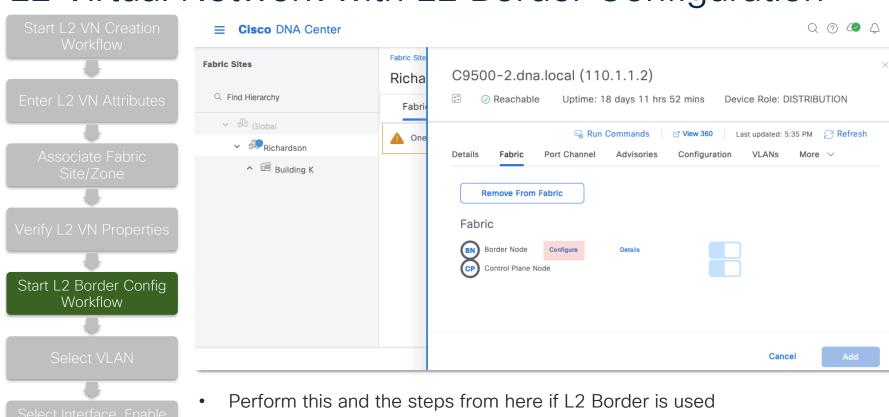
Provision → Virtual Networks → Preview New SD-Access (switch on) → Layer 2 Virtual Networks (select)



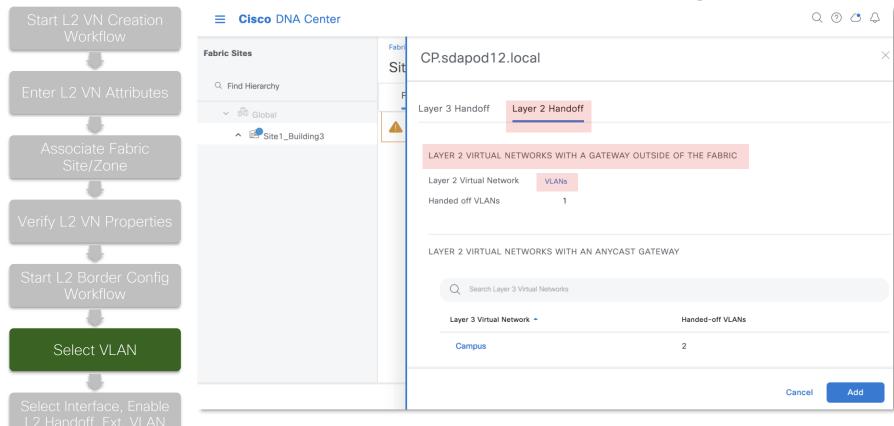
Select Fabric-Enabled Wireless if needed (Cisco DNA center ≥ 2.3.5.x & IOS-XE ≥ 17.10.x)

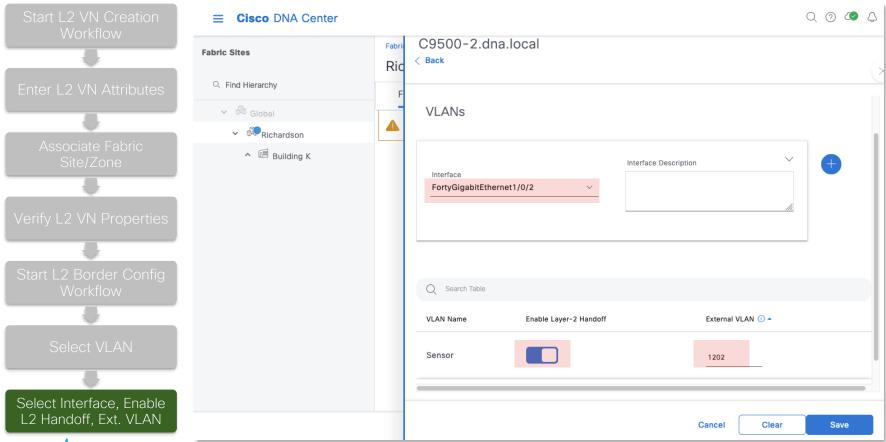
BRKTRS-2000

• Fabric Zone association is optional

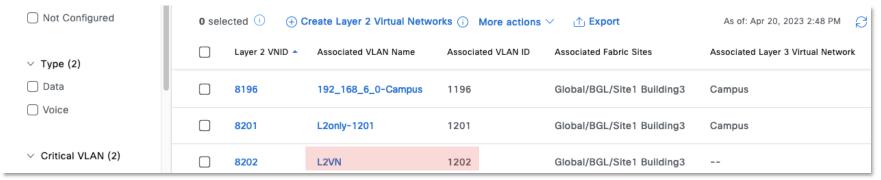


BRKTRS-2000


No L3 VN is associated. No Anycast gateway is present. L2 Flooding is enabled. Gateway Outside the Fabric is marked



Provision → Fabric Sites → (Select Site) → (Select Border)



Troubleshooting

Multicast Verification

Underlay Multicast is Configured for L2 Flooding


```
instance-id 8202
  remote-rloc-probe on-route-change
  service ethernet
  eid-table vlan 1202
  broadcast-underlay 239.0.17.1
  flood arp-nd
  flood unknown-unicast
  database-mapping mac locator-set
rloc_xxxxxxxx
  exit-service-ethernet
!
```

```
E1#show ip mroute
....

(*, 239.0.17.1), 1w4d/stopped, RP 172.16.0.4, flags: SJCF
Incoming interface: TenGigabitEthernet1/0/1, RPF nbr 172.16.1.21
Outgoing interface list:
    L2LISP0.8202, Forward/Sparse-Dense, 00:01:00/00:01:59, flags:
    L2LISP0.8201, Forward/Sparse-Dense, 1w4d/00:00:14, flags:

(172.16.0.2, 239.0.17.1), 07:17:25/00:01:49, flags: JT
Incoming interface: TenGigabitEthernet1/0/1, RPF nbr 172.16.1.21
Outgoing interface list:
    L2LISP0.8202, Forward/Sparse-Dense, 00:01:00/00:01:59, flags:
    L2LISP0.8201, Forward/Sparse-Dense, 07:17:25/00:00:34, flags:
```

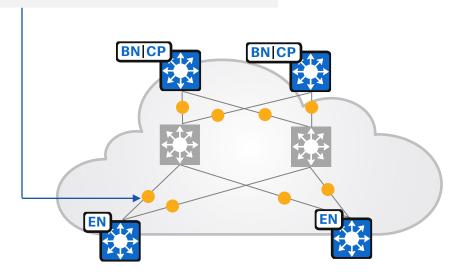

Multicast Verification

PIM Neighbor Relationships are Established

```
E1#show ip pim neighbor

PIM Neighbor Table

Mode: B - Bidir Capable, DR - Designated Router, N - Default DR Priority,


P - Proxy Capable, S - State Refresh Capable, G - GenID Capable,

L - DR Load-balancing Capable

Neighbor Interface Uptime/Expires Ver DR

Address Prio/Mode

172.16.1.21 TenGigabitEthernet1/0/1 1w4d/00:01:44 v2 1 / S P G
```


VLAN Verification

Vlan is in the running config

```
vlan 1202
name L2VN
!
```

LISP tunnel is present for the VLAN

Local and remote endpoint MAC Addresses are in MAC Address Table

Local Endpoint is in Device Tracking Database

Local endpoint is shown in device-tracking database and LISP database

```
E1#show device-tracking database interface T1/0/23
Codes: L - Local, S - Static, ND - Neighbor Discovery, ARP - Address Resolution Protocol,
      DH4 - IPv4 DHCP, DH6 - IPv6 DHCP, PKT - Other Packet, API - API created
Preflevel flags (prlvl):
0001:MAC and LLA match
                         0002:Orig trunk 0004:Orig access
0008:Orig trusted trunk
                         0010:Orig trusted access 0020:DHCP assigned
0040:Cga authenticated
                         0080:Cert authenticated 0100:Statically assigned
   Network Layer Address Link Layer Address Interface vlan prlvl age state Time left
ARP 192.168.202.21
                       0000.0000.aaaa
                                         Te1/0/23 1202 0005 169s REACHABLE 73 s
E1#show lisp instance-id 8202 ethernet database
LISP ETR MAC Mapping Database for LISP 0 EID-table Vlan 1202 (IID 8202), LSBs: 0x1
Entries total 1, no-route 0, inactive 0, do-not-register 0
0000.0000.aaaa/48, dynamic-eid Auto-L2-group-8202, inherited from default locator-set rloc xxxxxxxx
  Uptime: 00:07:31, Last-change: 00:07:31
  Domain-ID: local
  Service-Insertion: N/A
 Locator Pri/Wgt Source
                                State
 172.16.0.1 10/10 cfg-intf site-self, reachable
```


Endpoints are Registered to Control Plane Node

```
CP#show lisp instance-id 8202 ethernet server
LISP Site Registration Information
* = Some locators are down or unreachable
# = Some registrations are sourced by reliable transport
Site Name
                        αU
                               Who Last
                                                             EID Prefix
              Last
                                                    Inst
              Register
                              Registered
                                                    TD
site uci
              never
                                                    8202
                                                             any-mac
                        no
              05:46:53 ves# 172.16.0.1:31397
                                                    8202
                                                             0000.0000.aaaa/48
              02:37:26 yes# 172.16.0.2:24161
                                                    8202
                                                             0000.0000.bbbb/48
CP#show lisp instance-id 8202 ethernet server 0000.0000.aaaa
Description: map-server configured from Cisco DNA-Center
Allowed configured locators: any
Requested EID-prefix:
  EID-prefix: 0000.0000.aaaa/48 instance-id 8202
    Registration errors:
     Authentication failures:
     Allowed locators mismatch: 0
    ETR 172.16.0.1:31397, last registered 05:48:30, proxy-reply, map-notify
     Locator
                 Local State
                                   Pri/Wqt Scope
     172.16.0.1 yes
                                    10/10 IPv4 none
```


MAP Cache is Resolved to the Correct RLOC

- L2 communication within the same segment: remote/destination endpoint MAC is resolved with the destination fabric Edge RLOC
- L3 communication: remote/destination endpoint MAC is always the Gateway MAC address which is outside the fabric and the RLOC will always be the L2 Border

```
E1#show lisp instance-id 8202 ethernet map-cache
LISP MAC Mapping Cache for LISP 0 EID-table Vlan 1202 (IID 8202), 2 entries
0000.0000.bbbb/48, uptime: 00:00:07, expires: 23:59:52, via map-reply, complete
 Locator
             Uptime
                       State Pri/Wgt
                                         Encap-IID
 172.16.0.2 00:00:07 up
                               10/10
0000.0000.cccc/48, uptime: 00:00:03, expires: 23:59:56, via map-reply, complete
 Locator
             Uptime
                       State Pri/Wqt
                                         Encap-IID
 172.16.0.4 00:00:03 up
                              10/10
```


IP-Directed Broadcast

IP-Directed Broadcast in SD-Access

- It is not a L2 VN feature. It is used in L3 VN with L3 Border(s)
- Since it relies on L2 Flooding, we discuss it here
- It is implemented in SD-Access to address communication with endpoints residing in a subnet that fall into:

Silent Host

An endpoint whose location in fabric is not known because it has not sent any packets or frames

Sleeping Host

An endpoint connected in the fabric that moves into passive/power-save mode

Host Actions with IP-Directed Broadcast

ARP Request

ARP request packet with the destination MAC address of *FF FF FF FF FF FF*

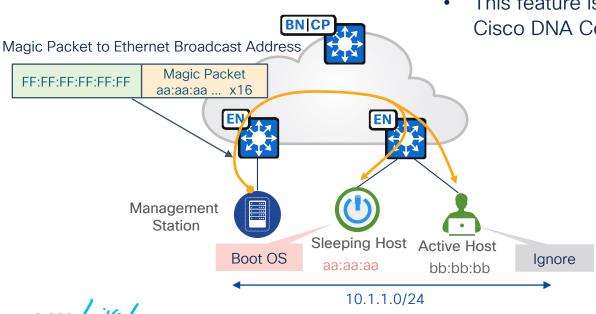
Silent Host

If an outside packet towards the silent host reaches the Border, and the Border does not have the silent host's IP it's MAP-cache or ARP cache, Border Node will ARP for it

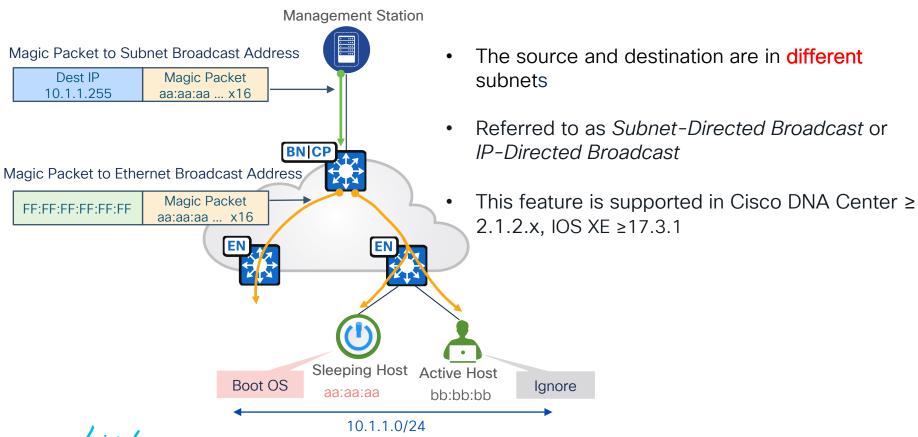
Magic Packet

- A broadcast frame with a payload containing FF FF FF FF FF in hexadecimal followed by sixteen (16) repetitions of target machine's MAC address
- Typically sent to UDP destination port 0, 7 or 9

Sleeping Host

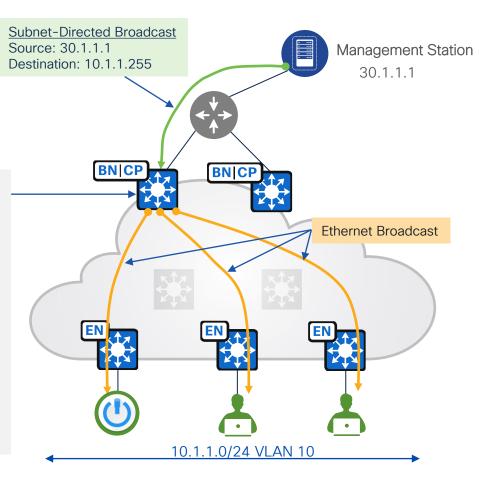

A host outside the fabric wakes the endpoint by sending a Wake on LAN Magic Packet using Subnet-Directed Broadcast + Ethernet Broadcast

Wake on LAN Ethernet Broadcast


The source and destination are both in the same subnet

This feature is supported with L2 Flooding in Cisco DNA Center ≥ 1.2.5/6

Wake on LAN Subnet-Directed Broadcast

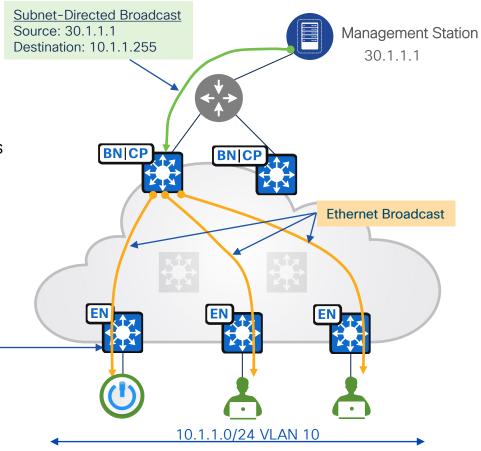


BRKTRS-2000

Border Configurations

- Cisco DNA Center provisions an SVI on the L3 Border(s) instead of a Loopback
- SVI is enabled with the *no autostate* config so that the interface is always in "UP" state

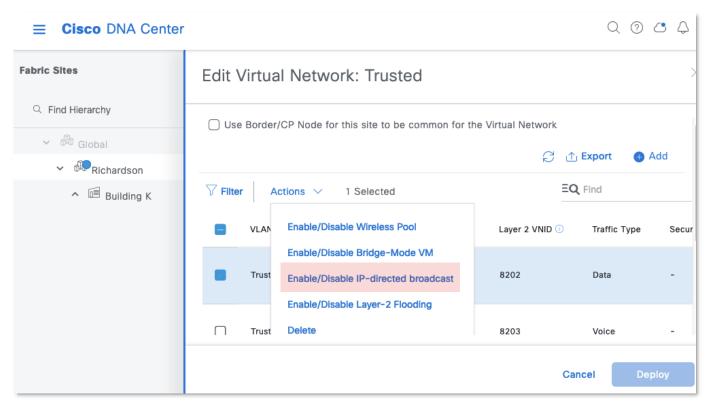
```
interface Vlan10
   vrf forwarding Trusted
    ip directed-broadcast
    no autostate
interface Vlan3032
    description vrf interface to External Border
   vrf forwarding Trusted
    ip network-broadcast
router lisp
 instance-id 8202
 remote-rloc-probe on-route-change
  service ethernet
   eid-table vlan 10
   broadcast-underlay 239.0.17.1
   flood arp-nd
   flood unknown-unicast
   database-mapping mac locator-set <rloc>
```



Edge Configurations

- A subnet-directed broadcast originating from outside of fabric is propagated inside the fabric as broadcast
- When an Edge node receives the frame, it forwards the packet as a broadcast to endpoints in the destination VLAN

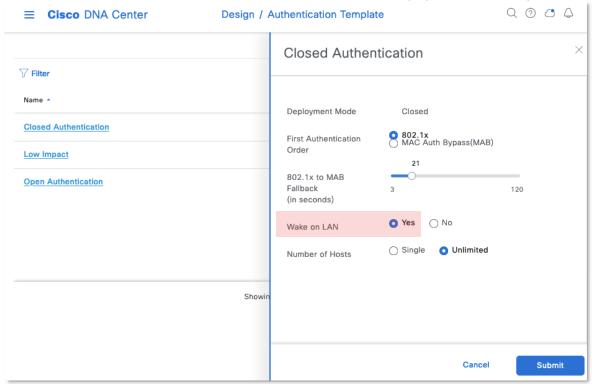
router lisp
instance-id 8202
remote-rloc-probe on-route-change
service ethernet
 eid-table vlan 1035
broadcast-underlay 239.0.17.1
flood arp-nd
flood unknown-unicast
database-mapping mac locator-set <rloc>



BRKTRS-2000

IP-Directed Broadcast VLAN Configuration

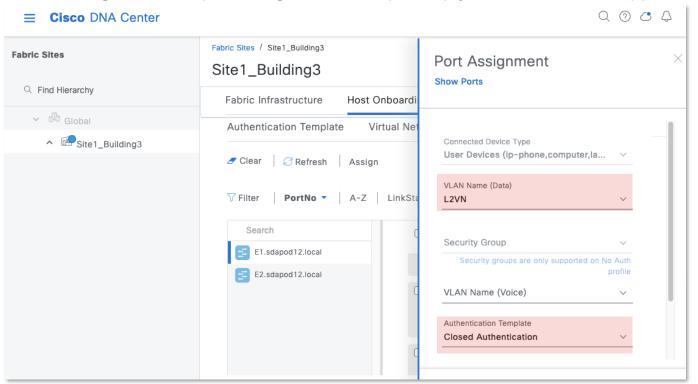
 Turning on IP-Directed broadcast for the subnet turns on L2 Flooding automatically



Provision → Fabric Sites → (Select a Site) → Host Onboarding → Virtual Networks → (Select a Virtual Network) → (Select a VLAN)

Wake on LAN Setting with Authentication Template

Wake on LAN needs to be enabled when 802.1x is used (Open/Low Impact/Closed Authentication)



Design → Authentication Template → Closed Authentication/Low Impact/Open Authentication → Wake on LAN → Yes

Wake on LAN Port Configuration

Static VLAN configuration on port assignment is required (dynamic VLAN not supported)

Provision → Fabric Sites → (Select a Fabric Site) → Host Onboarding → Port Assignment → (Select a switch) → (Select a port)

BRKTRS-2000

Design and Implementation Best Practices

Scale Considerations

L2 Border Endpoint Scale

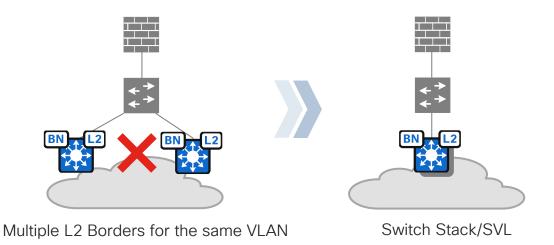
Consider L2 Border scale for endpoints

Refer to Cisco DNA Center Data Sheet: https://www.cisco.com/c/en/us/products/collateral/cloud-systems-management/dna-center/nb-06-dna-center-data-sheet-cte-en.html

L2 VN Scale

- Each L2 VN consumes one IP pool
- The sum of L2 VNs and IP pools per site should not exceed the Cisco DNA Center IP pool scale

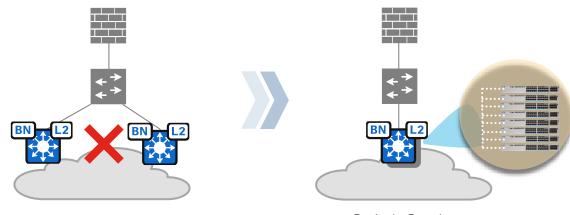
Refer to Cisco DNA Center Data Sheet: https://www.cisco.com/c/en/us/products/collateral/cloud-systems-management/dna-center/nb-06-dna-center-data-sheet-cte-en.html


VLAN Scale

 All endpoints in a L2 VN will receive BUM traffic. Total number of endpoints in the L2 VN should be limited

Layer 2 Border Redundancy

- Multi-homing a VLAN on different L2 Borders connecting to the same external L2 domain is not supported
- To provide redundancy for the L2 Border, consider using switch stack or StackWise Virtual (SVL)

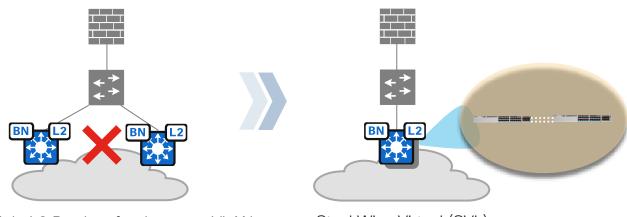


Layer 2 Border Redundancy

Switch Stack

- If the active switch becomes unavailable, the standby switch assumes the role of the active switch and continues to the keep the stack operational
- The stack is normally hosted in a single wiring closet
- Maximum of 8 C9000 switches can be in a stack
- All the stack members must be the same platform

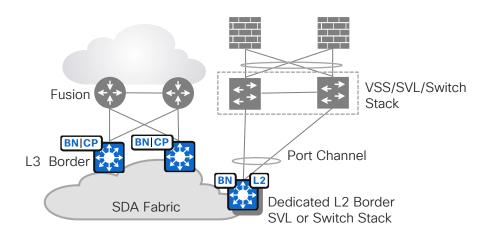
Multiple L2 Borders for the same VLAN


Switch Stack

Layer 2 Border Redundancy

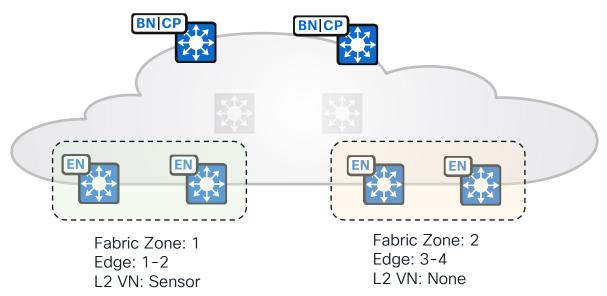
StackWise Virtual (SVL)

- Stacking of only 2 switches
- Supports flexible distances with choices of cables and optics
- C9500 and C9500H are supported from Cisco DNA Center 1.3.3.x. C9400 and C9600 are supported from Cisco DNA Center 2.1.2.X
- ISSU is not supported for SDA


Multiple L2 Borders for the same VLAN

StackWise Virtual (SVL)

Layer 2 Border Recommendations


- L2 Border is recommended to be on a dedicated device
- If multiple VLANs being L2 handed off are critical, consider using separate L2 Borders each servicing different VLANs
- Use port channel at L2 Border for link redundancy

Layer 2 Virtual Network Recommendations

- Evaluate business requirement to determine whether a L2 VN or a L3 VN should be used
- If a L2 VN is needed only in certain part of the network, consider putting the L2 VN into a Fabric Zone to reduce the number of fabric Edges participate in the flooding

Fill out your session surveys!

Attendees who fill out a minimum of four session surveys and the overall event survey will get **Cisco Live-branded socks** (while supplies last)!

Attendees will also earn 100 points in the **Cisco Live Game** for every survey completed.

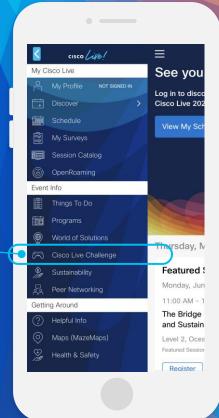
These points help you get on the leaderboard and increase your chances of winning daily and grand prizes

Continue your education

- Visit the Cisco Showcase for related demos
- Book your one-on-one Meet the Engineer meeting
- Attend the interactive education with DevNet, Capture the Flag, and Walk-in Labs
- Visit the On-Demand Library for more sessions at www.CiscoLive.com/on-demand

Thank you

Cisco Live Challenge


Gamify your Cisco Live experience! Get points for attending this session!

How:

- 1 Open the Cisco Events App.
- 2 Click on 'Cisco Live Challenge' in the side menu.
- 3 Click on View Your Badges at the top.
- 4 Click the + at the bottom of the screen and scan the QR code:

Let's go cisco live! #CiscoLive