

Building an Enterprise-Class AI/ML Infrastructure for MLOps Using Cisco UCS, NVIDIA GPUs, and Red Hat OpenShift AI

Archana Sharma, Technical Marketing Engineer BRKCOM-2018

cisco / ile

#CiscoLive

Cisco Webex App

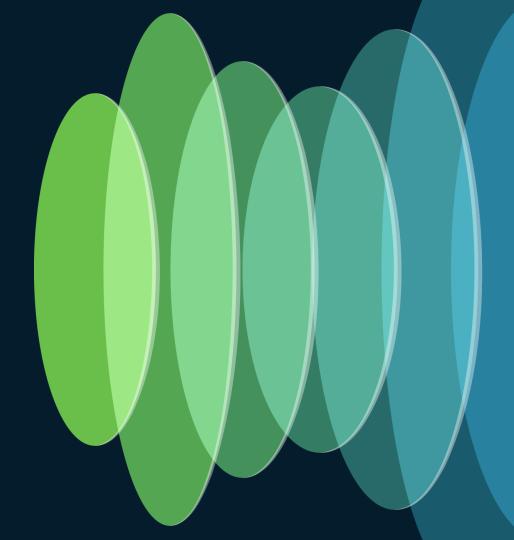
Questions?

Use Cisco Webex App to chat with the speaker after the session

How

- Find this session in the Cisco Live Mobile App
- 2 Click "Join the Discussion"
- 3 Install the Webex App or go directly to the Webex space
- 4 Enter messages/questions in the Webex space

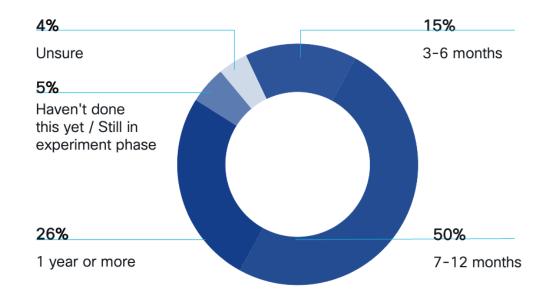
Webex spaces will be moderated by the speaker until June 7, 2024.


	•	
	8:19 1 Catalyst 9000 Series Switching Fa technologies, and features in the Cataly 9000 Switches.	mily =
	Speaker(s)) rket
	Categories	63
	Technical Level Intermediate (596)	>
	Tracks Networking (220)	>
	Session Type Breakout (453)	>
	SHOW 2 MORE V	_
	Webex	
_ (Join the Discussion	>
	Notes	
	Enter your personal notes here	

https://ciscolive.ciscoevents.com/

- MLOps
- Infrastructure Considerations
- Building AI/ML Infrastructure
- Demo (offline)
- Wrap-up

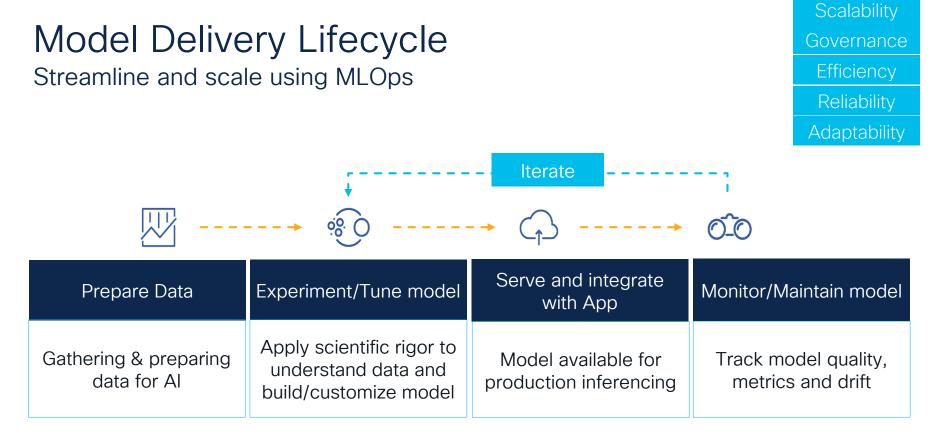
MLOps



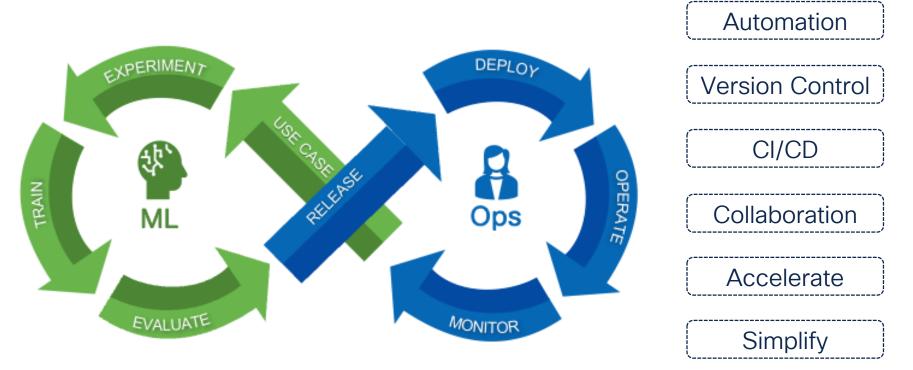
cisco live!

Why MLOps? Operationalizing AI is challenging

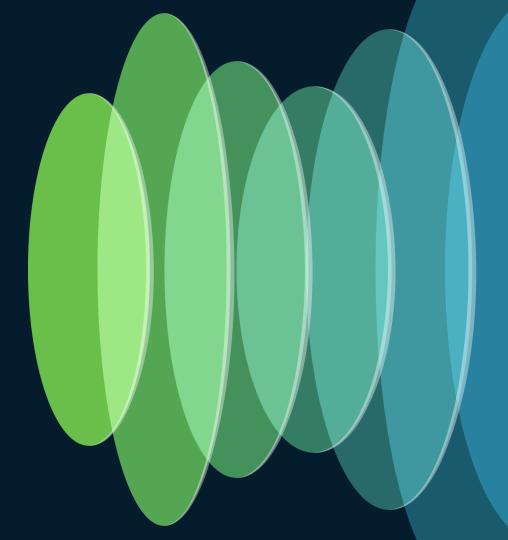
What is the average AI/ML timeline from idea to operationalizing the model?


Half of respondents (50%) say their average AI/ML timeline from idea to operationalizing the model is 7-12 months.

Gartner estimates, on average, 54% of AI projects make it from pilot to production


Source: Gartner Peer Insights, Open Source AI for Enterprise survey, 2023 Source: https://www.gartner.com/en/newsroom/press-releases/2022-08-22-gartnersurvey-reveals-80-percent-of-executives-think-automation-can-be-applied-to-anybusiness-decision

#CiscoLive BRKCOM-2018


Pace of AI/ML technology shifts require a strong foundation to adapt

What is MLOps? Foundation for success

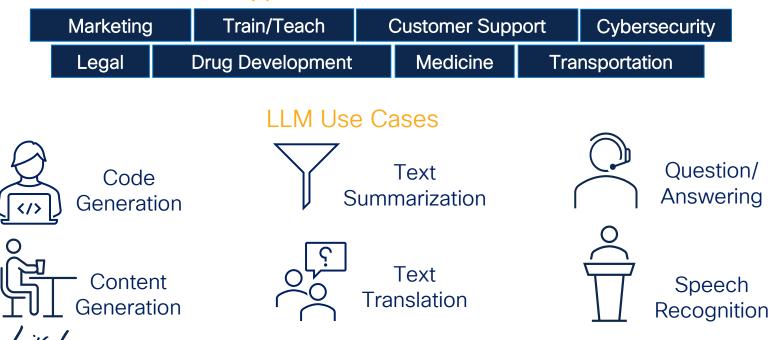
Infrastructure Considerations

Complementary Pillars of Al

Predictive AI

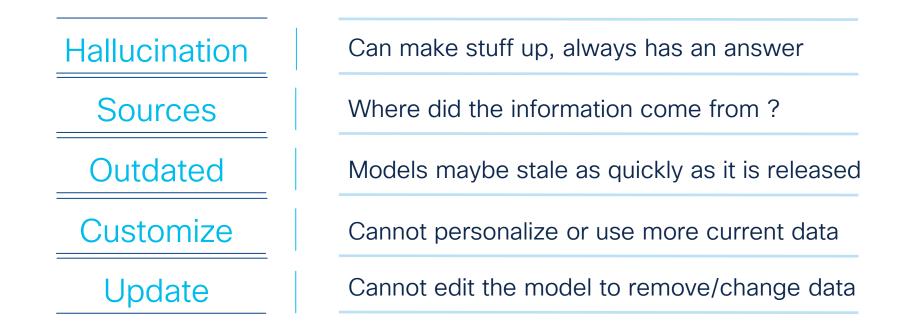
- Uses historical data to make statistical predictions on future outcomes
- Range of techniques from predictive analytics to ML and DL algorithms
- Fraud detection, risk assessment, anomaly detection, forecasting, recommendation systems, customer behavior prediction
- Delivering value today...and indispensable for organizations
- ~100M parameter range

- Generalizes patterns seen before to predict and generate multimodal content (ChatGPT, DALL-E)
- Transformative with unparalleled potential
- Popular model categories: Transformer models (GPT, BERT) and Stable Diffusion
- Large Language Models (LLMs) are significantly larger and resource-intensive than other ML models
- ~1B+ parameter range



Chatbots

Use Cases


Range of applications and verticals

Application Use Cases

Large Language Models (LLMs)

Limitations for enterprise use

Training LLMs

Resource-Intensive and costly

Large Language Models are...

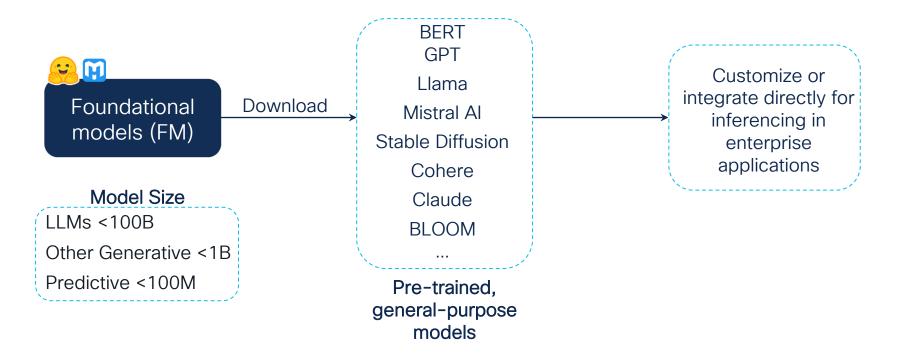
Pre-trained on a large corpus of publicly available unlabeled data

Training takes 1000s of GPUs over a span of months

Requires periodic re-training to stay up to date

GPT-3 Large – 175B parameters

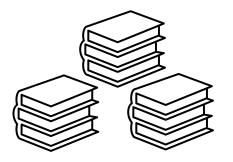
- Training Set Tokens: 300B
- Vocabulary Size: ~50k
- Number of GPUs: 10k x V100
- Training Time: One Month


Llama – 65B parameters

- Training Set Tokens: ~1-1.3T
- Vocabulary Size: ~32k
- Number of GPUs: 2048 x A100
- Training Time: 21 Days

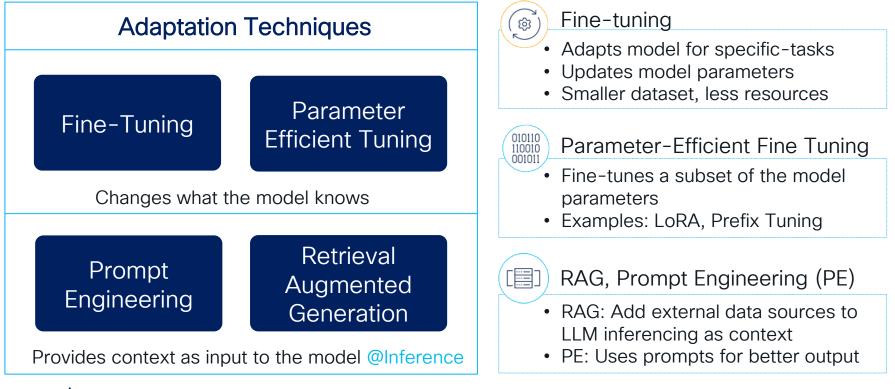
Building LLMs from scratch is cost-prohibitive for the average Enterprise

Use Foundational Models


Starting point for most Enterprises

LLMs lack domain knowledge

Limitations for enterprise use



Massive amount of general knowledge based on patterns seen during training LLMs have broad knowledge but lack domain-specific knowledge

Customizing LLMs

To address LLM limitations

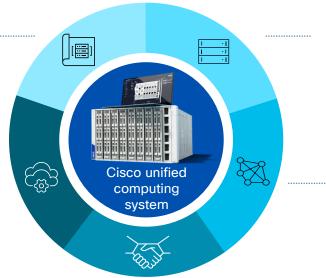
Building an Enterprise-class AI/ML Infrastructure

cisco ive!

Cisco Solution Portfolio

Full Stack Solutions delivering best-in-class value to our customers

#CiscoLive BRKCOM-2018

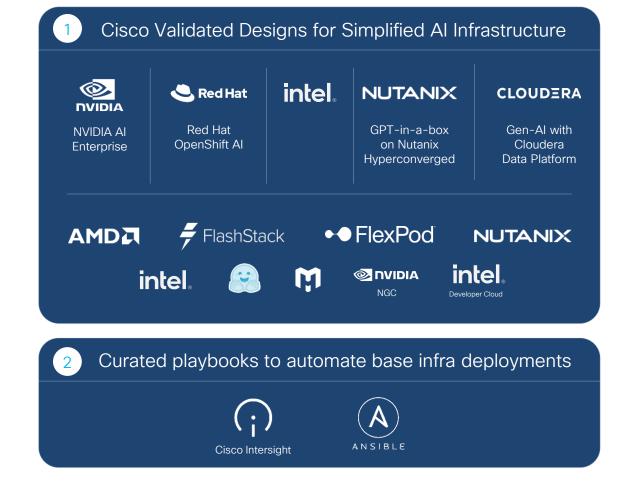

Cisco Validated Designs (CVD)

Accelerate

Ready to 'Go' solutions for faster time to value

Less risk

Reduce risk with tested architectures for standardized, repeatable deployments


Expert Guidance

CVDs provide everything from system designs to implementation guides, and ansible automation

Cisco TAC support

Single point of contact for solution. Cisco will coordinate with partners as needed to resolve issues

CVDs for AI/ML Infrastructure

Al Solution Roadmap

CISCO VALIDATED DESIGN	DESCRIPTION AVA	
Scaling FlexPod for GPU intensive Apps	Sizing guide for AI infrastructure leveraging real-life model simulations	
FlexPod with SUSE Rancher for AI Workloads	Foundational architecture for general-purpose AI deployments	
FlashStack with Red Hat OpenShift and NVIDIA AI Enterprise	Blueprint for deployment of Generative AI models for inferencing along with	
FlexPod with Red Hat OpenShift and NVIDIA AI Enterprise	performance metrics	
FlashStack for MLOps using Red Hat OpenShift Al		
FlexPod for MLOps using Red Hat OpenShift Al	Architecture to operationalize end-to-end AI workflow i.e., data prep, train, test & deploy, using Red Hat OpenShift AI	Q3 CY24
Cisco UCS and Red Hat OpenShift AI with Intel AI Enterprise Platform		
Al Solution for the Enterprise with Cloudera Data Platform	Integrated architecture for AI combining data lake, compute farm & storage services	Q2 CY24
Retrieval-Augmented Generation (RAG) with Cisco Converged Infrastructures	Framework for enterprise-specific knowledge augmentation in LMMs	Q3 CY24
Intel AI Enterprise with Cisco Converged Infrastructures	AI deployment guide with Intel GPUs and Intel AI inferencing software suite	Q3 CY24
Generative Pre-trained Transformers (GPT) with Nutanix	Al-ready HCl architecture to fine-tune and deploy LLMs	Q2 CY24
Edge Inferencing Solution on UCS Edge Platform	Blueprint for deployment of AI models for inferencing in edge environments	TBD
Secure by Design - Confidential AI with FlexPod	Zero-trust framework for AI deployments	TBD

cisco live

Key

Planned

AI/ML Infrastructure

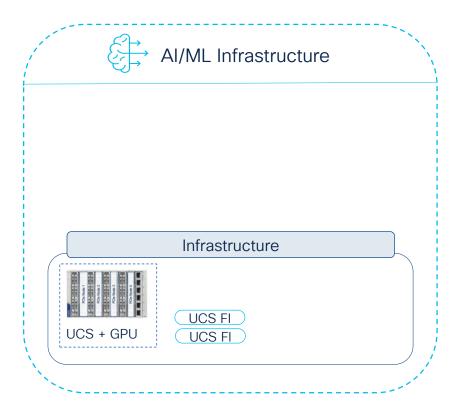
High-level Architecture

AI/ML Infrastructure AI/ML Use case AI/ML Use case AI/ML Use case (App + Model) (App + Model) (App + Model) ML Model MI Model MI Model ML frameworks, tools ML frameworks, ML frameworks, and runtimes tools and runtimes tools and runtimes **MLOps Kubernetes** Infrastructure Nexus Block/File Nexus Storage UCS FI UCS + GPU UCS FI Object Store

Generative AI and Predictive AI Use Cases

ML Infrastructure Design - Compute

For inferencing, training/fine-tuning (smaller datasets), and other workloads


Cisco UCS

UCS rack and blade server providing a range of flexible and modular options including NVIDIA GPUs, Intel CPUs and AMD in the future

Cisco Intersight

SaaS platform enabling softwaredefined compute and cloud-based infrastructure management from data center to edge locations

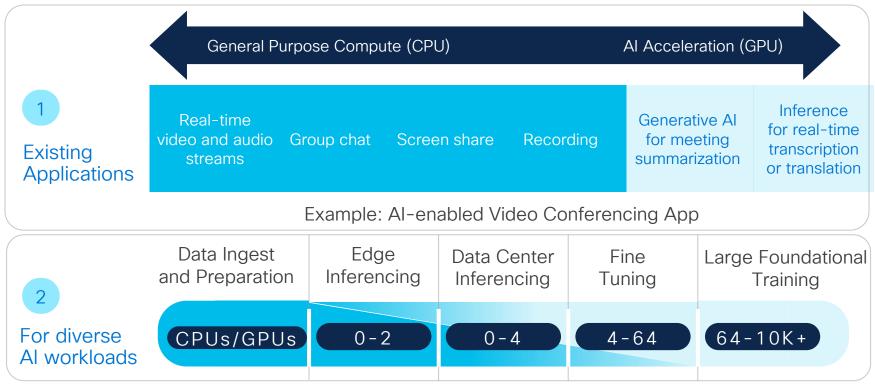


Modular architecture Ideal for Al component evolution

\$49_B

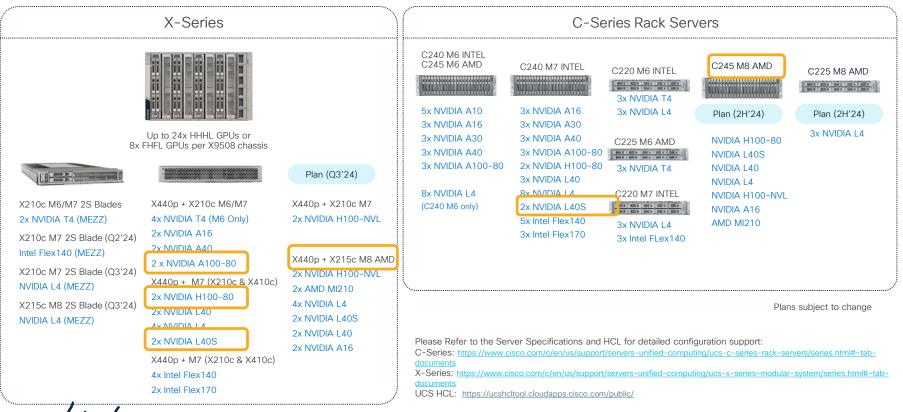
Global spending on data center construction by 2030

Modularity on X-Series


X-Series modular system decouples the lifecycles of CPU, GPU, memory, storage and fabrics – providing a perpetual architecture that efficiently brings you the latest innovations.

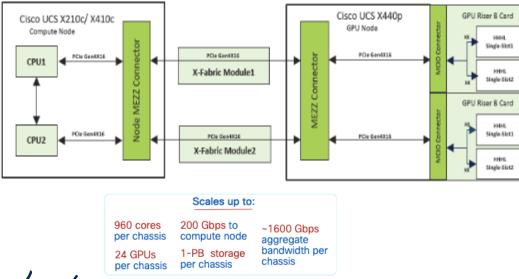
Cloud-powered composability with Cisco Intersight

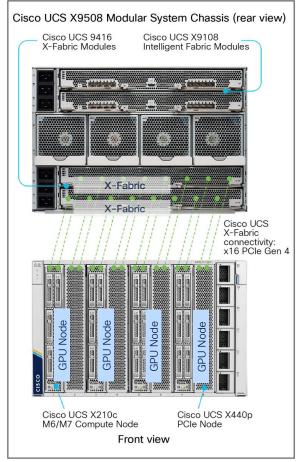
Flexible GPU acceleration across server nodes


No backplane or cables = easily upgrades

Flexible Acceleration

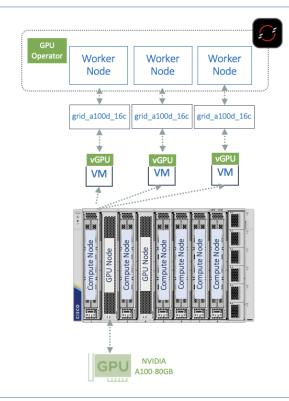
Cisco GPU Acceleration Options


Flexible Acceleration

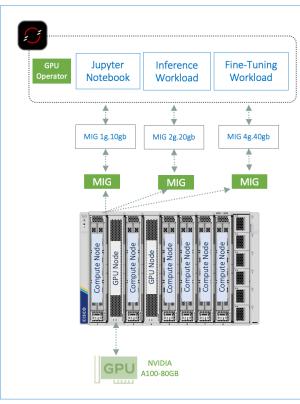


cisco ive!

X-fabric + GPUs


- Each X440p is paired with a compute node in adjacent slot
- X-fabric provides PCIe Gen4 connectivity from server to GPU node (1:1 mapping)

cisco live!


GPU Slicing - vGPU

NVIDIA vGPU Profile	Memory Buffer (MB)	Number of vGPUs per GPU
grid-a100d-80c	81920	1
grid-a100d-40c	40960	2
grid-a100d-20c	20480	4
grid-a100d-16c	16384	5
grid-a100d-10c	10240	8
grid-a100d-8c	8192	10
grid-a100d-4c	4096	20

- Memory isolation between instances but share compute
- Alternative to vGPU: GPU passthrough
- Can deploy Multi-Instance GPU (MIG) on vGPU instances

GPU Slicing – MIG

MIG Profile (A100-80)	GPU Instance - Memory (MB)	GPU Instance - SM Fraction	Number of GPU Instances	Compute Instances
MIG 7g.80gb	81920	7/7	1	7
MIG 4g.40gb	40960	4/7	1	4
MIG 3g.40gb	40960	3/7	2	3
MIG 2g.20gb	20480	2/7	3	2
MIG 1g.10gb	10240	1/7	7	1

- Multi-Instance GPI (MIG) securely partitions up to 7
 instances with isolation
- Can be further partitioned into compute instances
- Ampere (A100, H100) architecture onwards
- Bare-metal, VMs (GPU pass-through, vGPUs)

NVIDIA AI Enterprise (NVAIE)

NVIDIA GPU Licensing

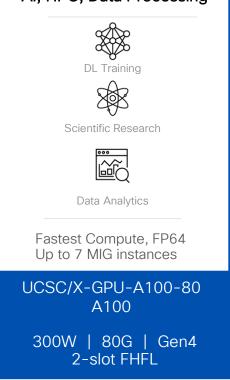
- Required for all GPUs except for H100
- Enables support for features and services (NIM)
- Throttle GPU performance if not licensed
- Use any ML stack with NVIDIA GPUs

cisco/

Single GPU AI + HPC Secure Multi-Instance GPU

AI Training and Interference

HPC + Data Analytics


Confidential Compute MIG

Up to 2 GPUs per node Up to 7 MIG Instances per node Up to 8 vCPU cores per MIG

UCSC/X-GPU-H100-80 H100


350W | 80G | Gen5 2-slot FHFL

Fastest Universal AI + Graphics Highest Perf Compute Text to Image/Video AI, HPC, Data Processing Text to Image/Video Al Multi-modal Generative Al DL Training + Inference Omniverse + Gen Al Up to 2 GPUs per node Fastest RT Graphics Largest Render Models UCSC/X-GPU-L40S L40S 350W | 48G | Gen4 2-slot FHFL

Sizing for Inferencing

cisco live!

LLM Inference – Estimating Memory

How much memory does my model need?

Ð	For a given precision: FP32, FP16, TF16
•	Model Memory Precision in Bytes x # of parameters (P)
-	
[Example: Llama2 – 13B parameters

cisco lite

LLM Inference – Estimating Memory

How much memory does my model need?

	For a given precision: FP32, FP16, TF16
•	Memory (Inference)
	Model Memory + ~20% overhead
	Example: Llama2 - 13B parameters
	· · ·
	Example: Llama2 – 13B parameters Memory (Inference): 26GB + 20% overhead = 31.2GB

cisco lite

LLM Inference – Estimating Memory

How much memory does my model need?

Memory (Training)

Model Memory

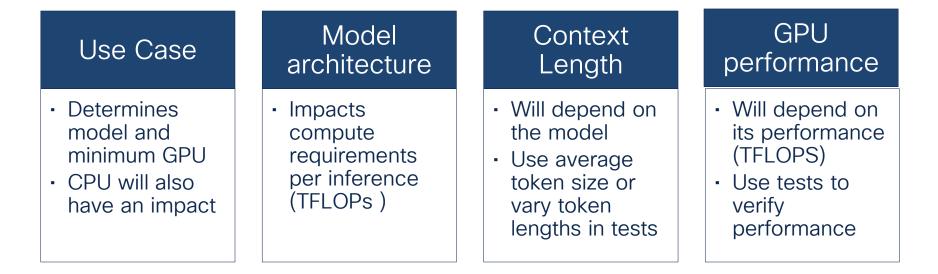
- + Optimiser Memory
- + Activation Memory
- + Gradient Memory

Example: Llama2 – 13B parameters

- Memory (Training): Model Memory (26GB) + Optimizer (4/6/12B/parameter * P) + Gradient (2/4B/parameter * P)
 - + Activation ((2*P 4*P) * Dataset (tokens))

Hugging Face Model Memory Calculator (Training & Inferencing): https://huggingface.co/docs/accelerate/main/en/usage_guides/model_size_estimator

LLM Inference – GPU Estimation Which GPU do I use?


Based on model memory, number of GPUs needed to load a 13B parameter model = any GPU with at least 32 GB

Similarly, a 70B parameter model, would require: ~2 A100-80 GPUs (168GB/80GB)

GPU Model	Memory (GB)	Memory Bandwidth (GB/s)	FP16 Tensor Core (TFLOP/s)
H100	80	2000	756
A100	80	1935	312
L40s	48	864	362
L4	24	300	121

LLM Inference Performance

How many GPUs do I need for inference?

LLM Inferencing Performance

Objective and Subjective

Latency

- Time to first token
- Total Generation Time
- Time to second/next time

Throughput


- Requests per second dependent on concurrency and total generation time
- Tokens per second is the standard measure (> 30 per second)

User experience – combination of low latency, throughput and accuracy

Prompt: What is Cisco UCS?

First Token

Cisco Unified Computing System (UCS) is a data center server computer product line composed of computing hardware, virtualization support, switching fabric, and management software. It was introduced by Cisco Systems in 2009. 43 Output Tokens

LLM Inference - Methodology

How many GPUs do I need for inference?

For a given model and inferencing runtime, start with enough GPUs to load the model based on memory sizing

Vary concurrent inference requests and measure throughput and latency metrics for a given token length (context)

Vary batch sizes and measure throughput and latency - maximizes compute for non-RT use cases

Add a second GPU and repeat concurrent inference request and batch size tests (as needed)

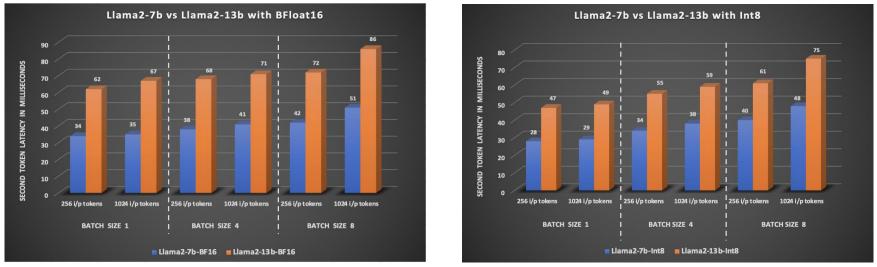
Monitor GPU compute and memory utilization, along with inferencing performance, across all tests

Select a configuration that optimally balances latency, throughput and cost

Sample tool: https://github.com/openshift-psap/llm-load-test

Sample Benchmark Results – A100-80 GPU

- Latency is higher as batch sizes increases
- For larger models
 - · Latency is at least 2x higher
 - Throughput is at least 2x lower for larger models
- Latency is 2x or higher for larger models,


Inference performance from a user perspective needs to factor in the complete inferencing pipeline, including host cpu and memory

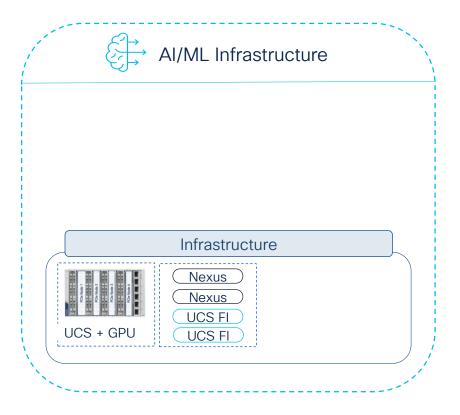
Model	Batch Size	Average La	itency (ms)	Average Thro	ughput (sentence/s)
		1 GPU	2 GPUs	1 GPU	2 GPUs
Llama-2-7B-Chat	1	151.341	132.611	6.608	7.541
	2	156.135	143.724	12.809	13.916
	4	181.916	175.997	21.988	22.728
	8	231.947	254.829	34.491	31.394
Llama-2-13B-Chat	1	445.038	325.023	2.247	3.077
	2	464.125	357.096	4.309	5.601
	4	512.184	436.986	7.81	9.154
	8	604.336	551.75	13.238	14.499

Sample Benchmark Results – CPU

- Results for Intel's 5th Gen Xeon processor with built-in Intel AMX accelerator
- Results show before and after quantization
- Greater benefit with quantizing larger models, larger data size also improves accuracy and quality of output
- DeepSpeed enabled optimization software for scaling and speeding up deep learning inference

***Hardware details** – Cisco UCS x210c M7 node, EMR CPU – 8568Y+ (48 cores), Memory – 1024GB, NVMe storage drive – 3.6TB ***Int8 –** Int8 is weight-only quantized (WOQ) to balance performance and accuracy

ML Infrastructure Design – Network

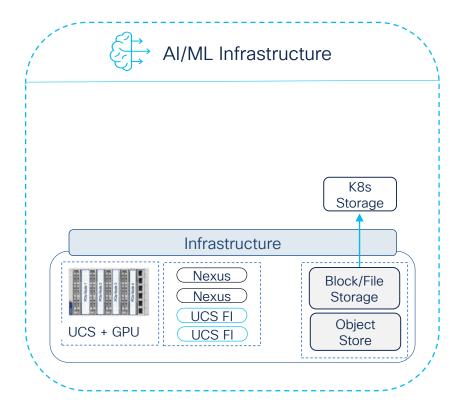

Cisco DC fabrics

Cisco ACI or VXLAN EVPN fabrics providing connectivity across top-of-racks that connect to compute and storage domains

Hyperscale Training Fabric

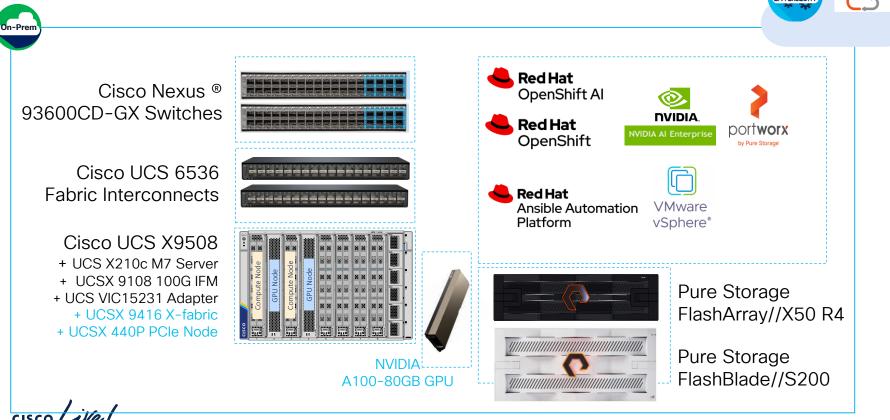
BGP and VXLAN EVPN based fabric, architected for dedicated training workloads

ML Infrastructure Design – Storage


Storage Partners

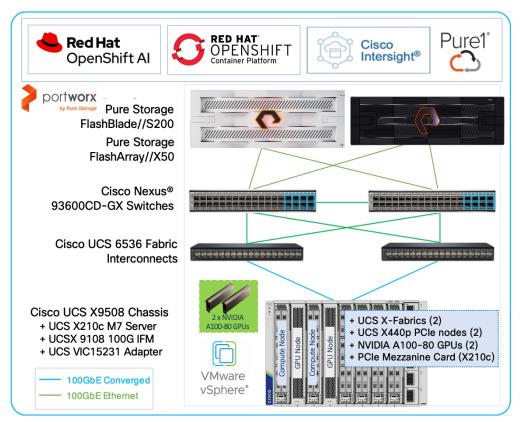
Range of eco-system enterprise storage partners including NetApp, Pure Storage, etc.

Local Storage


UCS-X system can support ~1 PB of local storage that can be leveraged using software-defined solutions such as Red Hat OpenShift Data Foundation, Nutanix for smaller efforts

Solution Components

MLOps for FlashStack AI using Red Hat OpenShift AI



Pure1

CISCO

Physical Topology

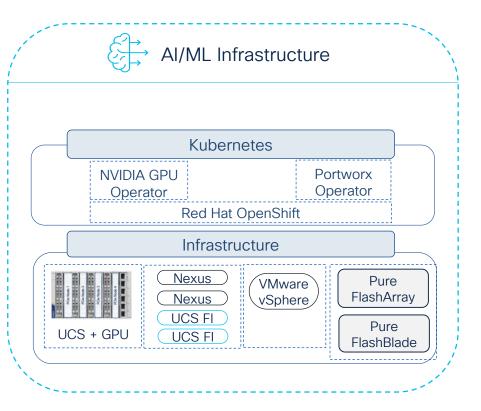
MLOps for FlashStack AI using Red Hat OpenShift AI

cisco / ille

ML Infrastructure Design – K8s

Kubernetes

ML ecosystem has embraced containers for its portability, ease, and auto-scaling capabilities


K8s Operators

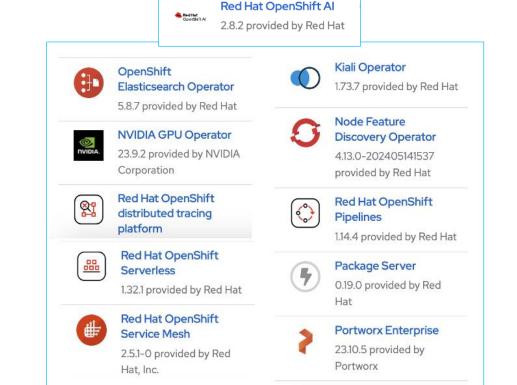
Operators provide a framework to add new capabilities to K8s including NVIDIA GPU and storage CSI operators

Virtualization

VMware vSphere enables GPU virtualization and mgmt. ease

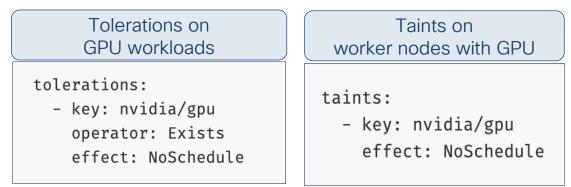
OpenShift Operators

NVIDIA GPU Operator


Automated the management of all NVIDIA software components required to use the GPU (drivers, DCGM, etc.)

Portworx Enterprise

Multi-cloud storage platform providing persistent storage with elastic scalability, with multiple storage backend options


Red Hat OpenShift Al

Provides a scalable foundation for AI/ML efforts to train, tune, serve, monitor and manage AI/ML experiments and models

Worker Node Considerations

• Add Taints/Tolerations

Worker nodes – Monitor CPU and memory and adjust as needed

K8s worker node

vCPUs: 16

RAM: 64GB

Storage: 500GB thin provisioned virtual disk

NIC: VMXNet3 connected to network

GPU Monitoring

Using nvidia-smi

GPU Burn Test

CUDA Version 12.0.0

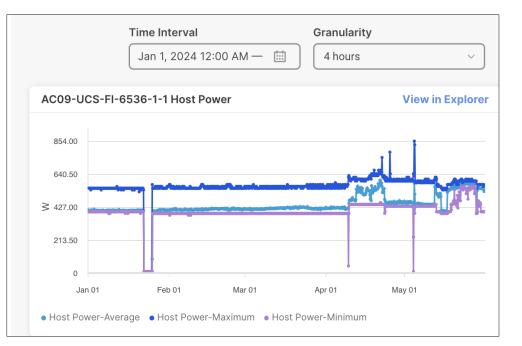
= CUDA =

Container image Copyright (c) 2016-2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.

		I-OCP-Installer OCP3]\$ oc exec	-it nvidia-driver-daemonset-413.92.	202309261804-0-zshvt nvidia-smi
GPU 0: GRID A100D-40C (UUID: GPU-ef5a53d2-34d3-11b2-99cb-1	46hdt8ct20d)			+
Using compare file: compare.ptx	I NVIDIA-SMI	525.60.13 Driver	Version: 525.60.13 C	UDA Version: 12.0
Burning for 60 seconds.		020.00.10 011001	101010111 020100110	
 30.0% proc'd: 128 (9171 Gflop/s) errors: 0 temps:	GPU Name	Persistence-M	Bus-Id Disp.A	
<pre>46.7% proc'd: 256 (18593 Gflop/s) errors: 0 temps:]</pre>	Fan Temp 	Perf Pwr:Usage/Cap 	Memory-Usage 	GPU-Util Compute M. MIG M.
55.0% proc'd: 384 (18567 Gflop/s) errors: 0 temps:			· +====================================	
 63.3% proc'd: 384 (18567 Gflop/s) errors: 0 temps:	0 GRID A	100D-40C On P0 N/A / N/A	00000000:02:00.0 Off 34133MiB / 40960MiB	0 99% Default
 71.7% proc'd: 512 (18536 Gflop/s) errors: 0 temps:				Disabled
 80.0% proc'd: 640 (18514 Gflop/s) errors: 0 temps:	+		+	+
90.0% proc'd: 768 (18466 Gflop/s) errors: 0 temps:				++
	Processes:			
100.0% proc'd: 896 (18449 Gflop/s) errors: 0 temps:	GPU GI	CI PID Typ	e Process name	GPU Memory
 Burning for 60 seconds.	ID	ID		Usage
Initialized device 0 with 40955 MB of memory (37077 MB ava	; 1 ======== ==			=============================
of it), using FLOATS	0 N/A		C ./gpu_burn	34069MiB
Results are 268435456 bytes each, thus performing 128 item				+
Tested 1 GPUs:				
GPU 0: OK				

cisco

GPU Monitoring Using DCGM Dashboard


[#]CiscoLive BRKCOM-2018 © 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

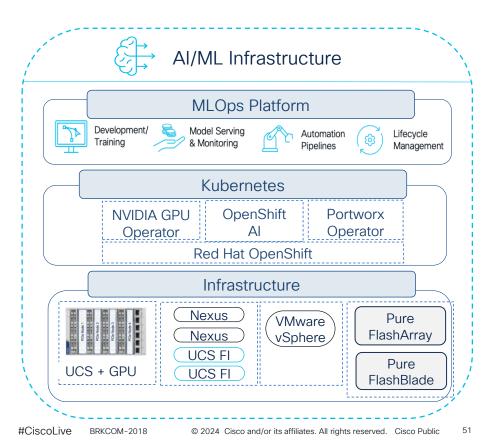
49

Server Power Consumption Cisco Intersight

UCSX-210C-M7 server with 2-socket 4th-Gen Intel[®] Xeon[®] Gold 6430 processors and1 x A100-80 GPU

Power
350W
300W
350W
72W

ML Infrastructure Design – MLOps


MLOps platform

OpenShift AI provides a scalable foundation for AI/ML efforts

K8s Operators

OpenShift AI operator is deployed to enable MLOps platform

Operationalizing AI/ML with Red Hat OpenShift AI

Hybrid MLOps Platform

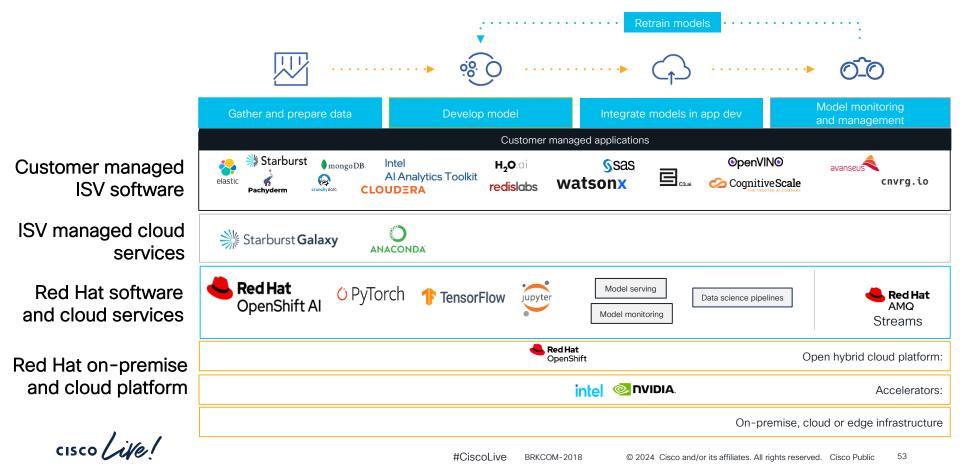
- An Al-focused platform that provides tools to train, tune, serve, monitor and manage Al/ML experiments and models.
- Collaborate within a common platform to bring IT, data science, and app dev teams together.
- Available as managed service or as selfmanaged on-site or in the cloud!
- Runs anywhere Red Hat Openshift does

Use core AI / ML libraries and frameworks including TensorFlow and PyTorch using Red Hat's notebook images or your own

Model serving & monitoring

Deploy models across any cloud, fully managed, and self-managed OpenShift and monitor their performance

Lifecycle Management


Create repeatable data science pipelines and integrate them with devops pipelines for delivery of models across your enterprise

Increased capabilities / collaboration

Create and share projects across teams. Combine Red Hat components, open-source software, and ISV certified software

Integrations

Starting point for your AI/ML project

≡ Pred Hat OpenShift Al		
		An upcoming update to pipelines may result in limited data accessibility
Applications >	Data Science Projects 🔸 KB W	lebinar > Create workbench
Data Science Projects	Create workbench	
Data Science Pipelines	Configure properties for you	ır workbench.
Model Serving	Jump to section	Name *
Resources		
	Name and description	Description
Settings 🗸 🗸	Notebook image	
Notebook images		
Cluster settings	Deployment size	
Accelerator profiles	Environment variables	Notebook image
Serving runtimes		Image selection *
User management	Cluster storage	Select one
	Data connections	
		Deployment size

cisco live!

Workbench Infra Setup

Cluster storage

Cluster storage will mount to /

Standard Data Science

Notebook image

Image selection *

Minimal Python

Select one

CUDA

PyTorch

TensorFlow

TrustyAl

HabanaAl Python v3.8, Habana v1.10

code-server

cisco ile

٥	Create new persistent storage This creates storage that is retained when logged out.
	Name *
	Description
	Persistent storage size
	20 + Gi ▼ Accelerator
	None
	None
	NVIDIA GPU
	Add variable

Data	connections		
🔽 Us	e a data connection		
۲	Create new data con	nection	
	Name *		
	Access key *		
	Secret key *		
		Deployment size	
	Endpoint *	Container size	
	Region	Small	nory Requests: 1 CPU, 8Gi Memory
		Medium Limits: 6 CPU, 24Gi Me	emory Requests: 3 CPU, 24Gi Memory
		Large Limits: 14 CPU, 56Gi M	emory Requests: 7 CPU, 56Gi Memory
		X Large Limits: 30 CPU, 120Gi I	Memory Requests: 15 CPU, 120Gi Memory

An upcoming update to pipelines may result in limited data accessibility. Learn more Applications > Data Science Projects > Cisco DC Demo: Fraud Detection-Intel Data Science Projects Cisco DC Demo: Fraud Detection-Intel Starts your Jupyter notebook environment for development Data Science Pipelines > Components Permissions Model Serving Jump to section Workbenches Create workbench Resources Notebook image Container size Status Name Workbenches Demo-FD-Intel_WorkBench ③ Open 🗹 Settings ~ TensorFlow Medium Running > Cluster storage Test-WB-1 ? Standard Data Science Stopped Open 🗹 Notebook images > Small Cluster settings Data connections Cluster storage Add cluster storage Accelerator profiles Pipelines Connected workbenches Name Type Serving runtimes Demo-FD-Intel_WorkBench_PV ③ Persistent storage Demo-FD-Intel_WorkBench : User management > Models and model servers Test-WB-1 ? Persistent storage Test-WB-1 : > **Data connections** Add data connection Type **Connected workbenches** Name Model Storage - Pure FB-1 ② Object storage No connections Model Storage - Pure FB - 2 ⑦ Object storage Demo-FD-Intel_WorkBench Pipeline Artifacts ③ Object storage No connections

■ Red Hat OpenShift Al			<u>ب</u>	0	kube:admin	•
	An upcoming update to pipelines may result in limited data ac	cessibility. <u>Le</u>	earn mor	<u>re</u>		
Applications 🗸	Pipelines - Object Detection > Model Training > Model Training					
Explore	Model Training Model Training	9		•	Actions	•
Data Science Projects	Graph YAML					
Data Science Pipelines 🛛 🗸						
Pipelines						
Runs						
Model Serving	ingest-data preprocess-data train-model	convert-mc	odel	- U	pload-model)

cisco live!

≡ Seed Hat OpenShift Al					ube:admin
Applications Enabled Explore	DS Cisco DC Demo: Fraud Detection - Triton ③ rhods-admin	Demo-FD-Triton_WorkBench 🗹 Test-FB-WorkBench 🗹	Stopped Stopped	11/15/2023, 11:28:03 PM	***
Data Science Projects				11/3/2023, 10:18:13	
Data Science Pipelines >	DS Cisco DC Demo: Fraud Detection-Intel	Test-WB-1 🗹	Stopped	AM	8 9
Model Serving	⑦ rhods-admin				
Resources				4/25/2024, 12:07:43	
Settings >	DS Demo-LLM-Application ③ kube:admin	WB-Demo-LLM-App Ґ	Stopped	PM	0 0 0
	DS Demo: LLM ③	LC-1_WB 🗹		4/18/2024, 7:13:33 AM	* * *

cisco live!

Model name 1	Project 1	Serving runtime	Inference endpoint	API protocol	Status
fraud ③	Cisco DC Demo: Fraud Detection-Intel Multi-model serving enabled	OpenVINO Model Server	Internal Service	REST	•
Mistral-7B- Instruct ⑦	Demo: LLM Single-model serving enabled	vLLM-REST	https://	REST	•
yolo ③	Object Detection Multi-model serving enabled	OpenVINO Model Server	Internal Service	REST	•
yolov5 ⑦	Object Detection Multi-model serving enabled	OpenVINO Model Server	Internal Service	REST	•

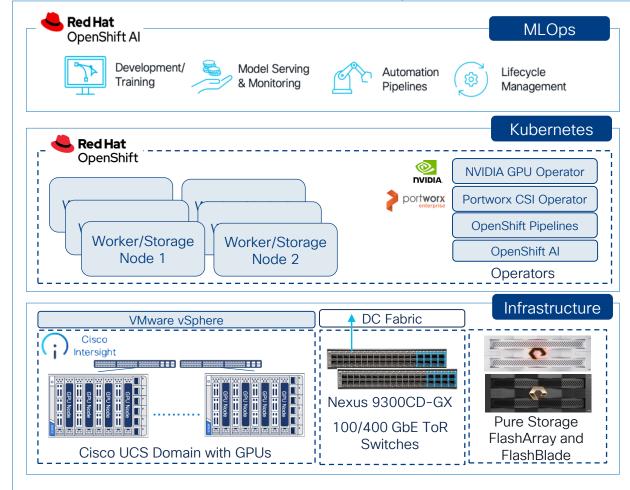
s

es

 \checkmark

>

>

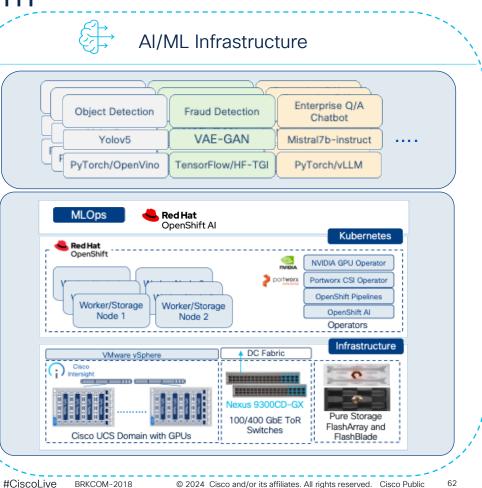


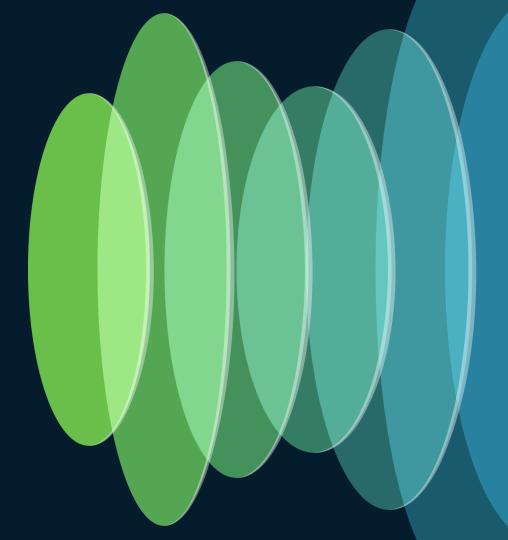
Applications Enabled Explore Data Science Projects	erving runtimes anage your model serving runtimes. ingle-model serving enabled Multi-model serving enabled 3					
Data Science Pipelines >	Name	E	nabled 💿	Serving platforms supported	API protocol	
Model Serving			_			
Resources	ii OpenVINO Model Server ③ Pre-installed			Single-model	REST	*
Settings 🗸 🗸	₩ vLLM-REST ⑦		~	Single-model	REST	:
Notebook images Cluster settings Accelerator profiles	₩ hf-tgi-runtime ⑦	(Single-model	REST	:
Serving runtimes User management	II Caikit TGIS ServingRuntime for KServe ③ Pre-installed	C		Single-model	REST	***
	II OpenVINO Model Server ③ Pre-installed	C		Multi-model	REST	**
	II OpenVINO Model Server (Supports GPUs) ③ Pre-installed			Multi-model	REST	***
	II Triton runtime 23.05 - added on 20230804 - with /dev/s	shm 🕲		Single-model Multi-model	REST	**
	II TGIS Standalone ServingRuntime for KServe ③			Single-model	gRPC	:

AI/ML Ready Infrastructure

FlashStack for AI with Red Hat OpenShift AI

Enterprise AI/ML Platform Scalable model delivery


Support multiple AI/ML efforts and use cases at scale with ease and consistency



Customer & employee experience Language & code generation Recommendation systems

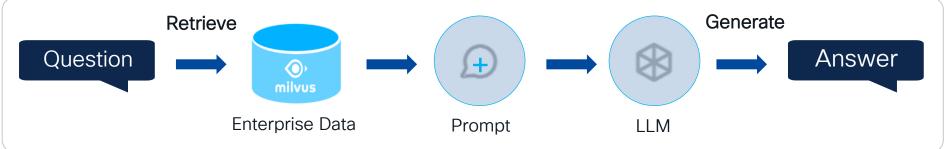
Demo - Q/A Chatbot using Enterprise knowledgebase

cisco ive!

UI Frontend

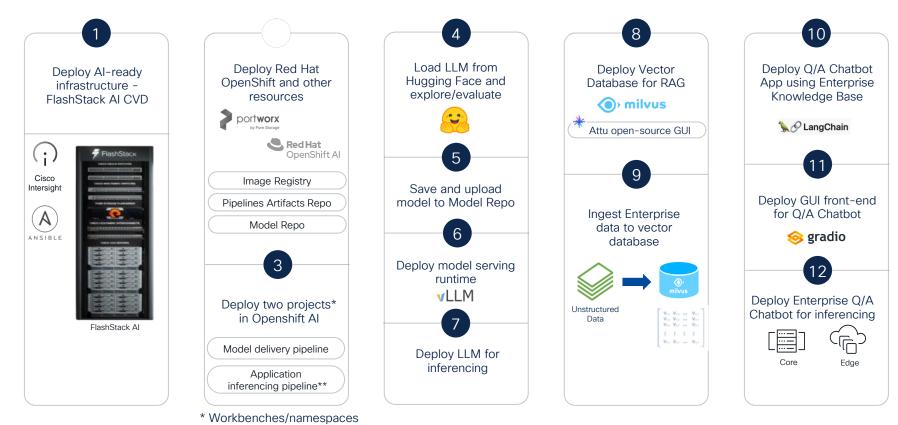
ISCO	Welcome to Inferencing On FlashStack AI Infrastructure with OpenShift A
nerative Al Inferencing	Predictive AI Inferencing
our Question:	
What does Cisco offer for	·AI/ML
	Ask
Modular System with 5th environment, along with utilizing specialized AI ac low latency networking of management mechanism	g solution for Generative AI models through the combination of Cisco UCS X-Series Gen Intel Xeon Scalable processors within a VMware-based Red Hat OpenShift the add-on service Red Hat OpenShift AI. This solution provides optimal performance by scelerators and optimized software frameworks in Cisco UCS, as well as high bandwidth, capabilities with Cisco Nexus 9000 switches. These switches offer congestion ns and telemetry to meet the demanding networking requirements of AI/ML applications. sco Nexus Dashboard Insights and Fabric Controller enhance the platform's visibility and
Sources:	

USE CASE COMPONENTS

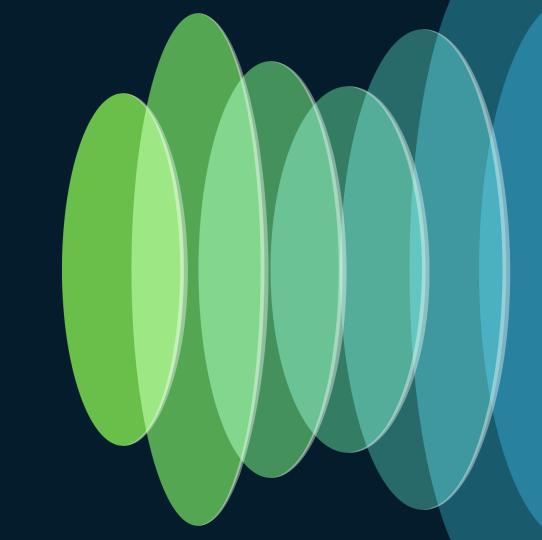

- Al-ready stack with Red Hat OpenShift
- MLOps (Red Hat OpenShift AI)
- NVIDIA GPU with 24GB of VRAM
- Large Language Model (LLM)
- Inferencing runtime (vLLM)
- Model Serving Platform (Kserve, Knative)
- ML Framework (PyTorch)
- Vector Store (Milvus)
- Embedding Model (NomicAl)
- Store and retrieval pipeline (LangChain)

64

• UI Engine (Gradio)


Demo Overview

Retrieval and Generation



Deployment Workflow

** For demo purposes

Wrap-up

cisco live!

Key Takeaways

Adopt MLOps to scale and accelerate AI/ML efforts with ease consistency

AI/ML workloads need a range of accelerators Rapid pace of innovations – flexibility is key

cisco / ile

Key Resources

Cisco MLOps CVD

 <u>https://www.cisco.com/c/en/us/td/docs/unified_computi</u> ng/ucs/UCS_CVDs/flashstack_ai_ml_ops.html

GitHub Repo

 <u>https://github.com/ucs-compute-solutions/FlashStack-</u> <u>OpenShift-Al</u>

Design Zone for AI Ready Infrastructure

<u>https://www.cisco.com/c/en/us/solutions/design-zone/ai-ready-infrastructure.html</u>

Complete Your Session Evaluations

Complete a minimum of 4 session surveys and the Overall Event Survey to be entered in a drawing to **win 1 of 5 full conference passes** to Cisco Live 2025.

Earn 100 points per survey completed and compete on the Cisco Live Challenge leaderboard.

Level up and earn exclusive prizes!

Complete your surveys in the Cisco Live mobile app.

Continue your education

 Visit the Cisco Showcase for related demos

- Book your one-on-one
 Meet the Engineer meeting
- Attend the interactive education with DevNet, Capture the Flag, and Walk-in Labs
- Visit the On-Demand Library for more sessions at <u>www.CiscoLive.com/on-demand</u>

Contact me at: asharma@cisco.com

Thank you

#CiscoLive