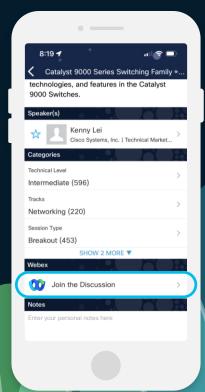
Cisco UCS 5th Gen VIC

Topology, packet flow, features and performance

Eldho Jacob, Leader Product Management @eljacob

Cisco Webex App

Questions?


Use Cisco Webex App to chat with the speaker after the session

How

- 1 Find this session in the Cisco Live Mobile App
- 2 Click "Join the Discussion"
- 3 Install the Webex App or go directly to the Webex space
- 4 Enter messages/questions in the Webex space

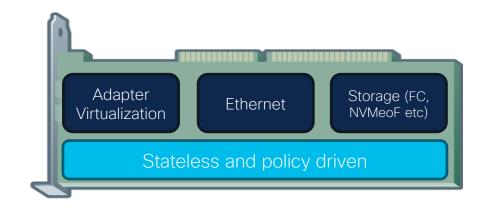
Webex spaces will be moderated by the speaker until June 7, 2024.

https://ciscolive.ciscoevents.com/ciscolivebot/#BRKDCN-2669

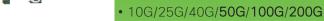
Agenda

- VIC 15000 series Introduction
- Topologies and Traffic Flow
- VIC Features: Secure boot, QinQ Tunneling, SR-IOV, Physical NIC mode
- VIC Performance (Reference material)
- Conclusion

UCS Virtual Interface Card



UCS VIC Family



Cisco VIC Evolution

- x16, PCle Gen 4
- CNA
- 512 virtual PCle Devices
- Single Wire Mamt
- NVMeoF: FC-NVMe, RoCEv2 (Performance)
- Overlays: NVGRE, VXLAN, Geneve (Performance)
- SR-IOV, usNIC, DPDK
- Laver 2 switching
- L3 ECN
- 16K Tx/Rx Ring Size
- Flow classification (Netflow)
- PTPv1/v2
- NPU For Packet Encap/Decap
- RSS, NetQueue, VMQ, VMMQ, RSSv2, VIC QinQ Tunneling, Physical NIC mode, windows poll mode

2022

• 10G/25G/40G/100G

512 virtual PCle Devices

• Overlays: NVGRE, VXLAN,

• usNIC. VM-FEX. DPDK

NVMEoF (FC-NVMe, RoCEv2)

x16 PCle Gen 3

CNA. X-Series

Geneve

Single Wire Mamt

Laver 2 switching

4th Gen

Industry First ASIC with dynamic IOV support

1st Gen

x16 PCle Gen1

128 virtual PCle

for ESX, KVM

Hypervisor Bypass

2009

2x10G

devices

2nd Gen

2x10G/40G

x16 PCle Gen 2

256 virtual PCle

Single Wire Mamt

· Flow classification

RSS and NetQueue

- x16 PCle Gen 3
- CNA
- Overlays: NVGRE, VXLAN
- usNIC. VM-FEX. DPDK
- Flow classification -
- Netflow NPU For Packet

3rd Gen

- 2x10G/40G

- Single Wire Mgmt
- RoCFv1

- Encap/Decap
- RSS. NetOueue and VMO

2012

2014

VMMQ, VIC QinQ Tunneling,

Flow classification (Netflow)

• RSS, NetQueue and VMQ,

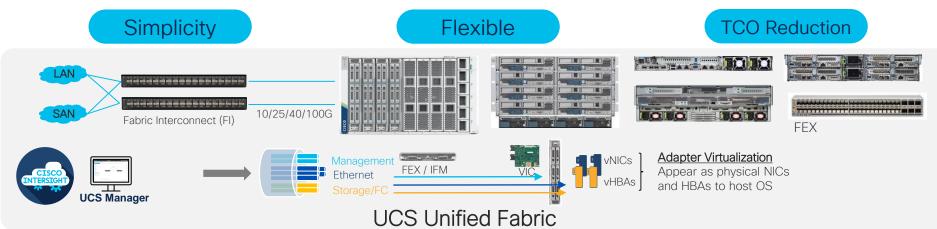
Physical NIC mode

NPU For Packet Encap/Decap

2018

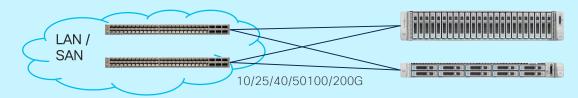
CNA

devices

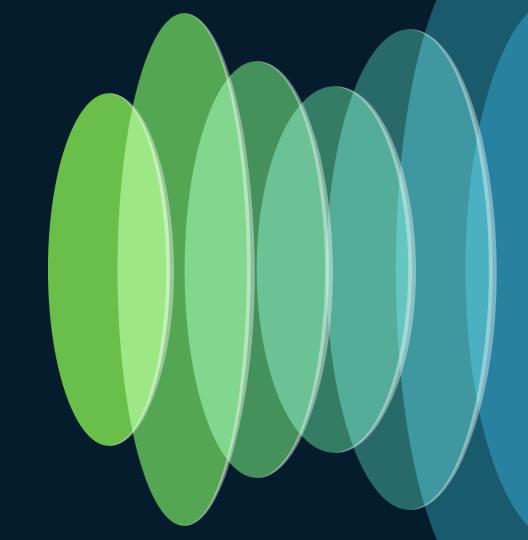

(Netflow)

#CiscoLive

BRKCOM-2669


© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

UCS VIC Topology



VIC in Standalone Fabrics

Topologies

VIC 15000 for B-, X- Series

15230

15420

15422

15411

VIC 15230

2x 100 Gbps mLOM

15230 with VIC Secure Boot is the latest (and last) fifth generation VIC for X-Series. VIC 15231 is the non-secure boot version.

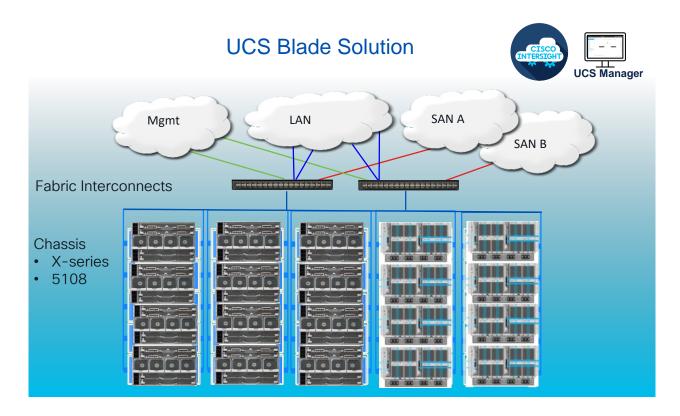
VIC 15422

4x 25 Gbps Mezzanine

The 15420's neighbor, with 4x25G in Mezzanine form factor, connected with the 15000-bridge module, provides X-Fabric connection as well

VIC 15420

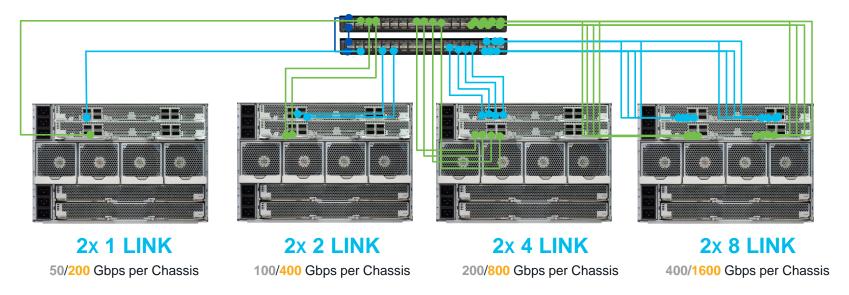
4x 25 Gbps mLOM


The 4x25G mLOM has VIC secure-boot and the option to add the 15422 mezzanine adapter

VIC 15411

4x 10/ 2x 40 Gbps mLOM

The non-secure boot version mLOM for B-series. 40G enabled via port-expander.


Topology1: Unified Fabric with Blade Chassis

UCS Fabric Topologies: Chassis Bandwidth Options for X-series

- Wire once for Connectivity and Discovery
- Add cables for increased bandwidth

IFM-25G/IFM-100G

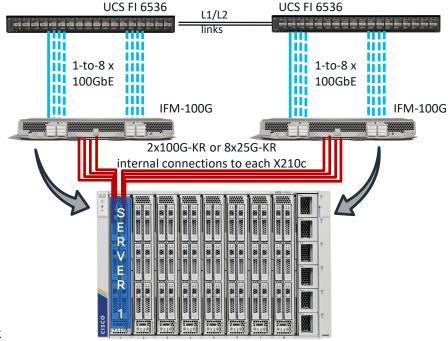
X-Series: VIC-15000, IFM-100G, FI-6536 Connectivity

X-Series 9508 chassis can have 8x 100G-KR or 32x 25G-KR ethernet connections between an IFM-100G or IFM-25G and eight X210c compute node.

Two interface-types on IFM

- Network Interface (NIF), interface on IFM which connect to Fabric-Interconnect (blue-links), 25/100Gbps depending on the IFM.
- Host Interface (HIF), internal ports on IFM that connect to blade-server (red-links). HIF can be 25G or 100G depending on IFM & VIC.

The HIF port speed of **IFM-100G** to each X210c, can be 1x 100G or 4x 25G depending on the inserted VIC


- 100G-KR (VIC 15231)
- 4x 25G-KR (VIC 15420/15422)

The HIF port speed of **IFM-25G** to each X210c, is always 25G for all VICs.

X210c compute node can have one or two VIC's & the following combinations

- MLOM (15230 or 15420)
- MLOM + PCle (15420 + 15422)

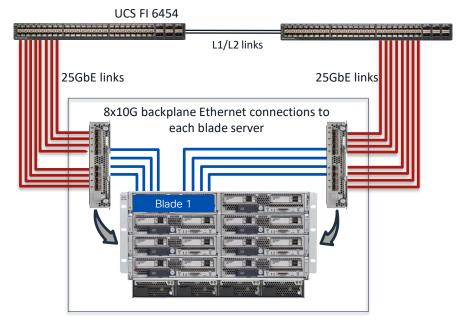
Depending on the Fabric-Interconnect, IFM, and VIC. The vNIC on a VIC adapter will see 50G or 100G total bandwidth and single traffic flow max of 25G or 100G.

UCS X-Series Chassis with X9108-IFM-100G

Throughput per UCS x210c/x410c compute node

x210c/x410c Compute Node	FI-6536 + X9108-IFM-100G	FI-6536/6400-Series + B X9108-IFM-25G	FI-6536 + X9108-IFM-25G/100G Or FI-6400-Series + X9108-IFM-25G	FI-6536 + X9108-IFM-25G/100G Or FI-6400-Series + X9108-IFM-25G	
x210c/x410c configuration	VIC 15230 or 15231	VIC 15230 or 15231	VIC 15420	VIC 15420 + VIC 15422	
Throughput per node	200G (100G per IFM)	100G (50G per IFM)	100G (50G per IFM)	200G (100G per IFM)	
vNICs needed for max BW	2	2	2	4	
KR connectivity per IFM	1x 100GKR	2x 25GKR	2x 25GKR	4x 25GKR	
Single vNIC throughput on VIC	100G	50G (2x25G KR)	50G (2x25G KR)	50G (2x25G KR)	50G (2x25G KR)
Max Single flow BW per vNIC	100G	25G	25G	25G	25G
Single vHBA throughput on VIC	100G	50G	50G	50G	50G

B-Series: VIC 15411, IOM-2408, FI-6454


5108 have 32x 10G backplane ethernet connections between an IOM and 8x B200 bladeservers, thus each server has 4x 10G backplane traces per IOM. Various interface-types on IOM

- Network Interface (NIF), interface on IOM which connect to Fabric-Interconnect (red-links). 10/25/40Gbps depending on the IOM.
- Host Interface (HIF), are backplane ports on IOM that connect to blade-server (blue-links). 10G-KR connections per server can mux to 40G-KR4 in IOM-2304 and 2408. 40G-KR4 with 15411+PE.

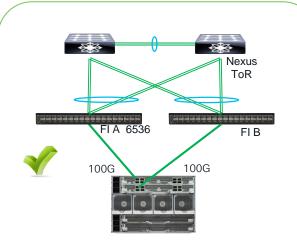
Half-width blade-server (B200-M6) can have the following combinations with VIC 15411

- MLOM (VIC-15411)
- MLOM (VIC-15411) + port-expander (PE)

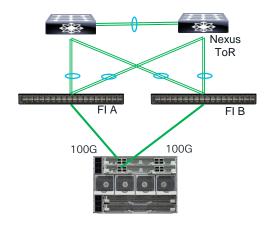
Depending on the Fabric-Interconnect, IOM, VIC and blade-server, vNIC on a VIC adapter will see 10G, 20G, or 40G total bandwidth and single traffic flow max of 10G, 25G, or 40G.

UCS 5108 Blade Server Chassis with IOM 2408

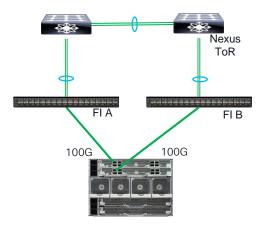
B200 M6 supported combinations


Fabric Interconnect + I/O Module	FI-6536/ 6400-series + IOM-2408	FI-6536/ 6300 + IOM-2304	FI-6300 / 6400 + IOM- 2208	FI-6300 / 6400 + IOM-2204	
Server	B200M6	B200M6	B200M6	B200M6	
15411	40G	40G	40G	20G	
15411 + PE	80G	80G	N/A	N/A	

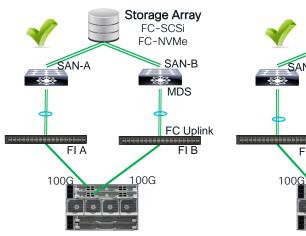
^{*} Recommended combination of FI/IOM/VIC


- No support for FI 6248 or 6296 with B200-M6, hence with 15411
- VIC 15411 support in IMM and UCSM is available from 4.2(3) release
- FI-6536 is supported in IMM and UCSM from 4.2(3) release.

LAN connectivity with FI 6536 in end-host mode



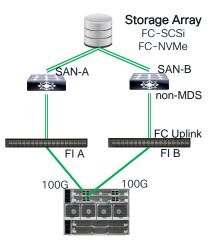
- Recommended configuration
- Port-channel from FI to Nexus-9K in VPC or a ToR in multi-chassis trunking (MCT)
- ToR switch ports should be STP edge-port
- Provides redundancy for FI, ToR and uplinks
- FI uplink BW aggregation via port-channel
- Avoids ToR to ToR L2 switching
- ToR fabric could be 3-tier, EVPN-VxLAN, IPfabric, CLOS

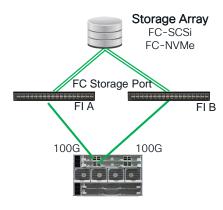

- Supported but not recommended with VPC/MCT
- vNICs gets pinned to one uplink & are distributed across multiple uplinks.
- ToR & uplink redundancy is available but will have re-pinning failover time

- Supported but not recommended
- No ToR level redundancy

FC-SAN connectivity with FI 6536

Storage Array
FC-SCSi
FC-NVMe


SAN-A

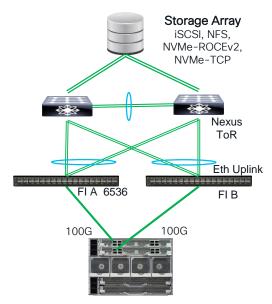

SAN-B

MDS

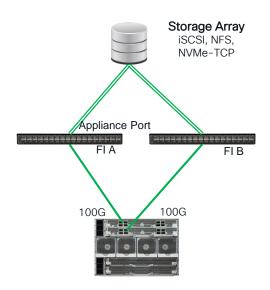
FC Uplink
FI A

FI B

- FC end-host mode (N-port on FI & Fport on MDS)
- · Port-channel from FI to MDS
- Port-channel for HA & BW aggregation
- VSAN is carried into MDS SAN with VSAN trunking
- 4 vHBA per server for higher redundancy
- Bigger SAN domain


- FC switch-mode (E-port on both)
- Port-channel from FI to MDS
- Provides HA & BW aggregation
- VSAN is carried into MDS SAN
- 4 vHBA per server for higher redundancy
- SAN domain is limited to 255
- Can have storage array connected to FI along with MDS SAN connectivity

- FC end-host mode
- Recommended for non-MDS
- No port-channel with non-MDS
- VSAN virtualization is not available on non-MDS
- 4 vHBA per server for higher redundancy


- FC switch mode
- 4 vHBA per server for higher redundancy

IP-SAN connectivity with FI 6536

- VPC/MCT port-channel is recommended
- MTU 9216 should be enabled in system-gos
- TCP based storage can use best-effort class but if required no-drop could be enabled across FI & TOR
- ROCEv2 would require no-drop QoS-class along with PFC enabled on FI & ToR
- Multiple vNICs on server for redundancy
- Best-practice connectivity from Nexus to Storage is different for each vendor

- For small to medium deployments
- MTU 9216 should be enabled in system-qos
- Can avoid ToR for storage access
- Direct port-channel from an FI to a Storage controller is possible.
- No VPC like port-channel towards Storage Array

VIC 15000 for C- Series

15427

15425

15237

15235

VIC 15427

4x 10/25/50 Gbps mLOM

The 15427 adapter offers four 10/25/50G ports in the mLOM slot on C-Series M6 and M7 servers. Replaces 15428

VIC 15237

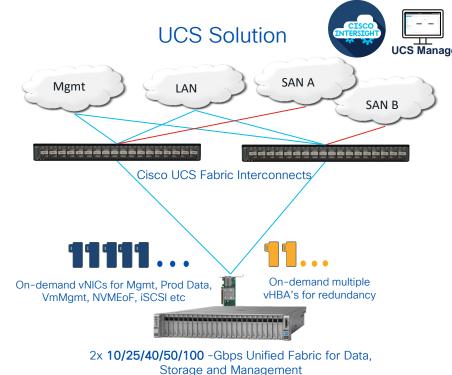
2x 40/100/200 Gbps mLOM

The 15237 adapter offers up to 200G throughput in the dedicated mLOM slot on C-Series M6 and M7 servers. Replaces 15238

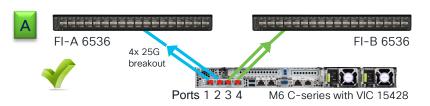
VIC 15425

4x 10/25/50 Gbps PCle

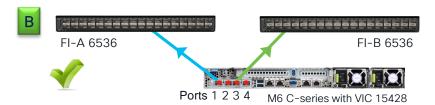
The 15425 adapter provides four 25/50G ports in a PCle slot for segregated traffic and expanded connectivity


VIC 15235

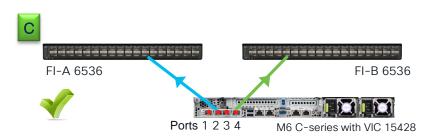
2x40/100/200 Gbps PCle


The 15235 adapter provides 200G connectivity in PCIe slots for expanded throughput and physical separation.

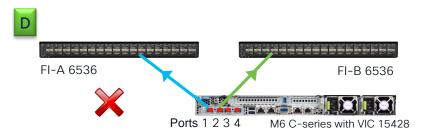
Topology-2: Unified Fabric with Rack Servers



Topology-2: VIC 15427, 15428, 15425 connectivity to FI 6536



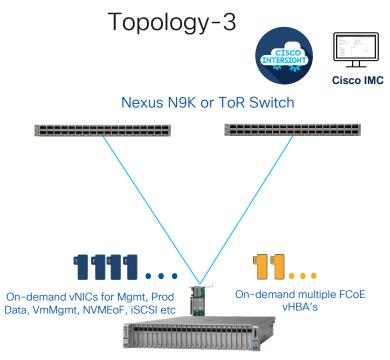
VIC ports 1 & 2 to FI-A and ports 3 & 4 to FI-B - Supported



VIC port 1 to FI-A and port 3 or 4 to FI-B - Supported

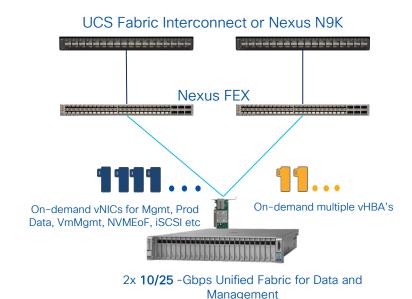
Connectivity with Fabric Interconnect support only Switch Independent modes across Linux, ESXi & Windows OS.

VIC ports 2 to FI-A and ports 4 to FI-B - **Supported**VIC ports 1 or 2 to FI-A and ports 3 or 4 to FI-B - **Supported**

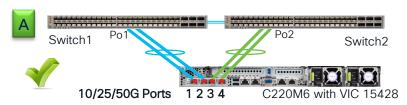

Not Supported

- 1. VIC port 1 to FI-A and port 2 to FI-B
- 2. VIC port 3 to FI-A and port 4 to FI-B

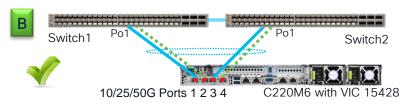
https://www.cisco.com/c/en/us/support/docs/servers-unified-computing/ucs-b-series-blade-servers/200519-UCS-B-series-Teaming-Bonding-Options-wi.html


cisco life!

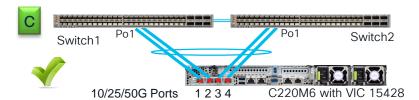
UCS VIC Additional Topologies: Rack Server Environment


2x 10/25/40/50/100/200 - Gbps Unified Fabric for Data and Management

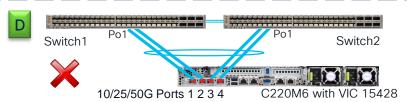
Topology-4: FEX for rack-server scalability



Topology-3: VIC 15427, 15428, 15425 connectivity to Nexus switch in standalone mode


VIC ports 1 & 2 to SW1 and ports 3 & 4 to SW2 - Supported

- With Default VIC port-channel (PO) enabled
- Requires PO config on switch with switch dependent bonding
- Cannot support MCT/VPC at ToR switch and OS IP-hash load-balancing
- MAC-hash or port-ID load-balancing in OS should be used to avoid mac-move on ToR


VIC ports 1 or 2 to SW1 and ports 3 or 4 to SW2 - Supported

- With VIC port-channel enabled and using one link in (1,2) & (3,4) port pair
- Supports switch dependent & switch-independent OS teaming/bonding
- Supports MCT/VPC at ToR switch and all OS teaming load-balancing options

VIC ports 1, 2, 3, 4 to SW1 & SW2 - Supported

- With VIC port-channel disabled
- Supports MCT/VPC at ToR switch and all OS teaming/load-balancing options

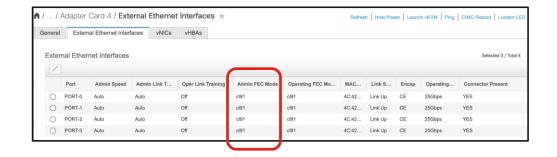
VIC ports (1,2) to SW1 & (3,4) to SW2 - Not Supported

With VIC port-channel enabled

These connectivity options are applicable at 10G/25G

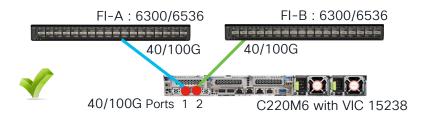
Debugging connectivity issues due to FEC at 25G

- Match FEC on Switch & VIC
- Some older N9K have default at CL74 and defaults are different across switches.
- FEC on VIC at 25G is CL91 by default
- Auto-FEC is only for copper cables
- Auto-FEC is disabled in VIC
- Ex: on how to set CL91 on N9K


[N9K-2(config-if)# exit [N9K-2(config)# [N9K-2(config)# int eth 1/1 [N9K-2(config-if)# fec cl91 [N9K-2(config-if)#

- Check FEC config in CIMC
- FEC should match on both ends of the link

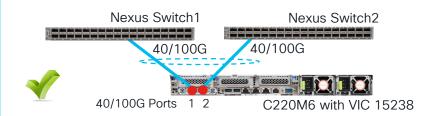
- Cables/transceivers also have minimum FEC requirement
- Ex: SFP-25G-SR-S/ CSR-S / LR-S have a minimum FEC of CL91



VIC 15237, 15238, 15235 connectivity to Fabric Interconnects or Nexus switch

#CiscoLive

BRKCOM-2669


UCSM / IMM Managed

VIC ports 1 to FI-A and ports 2 to FI-B - Supported

- Connectivity to fabric-interconnect support only switch independent teaming
- Cannot support MCT/VPC at FI and OS IP-hash kind of loadbalancing
- MAC-hash or port-ID load-balancing in OS should be used to avoid mac-move on FI
- There is no need to configure FEC

IMC or Standalone mode

VIC ports 1 to SW1 and ports 2 to SW2 - Supported

- Supports switch dependent & switch-independent OS teaming/bonding
- Supports MCT/VPC at ToR switch and all OS teaming loadbalancing options
- Default FEC of CL-91 on VIC works for all cable types, so ensure switch end is also CL-91

VIC 15000 Series

- 5th Gen VIC card for X-, B-, C- Series
- Supports 10G/25G/40G/50G/100G/200G
- CNA, Single Wire Mgmt
- Dynamic FC and Ethernet virtual interfaces
- x16 PCle Gen 4
- NVMeoF: FC-NVMe, RoCEv2
- Overlays: NVGRE, VXLAN, GENEVE
- RSS, NetQueue, VMQ, VMMQ, RSSv2
- SR-IOV, SIOV*, usNIC, DPDK
- PTPv2, L3ECN*, 16K Rx Ring Size
- QinQ Tunneling, Physical NIC mode
- Secure boot for VIC 15420,15422,15235,15425
- 15000 series VIC's
 - VIC 15231, VIC 15428 with 4.2(2)
 - VIC 15411, VIC 15238 with 4.2(3)
 - VIC 15420, VIC 15422 with 4.3(1)
 - VIC 15235, VIC 15425 with 4.3(2)
 - VIC 15230, VIC 15237, 15427 with 4.3(2c)

* HW capable

VIC 15231 /15230 2x100G mLOM (Xseries-M6/M7)

VIC 15420 4x25G ml OM (X - M6/M7)

VIC 15422 4x25G Mezz (X - M6/M7)

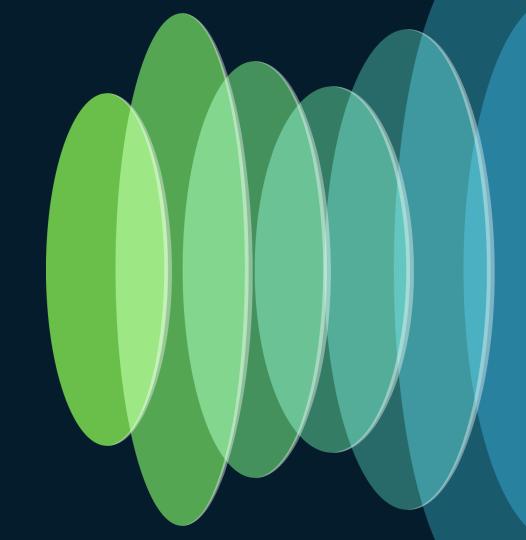
VIC 15411 10/40G mLOM (B200-M6)

* 200G VIC

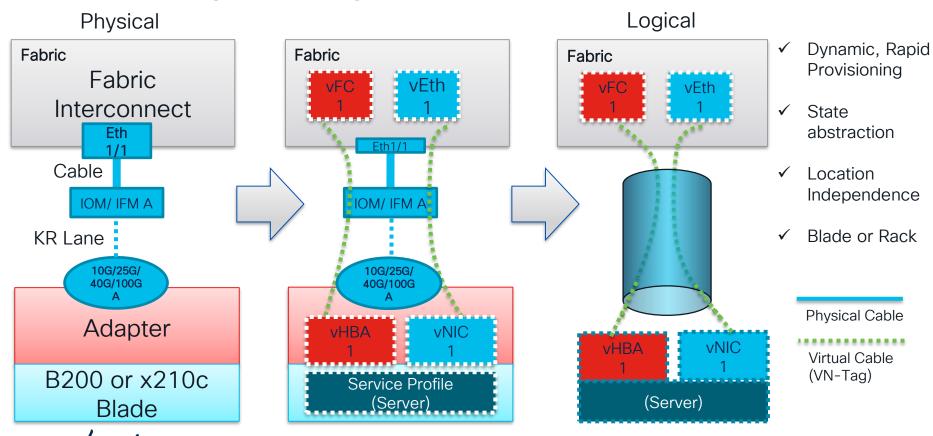
VIC 15238 /15237 40/100/200G mLOM M6/M7 C-Series)

VIC 15428 /15427 10/25/50G mLOM (M6/M7 C-Series)

VIC 15235 VIC 15425 40/100/200G PCle 10/25/50G PCle (M6/M7 C-Series) (M6/M7 C-Series)

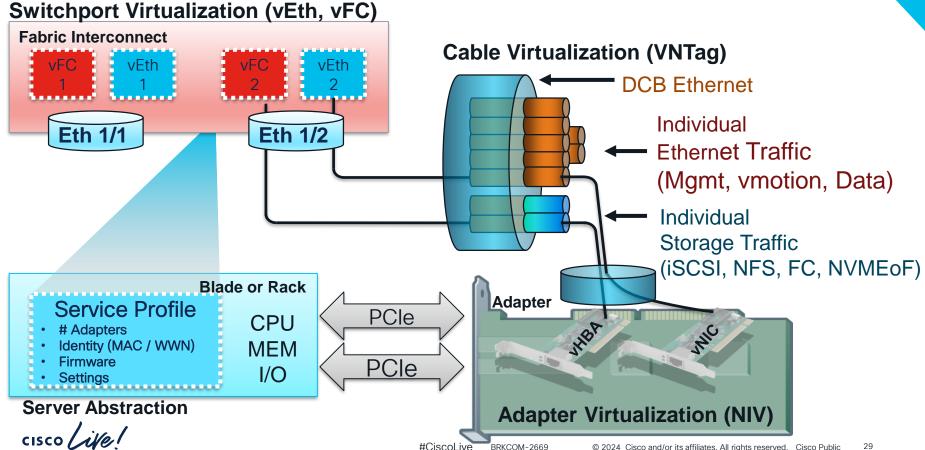


VIC 15000 Series for X-Series and C-Series


	VIC 15231/ 15230 (UCSX-ML- V5D200G / UCSX-ML- V5D200GV2)	VIC 15428 /15427 (UCSC-M- V5Q50G / UCSC-M- V5Q50GV2)	VIC 15411 (UCSB-ML- V5Q10G)	VIC 15238 /15237 (UCSC-M- V5D200G /UCSC-M- V5D200GV2)	VIC 15420 (UCSX-ML- V5Q50G)	VIC 15422 (UCSX-ME- V5Q50G)	VIC 15425 (UCSC-P- V5Q50G)	VIC 15235 (UCSC-P- V5D200G)
Server support	X210c M6/M7	M6/M7 C- Series	B200-M6	M6/M7 C- Series	X210c M6/M7	X210c M6/M7	M6/M7 C- Series	M6/M7 C- Series
Speed	100G	10/25/50G	10/40G	40/100/200G	25G	25G	10/25/50G	40/100/200G
Max Ports	2	4	2	2	4	4	4	2
Form Factor	mLOM	mLOM	mLOM	mLOM	mLOM	Mezz	PCle	PCle
FI Series	6400/6536	6300/6400/65 36	6300/6400/65 36	6300/6536	6400/6536	6400/6536	6300/6400/65 36	6300/6536
IOM / IFM / FEX	IFM-25G/ IFM- 100G	93180YC-FX3 2348-UPQ	IOM 2204/2208 /2304/2408	-	IFM-25G/ IFM- 100G	IFM-25G/ IFM-100G	93180YC-FX3 2348-UPQ	-
Chassis	X9508	-	5108	-	X9508	X9508	-	-
Supported Release	4.2(2)/ 4.3.2c	4.2(2)/ 4.3.2c	4.2(3)	4.2(3)/ 4.3.2c	4.3(1)	4.3(1)	4.3(2)	4.3(2)

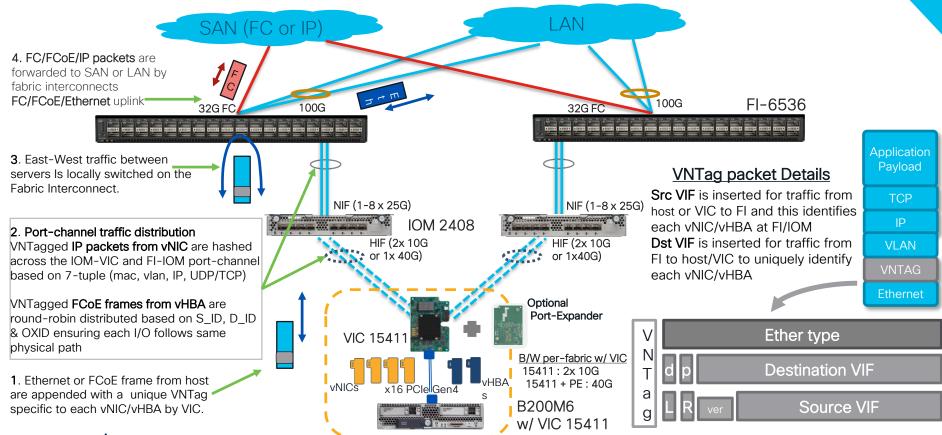
cisco life!

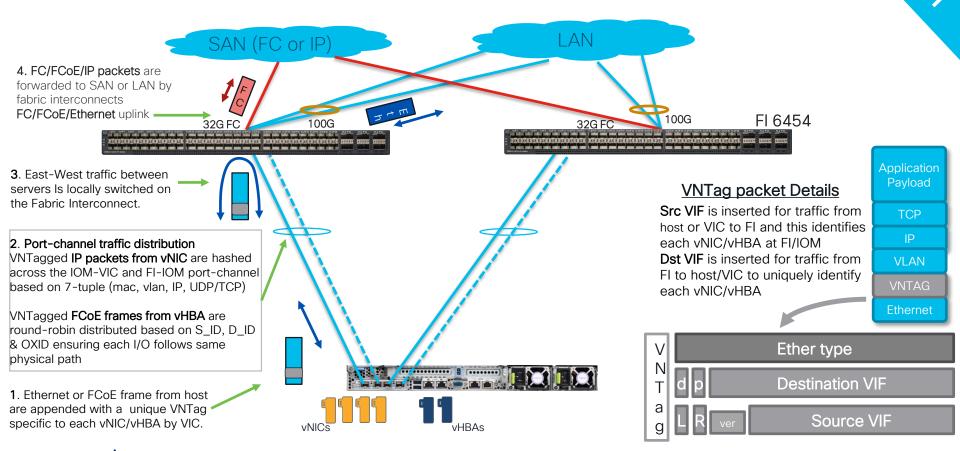
Traffic Flow



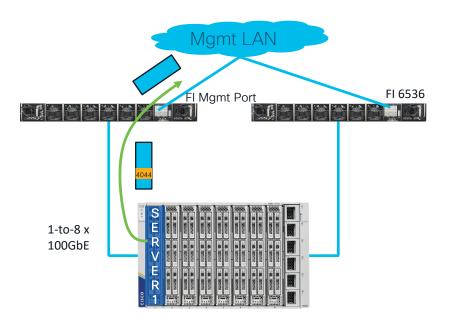
Abstracting the Logical Architecture

#CiscoLive

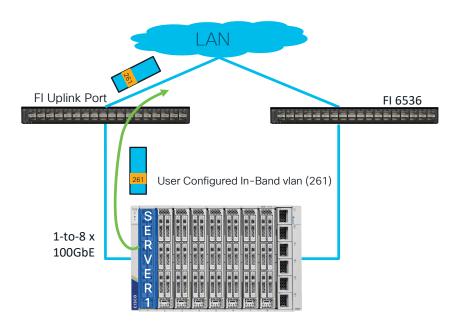

Cisco UCS: Infrastructure Virtualization


4th/5th Gen Fabric – FC/IP Packet Flow with X-Series

4th/5th Gen Fabric - FC/IP Packet Flow with B200

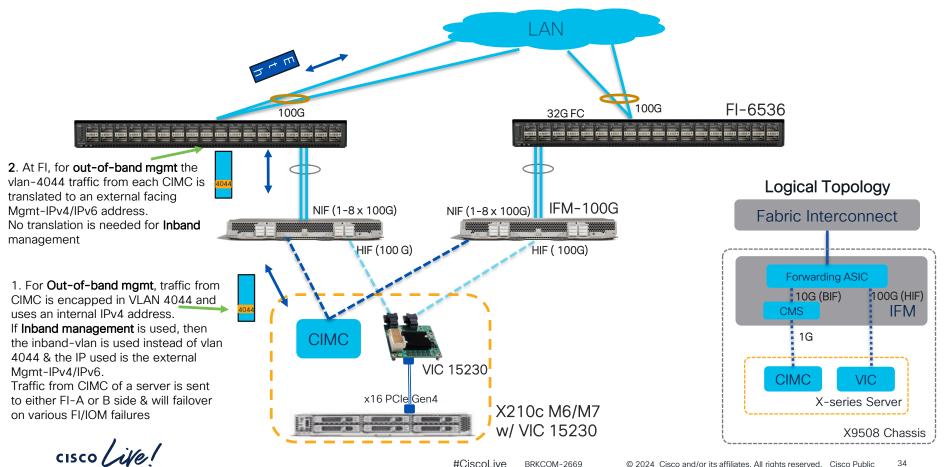


4th/5th Gen Fabric – FC/IP Packet Flow with C-Series

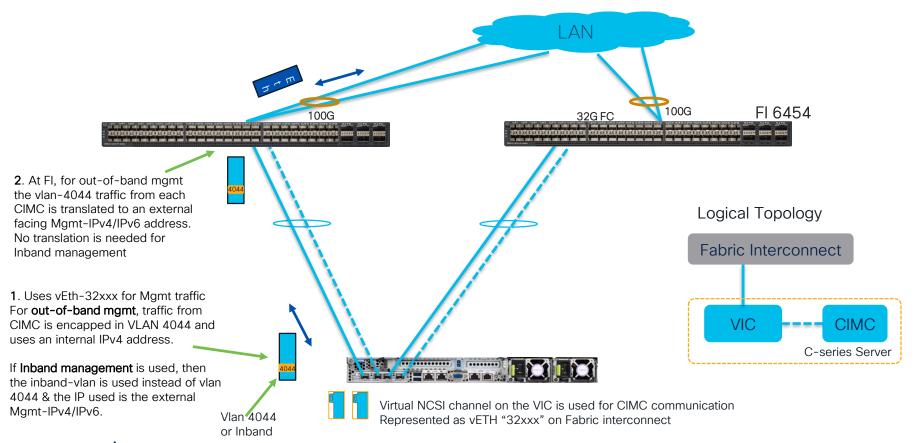


X-/B-/C- series Server Management Options

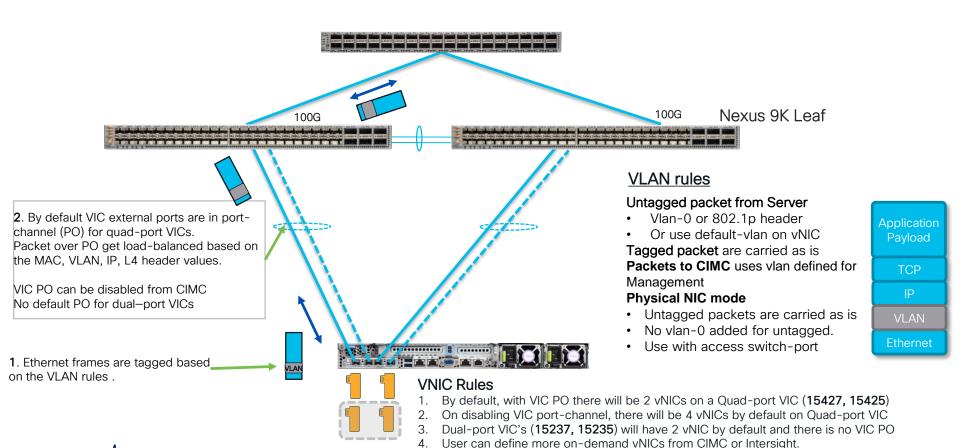
Out-of-Band Management



In-Band Management



4th/5th Gen Fabric - Management traffic flow in X-Series

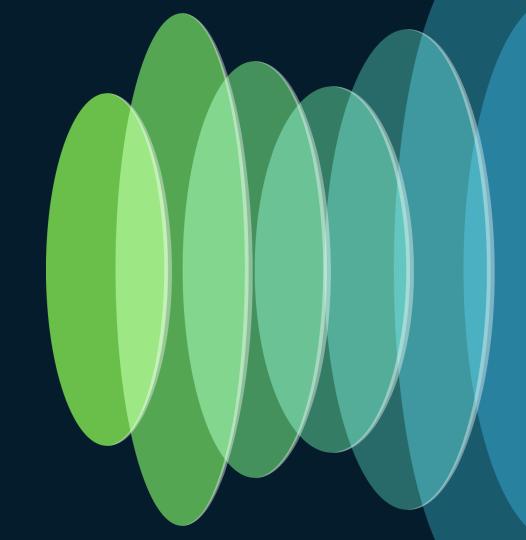


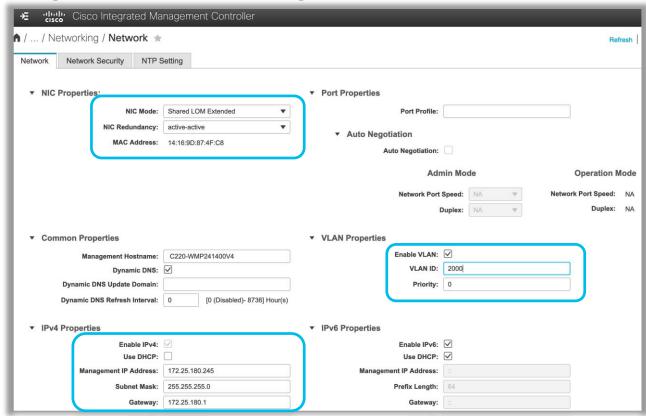
4th/5th Gen Fabric - Management traffic flow with rack servers in UCSM/IMM

cisco live!

Packet Flow with C-Series in Standalone mode

cisco life!

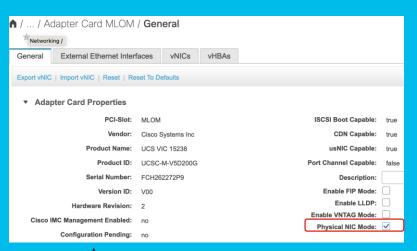

Management Traffic Flow with C-Series in Standalone mode

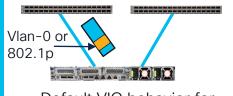


BRKCOM-2669

VIC Features

Single Wire Management in Standalone mode


MLOM notes


- M7 C-series servers don't have separate LOM ports
- 15427, 15425 supports 10G-T-X support for 10G copper cables along with various 10G/25G connectivity

BRKCOM-2669

Physical NIC mode (in Standalone Server)

Default VIC behavior for untagged packet

With Physical NIC Mode enabled

- Supported on VIC 1400/15000 series with standalone rack servers.
- This feature is only available with VIC in standalone server.
- Physical NIC mode disables default priority tagging on vNICs
 - Allows interoperability with switches that don't support priority-tagging
 - Use it with ToR switch access-port configuration
- Only default vNICs are supported, no additional vNICs can be created
 - 2 vNICs for dual-port MLOM or PCle rack VIC
 - 4 vNICs for quad-port MLOM or PCle rack VIC
- Disable FIP and LLDP on VIC to enable physical NIC mode

VIC Secure Boot

VIC secure-boot uses Silicon Root of Trust to verify that the VIC hardware and the firmware are immutable. Thus, ensuring VIC integrity with every server boot.

This happens transparently to customers on every boot of the system.

If VIC secure boot fails, IMC/UCSM/Intersight will show an alert and the server will not boot.

All 5th Gen VIC form factors (except B-Series 15411) offer VIC secure boot.

Note that the VIC secure-boot is not the same as server secure boot, but they work together in the Cisco Trust model. Both these technologies together ensures that customers server & VIC are genuine and are running valid unmodified hardware/firmware.

VIC Secure Boot is a bit confusing (but it doesn't need to be)

What and where it is

VIC Secure Boot is a boot-time hardware verification before the server even boot up the operating system.

It makes sure the physical VIC hardware and firmware are valid and secure.

What and where it isn't

VIC Secure Boot has nothing to do with the operating system, user-space, or applications. Once booted, it's like it isn't there at all.

Drivers are the same. OS is the same. It's a drop-in replacement for previous versions where applicable.

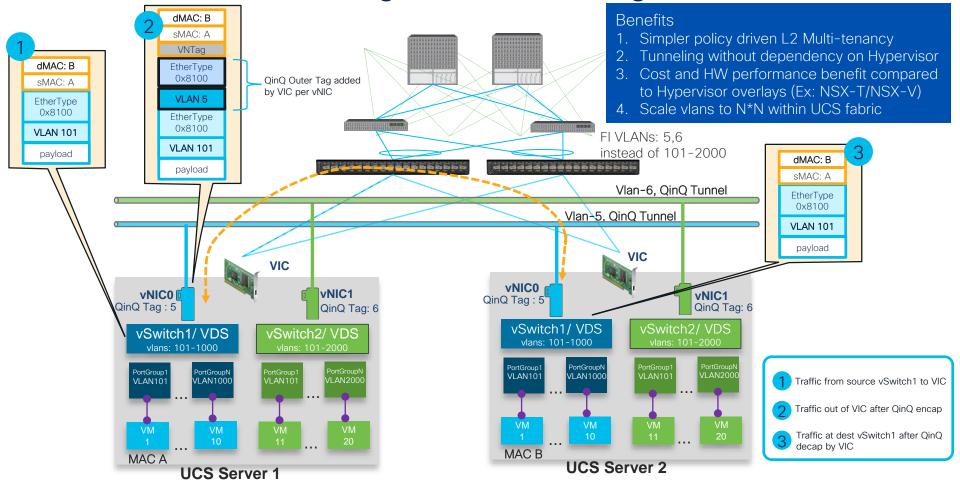
No user intervention is required

VIC Secure Boot is completely hands-off for the customer. It does not have to be ordered with any options (just order the Secure Boot VIC models and it's there). There is no configuration to be done, and it cannot be disabled.

VIC Q-in-Q Tunnelling adds to the UCS scalability story

Double-tagging from VIC

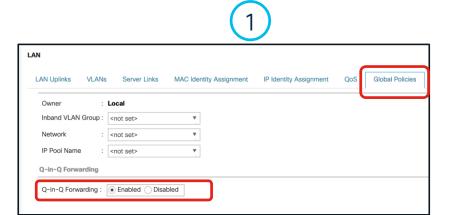
An outer VLAN is added at vNIC for the traffic from hypervisor/server, thus providing massive scalability of VLAN separation across a datacenter environment.

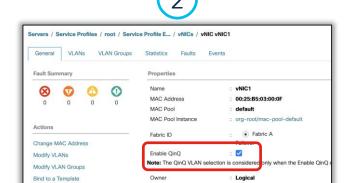

Multi-network, multi-tenancy enabled

A service provider's environment can provide the same VLAN numbers to multiple customers, thus virtualizing the same physical infrastructure.

Traffic segregation

Provide additional security, logical separation and monitoring capability based on departments, organizations, customers, and workloads as needed


UCS VIC QinQ Tunneling in action, L2 segmentation



VIC Q-in-Q Tunneling Details


- VIC QinQ tunneling supports the following
 - VIC 1400/15000 series
 - UCS FI 6400 series and FI 6536
 - UCSM, IMM and Cisco IMC support with 4.3(2) release
- Configurations required in UCSM/IMM
 - Enable QinQ globally under FI domain (UCSM only)
 - Enable QinQ under the VLAN in a vNIC
 - Select Native-vlan under a vlan in vNIC for untagged traffic
- Upstream N9K or LAN network should allow QinQ forwarding. N9K switches require "system dot1q tunnel transit" configuration.
- For standalone fabrics ensure the upstream ToR switch will carry double-tagged 802.1Q frames

VIC Q-in-Q Tunneling, UCSM Configuration

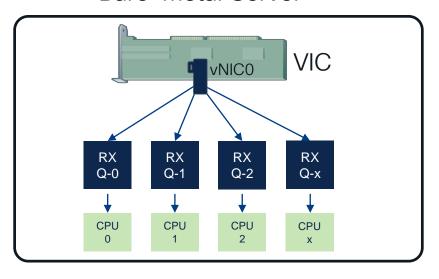
Type CDN Source

Reset MAC Address

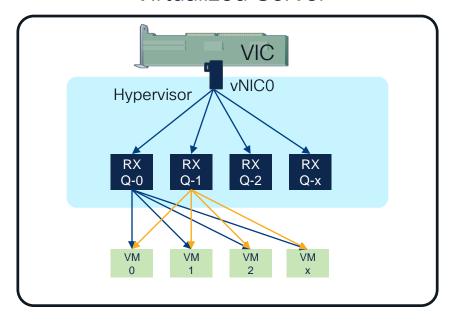
vNIC Name User Defined

VIC Q-in-Q deployment in field

One UCS public sector customer was able to replace VMware NSX using the VIC QinQ.


Created a multi-tenant environment to host multiple customers delivering VM resources on demand.

Thus, lowering operational costs with no licensing and fewer software platforms to worry about.


Simplified deployment and maintenance across the environment with UCSM benefits. And higher performance by avoiding the hypervisor overlay tunnels.

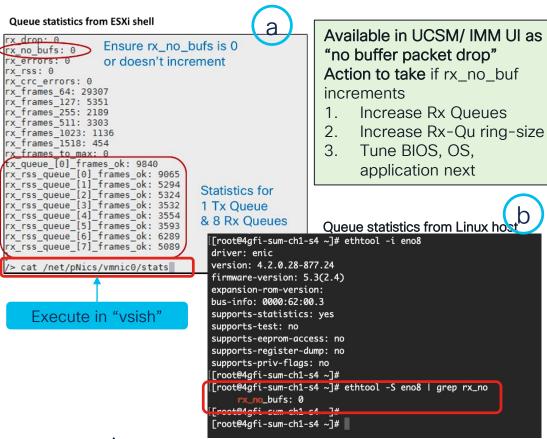
Receive Side Scaling (RSS)

Bare-metal Server

Virtualized Server

#CiscoLive

BRKCOM-2669


Receive Side Scaling

- VIC HW feature supported for ESXi, Linux, and Windows
- RSS provides better server CPU utilization, higher throughput and handles bursty traffic
- Achieved by Rx traffic distribution across multiple Rxqueues/cpu-cores based on L2/L3/L4 packet header fields
- VIC 15000 series support 16K Tx and Rx ring size, while previous generations supported up to 4K Tx and Rx ring size
- New adapter policy with 4.3(4) release "Linux-v2, VMWare-v2, Win-HPN-v2 "

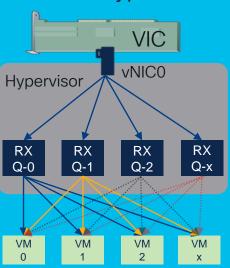
Adapter policy for performance with RSS

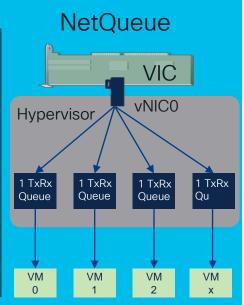
Parameter	ESXi	Linux	Windows
TX queue	1	1	1
TX ring size	4K /16K	4K /16K	4K /16K
RX queue	8	8	8
RX ring size	4K /16K	4K /16K	4K /16K
CQ	9	9	9
Interrupt	11	11 or 10	512
Interrupt Calculation	CQ + 2	"CQ + 2" or "Rx-Queue +2"	512 or "2x CPU-cores +4"
RSS	Enabled	Enabled	Enabled

vNIC queue-drop debugging

vNIC statistics from VIC for all OS's Srini-4gfi-VIC-B# Srini-4gfi-VIC-B# connect adapter WORD Adapter Id (chassis/server/id) or (rack-server/id) (Min size 0, Max size 510) Srini-4afi-VIC-B# connect adapter 1/4/1 adapter 1/4/1 # adapter 1/4/1 # connect adapter 1/4/1 (top):1# adapter 1/4/1 (top):1# attach-mcp adapter 1/4/1 (mcp):1# adapter 1/4/1 (mcp):1# vnic internal id of vnic, use for other vnic cmds : ucsm provisioned name (-n) or mac address (-m) enet=ethernet, enet_pt=dynamic ethernet, fc=fcoe vnic host vnic state : internal logical if id. use for other lif/vif cmds vif state host state lif 27 vnic 1 28 vnic_2 27 enet Ø UP 29 vnic 3 28 enet 30 vnic 4 29 enet 31 vnic 5 30 112 enet 32 vnic_6 Ø UP 2592 113 enet =>0 33 vnic_7 2593 114 606 UP adapter 1/4/1 (mcp):2# lifstat -a 26 Command not found adapter 1/4/1 (mcp):3# lifstats -a 26 DELTA TUTAL DESCRIPTION 243205 Tx unicast frames without error 6831 Tx multicast frames without error 17506682 Tx unicast bytes without error 371492 Tx multicast bytes without error 1008360 Tx broadcast bytes without error 16889708 Rx unicast bytes without error 511436 Rx multicast bytes without error 0 Rx rg drop pkts (no bufs or rg disabled) 0 Rx bytes with error 0 Rx good frames with RSS 9218 Rx frames len == 64 231048 Rx frames 64 < len <= 127 148 Rx frames 128 <= len <= 255

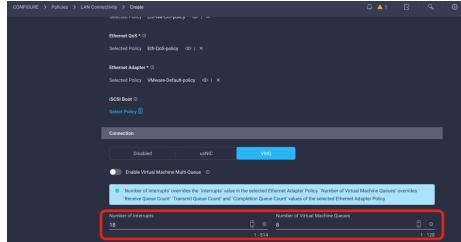
Tx rate

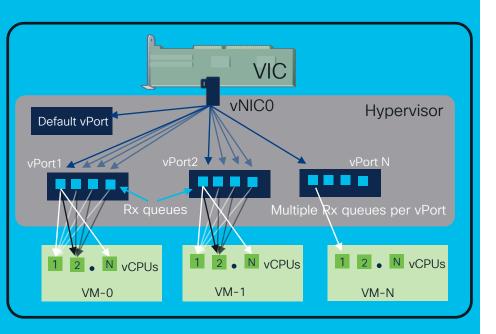

237.361bps


5691 Rx frames 256 <= len <= 511 0 Rx frames 512 <= len <= 1023

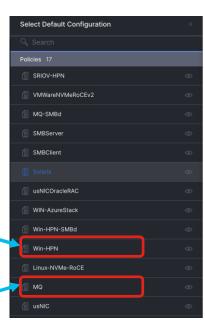

0 Rx frames 1024 <= len <= 1518
0 Rx frames len > 1518

NetQueue

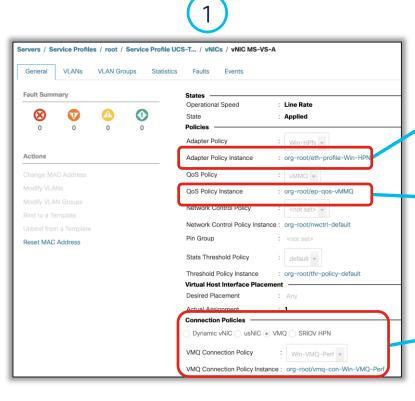

RSS w/ Hypervisor

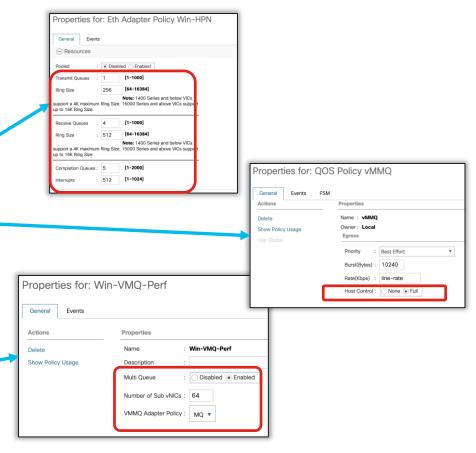


- Not a Hypvervisor bypass technology
- NetQueue achieves higher throughput and performance by having dedicated TX/RX queue per VM
- L2 sorting (L2 vlan/mac classifier) is done by VIC HW
- NetQueue dedicates a TX/RX queue per VM while VIC RSS enables multiple RX queues across multiple VM's.
- NetQueue on the vNIC is enabled through the VMQ connection policy.
- Interrupt for NetQueue is calculated as "2 x VMQ + 2."

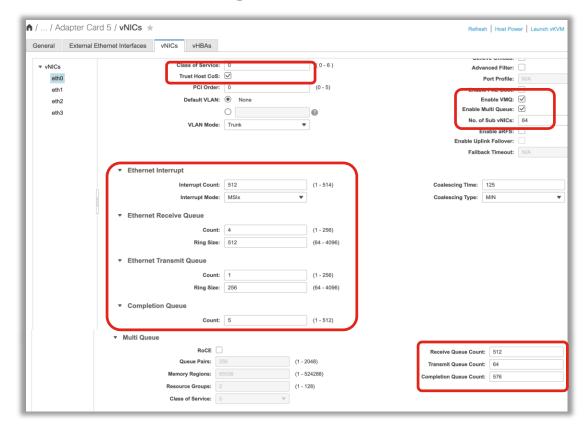


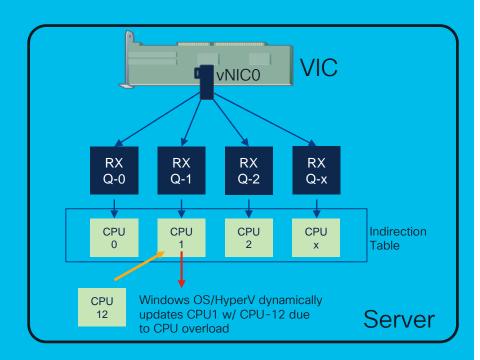
VMMQ




- Virtual Machine Multi-Queue, allows allocating multiple RX queues per vPort in a Windows Hyper-V host.
- Thus, providing higher throughput and distributes traffic load across multiple CPU cores.
- Supported in IMM, UCSM, and CIMC
- VMMQ is recommended over VMQ, or RSS for Windows Hyper-V. Both VMQ and RSS are supported by VIC 15000 for Windows.
- Use the default adapter policy values in Intersight/UCSM of "Win-HPN" and "MQ" to enable VMMQ. And the policy definition is good for 64 vPorts.

VMMQ, IMM Configuration CONFIGURE > Policies > LAN Connectivity > Create Policy Details Selected Policy Eth-Nw-Ctrl-policy @ | X Ethernet QoS * ⊙ Selected Policy Eth-QoS-policy @ | Receive Ethernet Adapter * ① iSCSI Boot ① Completion ■ Enable Virtual Machine Multi-Queue ⊙ VMMQ Adapter Policy ★ ① Selected Policy VMMQ-MQ-policy ③ | X Interrupt Settings **Policy Details QoS Settings** Receive Transmit Completion

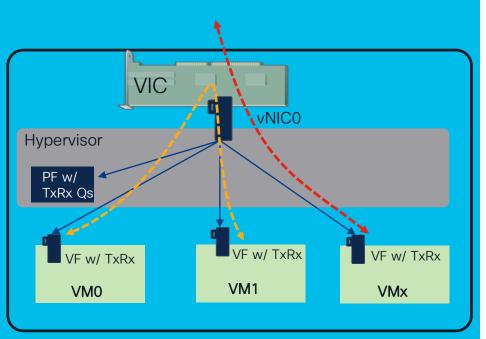

VMMQ, UCSM Configuration



VMMQ, IMC Configuration

RSSv2

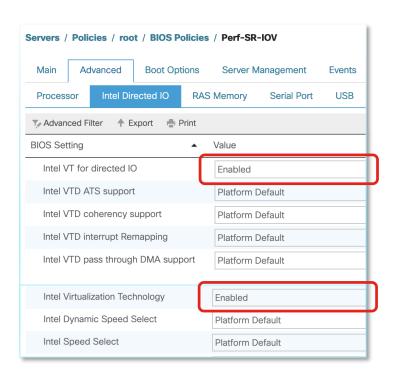
BareMetal ex: but is applicable for VMMQ vPort as well

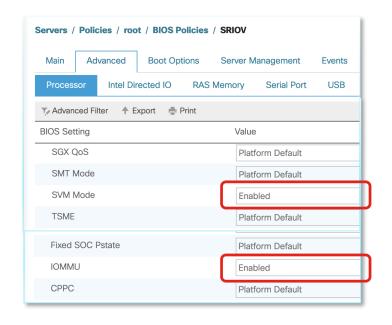

- RSSv2 is an enhancement to RSS to reduce latency in updating the indirection tables.
- RSSv2 can dynamically spread receive queues over multiple processors much more responsively than RSSv1
- RSSv2 is a windows only driver feature
 - Available from 4.3(2) release
 - Available for bare-metal windows server with RSS and for Hyper-V host with VMMQ (aka dynamic VMMQ).
 - Supported only with VIC 15000 series
- No user configuration needed, just an update to the latest 4.3(2) release and drivers.

Windows Poll Mode

- New NDIS 8.6.5 feature to replace DPC (Deferred procedure call)
- Poll mode will provide better interrupt handling mechanism for packet processing compared to DPC thus delivering better performance in terms of throughput and CPU utilization
- Windows poll mode will be enabled by default on VIC 15000 drivers from 4.3.3 release for Windows 2022 onwards.
- No user action is needed to enable poll mode.
- Features like RSSv2, VMMQ etc are agnostic to this feature and poll mode will complement the performance advantage of these features.
- Note that the windows poll mode should not be confused with poll mode driver in Linux or ESXi.

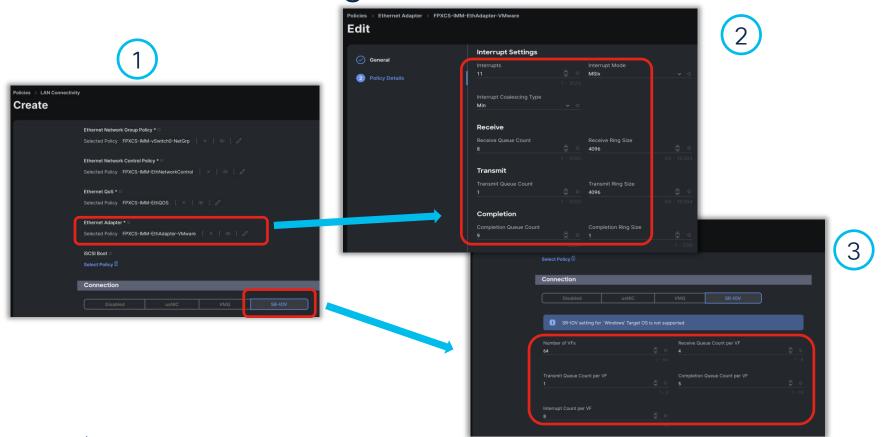
SR-IOV


✓ VF to VF traffic within VIC✓ Northbound VF traffic

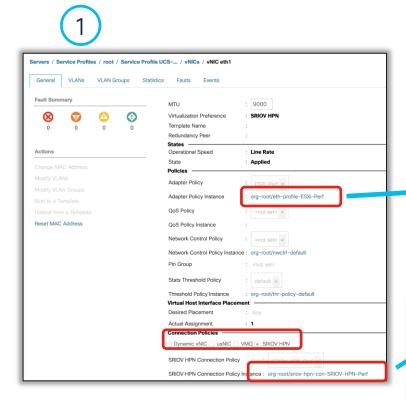

- Single Root I/O Virtualization is a PCle specification that enables Hypervisor bypass.
- Enables a PCle physical function (PF) and one or more PCle virtal function (VF)
- Provides high-throughput but w/ Hypervisor limitations
- 15000 series VIC will support SR-IOV with 4.3(2) release
 - Supported in UCSM, IMM and Cisco IMC
 - First support for ESXi and the Linux guest-os will require latest async driver
 - Linux KVM & Hyper-V support for SR-IOV will be post 4.3(2)
- Steps to enable SR-IOV
 - AMD/Intel specific server BIOS policy settings
 - SR-IOV vNIC settings in UCSM, IMM, or IMC
 - Configuration on HyperVisor

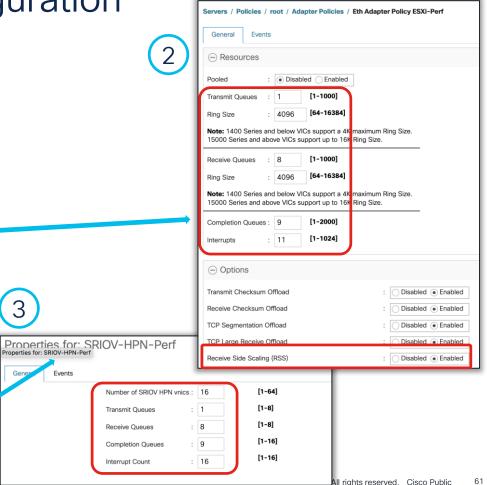
Server BIOS Policy

Intel Servers

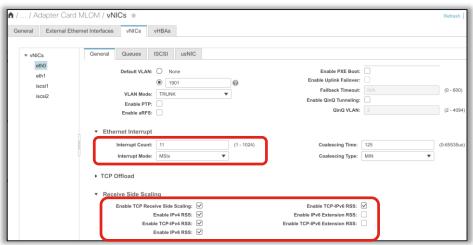


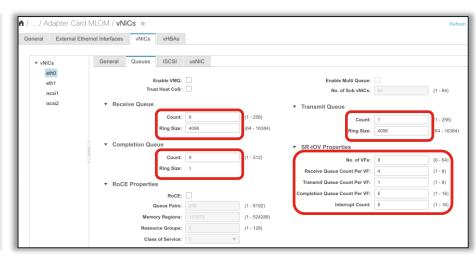
AMD Servers



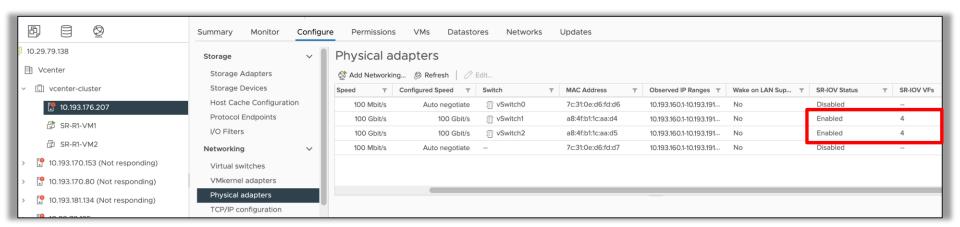


SR-IOV IMM Configuration


SR-IOV UCSM Configuration



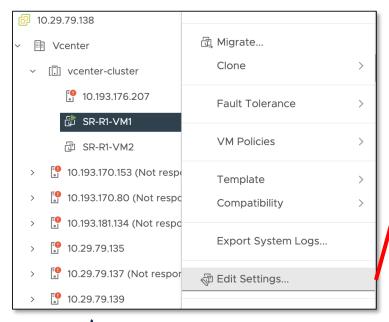
SR-IOV IMC Configuration

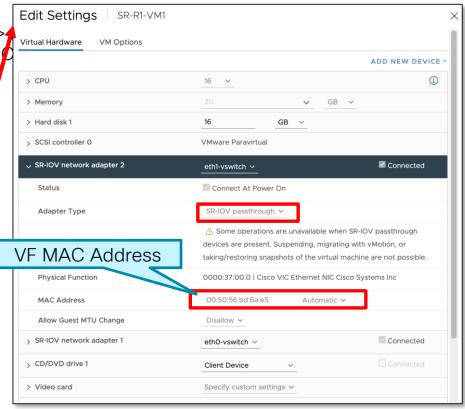


vCenter Configuration for SR-IOV

Ispci output (PCI ID for VFs is 0x02b7)

[root@esxihost:~] lspci | egrep "controller" | grep Cisco 0000:36:00.0 Ethernet controller: Cisco Systems Inc Cisco VIC Ethernet NIC [vmnic1] 0000:36:00.1 Ethernet controller: Cisco Systems Inc Device 02b7 [PF 0.54.0 VF 0] 0000:36:00.2 Ethernet controller: Cisco Systems Inc Device 02b7 [PF 0.54.0 VF 1] 0000:36:00.3 Ethernet controller: Cisco Systems Inc Device 02b7 [PF 0.54.0 VF 2] 0000:36:00.4 Ethernet controller: Cisco Systems Inc Device 02b7 [PF 0.54.0 VF 3] 0000:37:00.0 Ethernet controller: Cisco Systems Inc Cisco VIC Ethernet NIC [vmnic2] 0000:37:00.1 Ethernet controller: Cisco Systems Inc Device 02b7 [PF 0.55.0 VF 0] 0000:37:00.2 Ethernet controller: Cisco Systems Inc Device 02b7 [PF 0.55.0 VF 1] 0000:37:00.3 Ethernet controller: Cisco Systems Inc Device 02b7 [PF 0.55.0 VF 2] 0000:37:00.4 Ethernet controller: Cisco Systems Inc Device 02b7 [PF 0.55.0 VF 3]


esxcfq-nics -l


```
[root@esxihost:~] esxcfg-nics -1 |
vmnic1 0000:36:00.0 nenic
                                      100000Mbps Full
                                                        a8:4f:b1:1c:aa:d4 1500
vmnic2 0000:37:00.0 nenic
                                      100000Mbps Full
                                                        a8:4f:b1:1c:aa:d5 9000
```

BRKCOM-2669

Assigning VFs to VMs in vCenter

 Select VM -> Edit Settings -> Add new device -> 'SRIOV passthrough' -> Select the desired PFs P

VF information from Linux VM

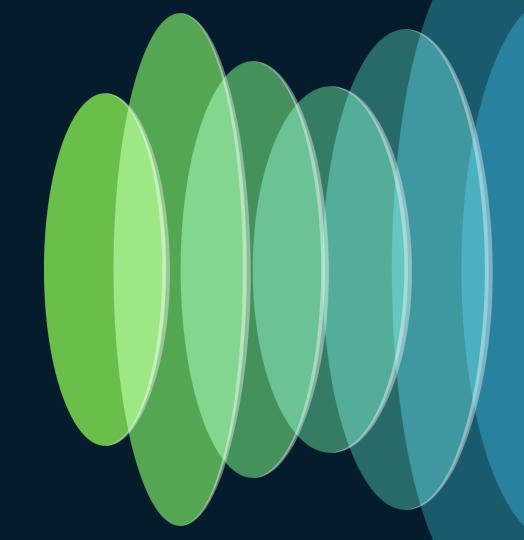
eNIC VF PCI devices on Linux VM

```
# lspci | grep Cisco | grep controller
0b:00.0 Ethernet controller: Cisco Systems Inc Device 02b7
13:00.0 Ethernet controller: Cisco Systems Inc Device 02b7
                                                           (rev a2)
```

eNIC Network Interfaces

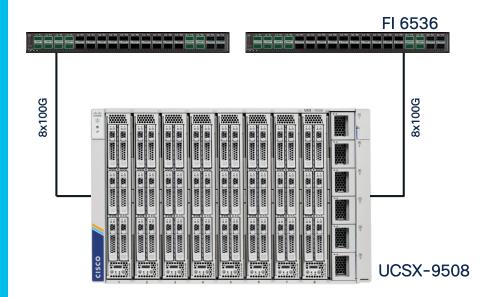
```
#ip addr show
2: ens192: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 9000 qdisc mq state UP group default qlen 1000
   link/ether 00:50:56:bd:6a:e5 brd ff:ff:ff:ff:ff
    altname enp11s0
   inet 50.6.1.116/24 brd 50.6.1.255 scope global noprefixroute ens192
      valid lft forever preferred lft forever
    inet6 fe80::34c3:e653:d9ed:3f62/64 scope link noprefixroute
       valid lft forever preferred lft forever
3: ens224: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500 qdisc mq state UP group default qlen 1000
    link/ether 00:50:56:bd:37:5d brd ff:ff:ff:ff:ff
    altname enp19s0
    inet 10.193.176.191/24 brd 10.193.176.255 scope global noprefixroute ens224
       valid lft forever preferred lft forever
    inet6 fe80::6243:127:6e26:ccdf/64 scope link noprefixroute
       valid lft forever preferred lft forever
```

Note: Linux VMs with secure boot will fail to load enic driver and so either VM secure boot should be disabled or install the Cisco's UCS public key to virtual BIOS. UCS configuration guide will provide the procedure.


BRKCOM-2669

What's coming next

- Ethernet performance improvement for edge workloads
 - "Transmit enhanced mode" feature in CIMC
- FC congestion detection improvement
 - "show logging onboard rx/tx-rate" and "show logging onboard pfc-rate"
- 50G & 200G qualification with Nexus-9K
- SR-IOV support for Linux & Windows
- Netflow is available with 4th & 5th Gen UCS fabric
- ERSPAN for vNICs & vHBAs with 4th & 5th Gen UCS fabric
- MAC-SEC support on UCS 4th & 5th Gen Fabric Interconnects
- NetQueue+ENS support

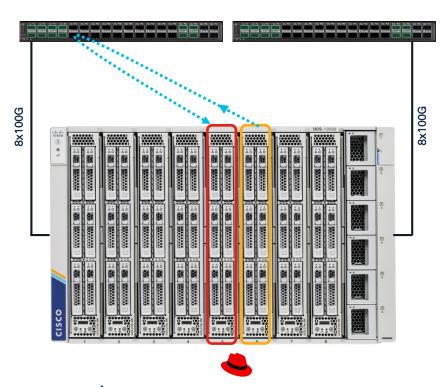

VIC Performance

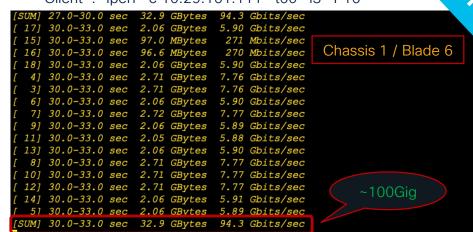
cisco live!

H/W - Setup

- UCS FI 6536
- X9108 IFM 100G
- UCSX-9508/x210c-M7
- VIC 15230 2x100G/200G

1


Test Config - I

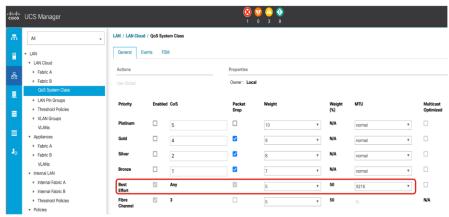

Versions & Configuration

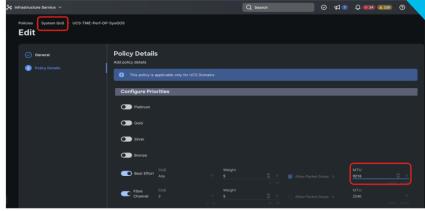
- RHEL 9.0 GA
- enic Driver 4.5.0.7-939.23
- VIC f/w 5.3(2.32)
- Adapter Policy
 - RSS = Enabled
 - MTU = 1500
 - Transmit Queues = 1
 - Receive Queues = 8
 - Completion Queues = 9
 - Interrupts = 10
 - TQ_ring_size = 4096
 - RQ_ring_size = 4096

Test Case - Single Uni-Directional Server: "iperf -s -B 10.29.161.111" Client: "iperf -c 10.29.161.111 -t60 -i3 -P16"

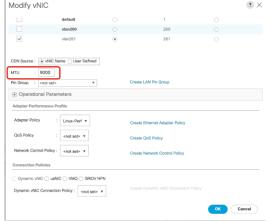
Fabric A:Blade5 vnic1 (Server) ← Blade6 vnic1 (Client)

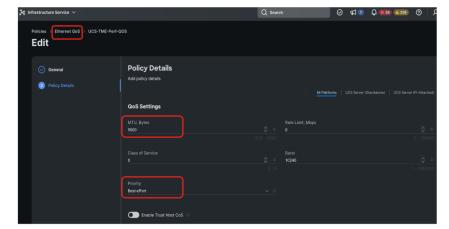

```
[D] Interval
                  Transfer
                               Bandwidth
                  54.2 GBytes
                              7.76 Gbits/sec
                              7.76 Gbits/sec
                                                Chassis 1 / Blade 5
                               5.87 Gbits/sec
                              5.90 Gbits/sec
                              7.75 Gbits/sec
                               5.88 Gbits/sec
                  41.1 GBvtes
                              5.91 Gbits/sec
   0.0-60.0 sec
                 41.3 GBvtes
                              7.76 Gbits/sec
   0.0-60.0 sec
                  41.4 GBvtes
                               5.92 Gbits/sec
                              7.76 Gbits/sec
                              7.76 Gbits/sec
                  42.0 GBvtes
                               6.01 Gbits/sec
                 2.07 GBytes
                                296 Mbits/sec
                                                      ~100Gio
                                295 Mbits/sec
                  2.06 GBytes
                               5.91 Gbits/sec
                              5.75 Gbits/sec
                              94.3 Gbits/sec
```


Test Config - II



Versions & Configuration


- RHEL 9.0 GA
- enic Driver 4.5.0.7-939.23
- VIC f/w 5.3(2.32)
- Adapter Policy
 - RSS = Enabled
 - MTU = 9000
 - Transmit Queues = 1
 - Receive Queues = 8
 - Completion Queues = 9
 - Interrupts = 10
 - TQ_ring_size = 4096
 - RQ_ring_size = 4096

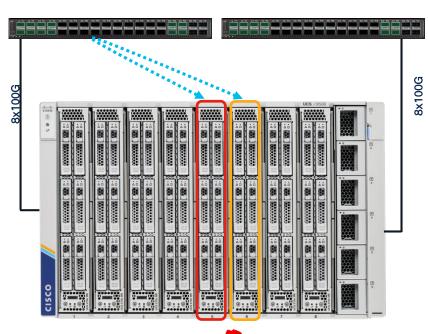

MTU Settings - System QoS + vNIC



Intersight

Test Case - Single Uni-Directional

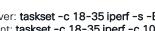
Fabric A:Blade5 vnic1 (Server) ← Blade6 vnic1 (Client)


```
root@Perf-Blade1-5 ~|# iperf -s -B 10.29.136.171
Server listening on TCP port 5001
                                                       Chassis 1 / Blade 5
Binding to local address 10.29.136.171
TCP window size: 85.3 KByte (default)
  4] local 10.29.136.171 port 5001 connected with 10.29.136.173 port 34542
     local 10.29.136.171 port 5001 connected with 10.29.136.173 port 34544
     local 10.29.136.171 port 5001 connected with 10.29.136.173 port 34546
     local 10.29.136.171 port 5001 connected with 10.29.136.173 port 34548
 ID1 Interval
                    Transfer
                                 Bandwidth
      0.0-60.0 sec 121 GBytes 17.3 Gbits/sec
      0.0-60.0 sec 121 GBytes 17.3 Gbits/sec
                                                       ~100Gig
                     328 GBytes 47.0 Gbits/sec
      0.0-60.0 sec
     0.0-60.0 sec 121 GBytes 17.3 Gbits/sec
      0.0-60.0 sec
                     691 GBytes 98.9 Gbits/sec
```

```
[SUM] 54.0-57.0 sec 34.6 GBytes 99.0 Gbits/sec
[ 5] 57.0-60.0 sec 16.6 GBytes 47.4 Gbits/sec
[ 5] 0.0-60.0 sec 328 GBytes 47.0 Gbits/sec
[ 3] 57.0-60.0 sec 6.00 GBytes 17.2 Gbits/sec
[ 6] 57.0-60.0 sec 6.01 GBytes 17.3 Gbits/sec
[ 6] 0.0-60.0 sec 121 GBytes 17.3 Gbits/sec
[ 6] 0.0-60.0 sec 121 GBytes 17.3 Gbits/sec
[ 4] 57.0-60.0 sec 6.00 GBytes 17.2 Gbits/sec
[ SUM] 57.0-60.0 sec 34.6 GBytes 99.0 Gbits/sec
[ 4] 0.0-60.0 sec 121 GBytes 17.3 Gbits/sec
[ SUM] 0.0-60.0 sec 691 GBytes 98.9 Gbits/sec
```

cisco Live!

Test Case - Single Bi-Directional


Fabric A:Blade5 vnic1 (Server) ← Blade6 vnic1 (Client) Fabric A:Blade5 vnic1 (Client) → Blade6 vnic1 (Server)

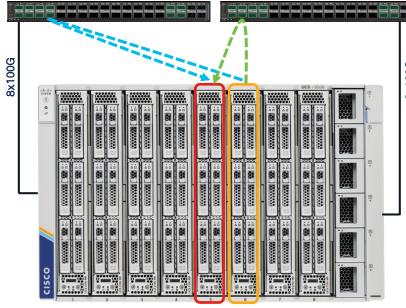
Fabric A:Blade5 vnic1 (Server)

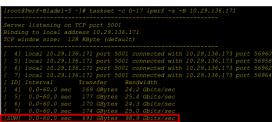
```
54.0-57.0 sec 34.5 GBvtes 98.9 Gbits/sec
   57.0-60.0 sec 5.76 GBytes 16.5 Gbits/sec
    0.0-60.0 sec 181 GBytes 26.0 Gbits/sec
UM] 57.0-60.0 sec 34.5 GBytes 98.9 Gbits/sec
4] 0.0-60.0 sec 215 GBytes 30.7 Gbits/sec
```

Fabric A:Blade5 vnic1 (Client)

Server: taskset -c 18-35 iperf -s -B 10.29.136.173 Client: taskset -c 18-35 iperf -c 10.29.136.173 -t60 -i 3 -P16

Server: taskset -c 0-17 iperf -s -B 10.29.136.171 Client: taskset -c 0-17 iperf -c 10.29.136.171 -t60 i3 -P16

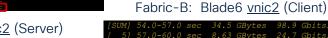

Fabric A:Blade6 vnic1 (Client)

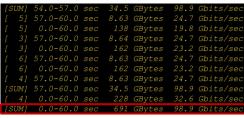

```
34.5 GBytes 98.8 Gbits/sec
```

Fabric A:Blade6 vnic1 (Server)

Test Case - Dual Uni-Directional

```
Fabric A:Blade5 vnic1 (Server) ← Blade6 vnic1 (Client) Fabric B:Blade5 vnic2 (Server) ← Blade6 vnic2 (Client)
```


Fabric-A: Blade5 vnic1 (Server)


```
SUM) 54.0-57.0 sec 34.5 GBytes 98.9 Gbits/sec 6] 57.0-60.0 sec 8.63 GBytes 24.7 Gbits/sec 6] 0.0-60.0 sec 174 GBytes 25.0 Gbits/sec 3] 57.0-60.0 sec 177 GBytes 24.8 Gbits/sec 5] 57.0-60.0 sec 177 GBytes 25.4 Gbits/sec 5] 0.0-60.0 sec 170 GBytes 24.6 Gbits/sec 4] 57.0-60.0 sec 8.65 GBytes 24.8 Gbits/sec 4] 57.0-60.0 sec 8.65 GBytes 24.8 Gbits/sec 5[SUM] 57.0-60.0 sec 34.5 GBytes 98.9 Gbits/sec 191 0.0-60.0 sec 169 GBytes 24.2 Gbits/sec 191 0.0-60.0 sec 191 0.0-60
```

Fabric-B: Blade5 vnic2 (Server)

1

Test Config - III

Versions & Configuration

- ESXi 7.0 U3
- nenic Driver 1.0.45.0
- VIC f/w 5.3(2.32)
- Adapter Policy
 - RSS = Enabled
 - MTU = 9000
 - Transmit Queues = 1
 - Receive Queues = 8
 - Completion Queues = 9
 - Interrupts = 11
 - TQ_ring_size = 4096
 - RQ_ring_size = 4096
 - flags = tso|rxcsum|txcsum|failover|Iro

Test Case - Single Uni-Directional(BMs)

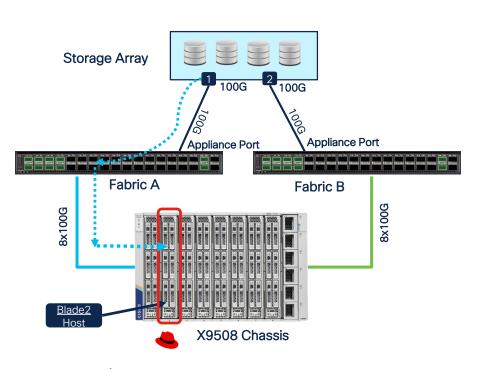
Server - iperf -s -B 10.29.161.122 -p5201|5202|5203 Client - iperf -c 10.29.161.122 -t60 -i3 -P1 -p5201|5202|5203

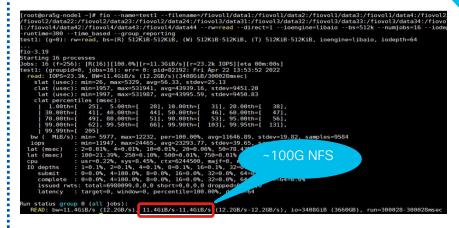
Fabric A: Blade1 vnic1 (3xServer) ← Blade3 vnic1 (3xClient) *** Between Hypervisors Only with RSS | No guest VMs *** 8x100G 8x100G

1

Test Config – IV : NFS 100Gig

H/W, S/W versions & configuration


- FI 6536 with X9508 chassis
- X9108 IFM 100G
- VIC 15231/15230 adapter
- RHEL OS 8.4
- Adapter policy :
- 1 Tx, 8 Rx, 9 CQ, 10 Interrupts
- Tx, Rx ring-size of 4K or 16K
- BIOS policy : default
- OS Tuning : default
- Storage array with 100G adapters



Test Case - NFS over 100G with VIC 15231/15230

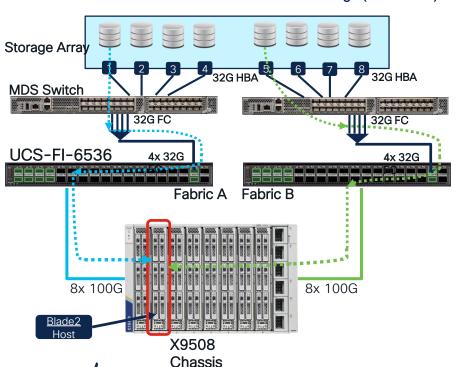
100G NFS connectivity to a Storage Filer: Blade2 vNIC1 <-- 100G NIC on Storage (100% read)

FlexPo	od-A8	00: cluste	er.cluste	r: 4/22/20	022 13:50:	07											
cpu	cpu	total			fcache	total	total	data	data	data	cluster	cluster	cluster	disk	disk	pkts	pkts
avg	busy	ops	nfs-ops	cifs-ops	ops	recv	sent	busy	recv	sent	busy	recv	sent	read	write	recv	sent
18%	43%	187117	187117	0	0	38.1MB	11.4GB	97%	37.7MB	11.4GB	0%	338KB	336KB	478MB	1.71MB	230535	1371110
18%	42%	186775	186775	0	0	38.4MB	11.5GB	98%	38.1MB	11.5GB	0%	285KB	286KB	481MB	3.91MB	236859	1375341
18%	43%	187603	187603	0	0	39.0MB	11.5GB	98%	38.7MB	11.5GB	0%	286KB	285KB	480MB	23.9KB	245848	1376171
18%	43%	186820	186820	0	0	38.0MB	11.408	98%	37.8MB	11.4GB	0%	266KB	266KB	609MB	1.16MB	231085	1371855
18%	43%	186775	186775	0	0	38.5MB	11.5GB	98%	38.2MB	11.5GB	0%	301KB	301KB	643MB	17.9KB	237274	1374307
18%	43%	186634	186634	0	0	38.4MB	11.4GB	97%	38.1MB	11.4GB	0%	251KB	251KB	613MB	1.46MB	239374	1370362
18%	43%	185568	185568	0	0	37.7MB	11.4GB	97%	37.4MB	11.4GB	0%	278KB	278KB	616MB	3.91MB	226770	1369212
18%	43%	187085	187085	0	0	38.3MB	11.4GB	97%	38.0MB	11.4GB	0%	307KB	307KB	582MB	23.9KB	235274	1365179
18%	43%	186116	186116	0	0	38.4MB	11.4GB	98%	38.2MB	11.4GB	0%	269KB	269KB	577MB	1.17MB	237298	1369754
18%	43%	186856	186856	0	0	38.1MB	11.4GB	98%	37.8MB	11.4GB	0%	270KB	270KB	575MB	29.9KB	234293	1372264
18%	43%	186380	186380	0	0	38.5MB	11.4GB	97%	38.2MB	11.4GB	0%	281KB	281KB	590MB	646KB	238783	1371946
18%	43%	186480	186480	0	0	38.6MB	11.4GB	97%	38.3MB	11.4GB	0%	309KB	309KB	577MB	2.25MB	241873	1366584
18%	43%	185636	185636	0	0	38.2MB	11.4GB	97%	37.9MB	11.4GB	0%	284KB	282KB	568MB	23.9KB	235542	1368954
18%	43%	185936	185936	0	0	37.6MB	11.3GB	97%	37.3MB	11.3GB	0%	280KB	282KB	594MB	1.18MB	225957	1360859
18%	43%	187402	187402	0	0	38.3MB	11.5GB	98%	38.0MB	11.5GB	0%	268KB	268KB	587MB	29.9KB	234891	1375560

Fibre Channel Performance

FI 6536 with multiple X9508 chassis connected to MDS at 32G

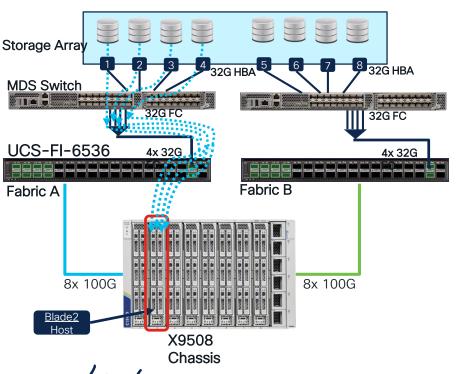
- FC end host mode
- X9108 IFM 100G
- VIC 15230/15231 adapter on every X210c
- RHEL OS 8.4
- vHBA policy: FC/FC-NVMe default
- BIOS policy : default
- OS Tuning : default


Storage array with 32G adapters

End to End 32G: VIC 15230/15231 performance

Chassis-Blade2 vHBA1 <-- HBA1 Storage (100% read)
Chassis-Blade2 vHBA1 <-- HBA5 Storage (100% read)

FIO results per x210c



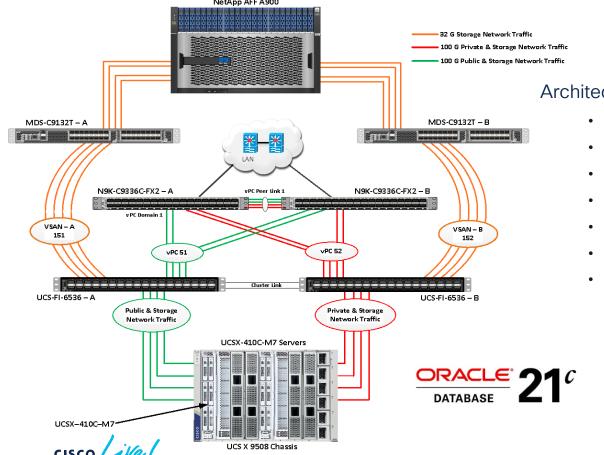
Result from Storage Array

Policy Group	s statistics IOPS		Latency Is Adaptive? Is Shared?
-total-	108565	6342.20MB/s	4.68
User-Best-Effort	101469	6342.12MB/s	Total 64G across
System-Work	7096	74.24KB/s	Fabric A & B
-total-	101496	6341.45MB/s	5. Tablic A & D
User-Best-Effort	101455	6341.44MB/s	5.01
System-Work	41	15 06KR/c	146 as false true
-total-	101503	6342.33MB/s	.00ms
User-Best-Effort	101465	6342.31MB/s	5.01ms false true
System-Work	38	19.3000/5	105.00us false true

100G FC per Fabric: VIC 15230/15231 performance

100G vHBA performance in a x210c: Chassis Blade2 <-- 4x 32G FC storage target (100% read)

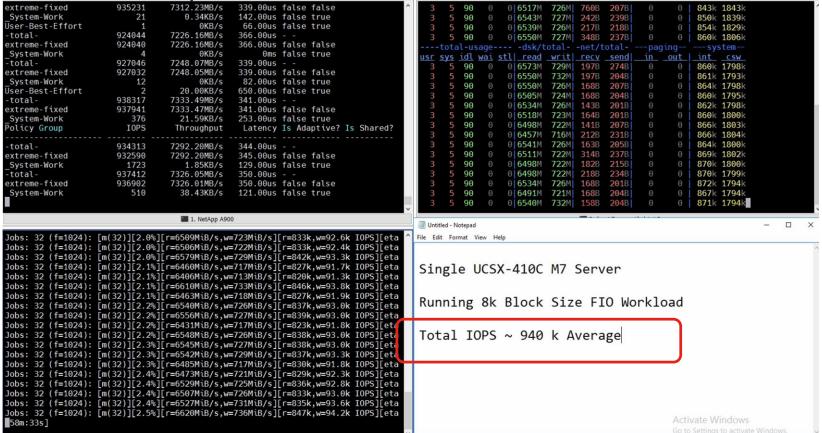
FIO results per x210c


```
[root@ora5g-node1 ~]# fio --filename=/dev/mapper/5g_vol1:/dev/mapper/5g_vol2:/dev/mapper/5g_vol3:/dev/mapper/5g_vol4:/dev/mapper/5g_vol5:/dev/mapper/5g_vol6:/dev/mapper/5g_vol7:/dev/mapper/5g_vol8 --direct=1 --rw=rw --ioengine=libaio --bs=512k --rwmixread=100 --iodepth=32 --numjobs=64 --runtime=30 --group_reporting --name=seqreadwrite
seqreadwrite: (g=0): rw=rw, bs=(R) 512KiB-512KiB, (W) 512KiB-512KiB, (T) 512KiB-512KiB, ioengine=libaio, iodepth=32
...
fio-3.19
Starting 64 processes

@obs: 64 (f=512): [R(64)][64.5% [r=11.1GiB/s] r=22.7k IOPS][eta 00m:11s]
```

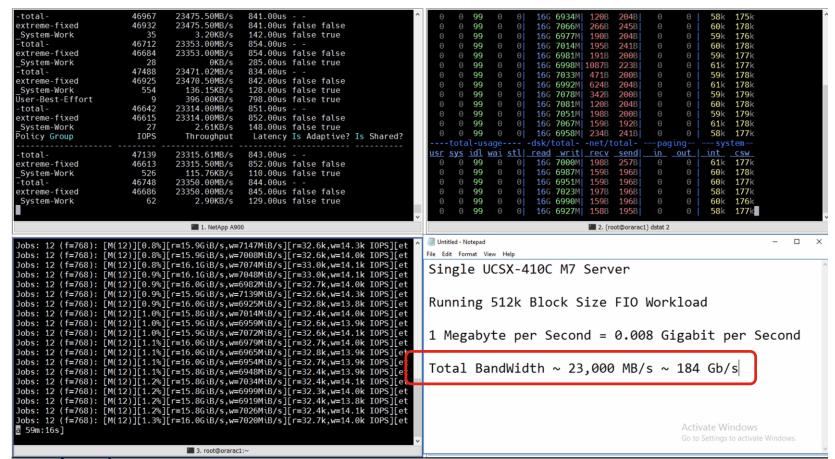
```
FlexPod-A800::> q s p s
 (gos statistics performance show)
                                   Throughput
                                                 Latency Is Adaptive? Is Shared?
                                                       92G FC (~100G)
total -
                                 11479.40MB/s
User-Best-Effort
                       183529
                                 11479.38MB/s
                                                        per Fabric
                           62
                                    22.08KB/s
System-Work
                       183511
                                 11474.38MB/s
-total-
User-Best-Effort
                       183489
                                 11474.38MB/s
                                                   ...ooms false true
System-Work
                          22
                                                 45.00us false true
                       183569
                                                  5.09ms - -
-total-
                       183529
User-Best-Effort
                                 11478.00MB/s
                                                  5.09ms false true
System-Work
                                                200.00us false true
```

Oracle 21c RAC Databases w/ End to End 100G over FC-NVMe



Architecture for Oracle Databases Deployment

- Cisco UCS 6536 Fabric Interconnect
- Cisco UCS X-Series 9508 Blade Server Chassis
- Cisco UCS X-Series X410C M7 Blade Servers
- Cisco UCS 15231 VIC (Virtual Interface Card)
- NetApp AFF A900 All Flash Array
- Cisco Nexus 9336C-FX2 Switch
- Cisco MDS C9132T FC Switch


VIC 15231 FIO performance over FC-NVMe with 8K blocks

BRKCOM-2669

VIC 15231, FIO performance over FC-NVMe with 512K blocks

Conclusion

Differentiation

- VIC is purpose-built CNA for UCS servers
- Differentiated features like dynamic I/O virtualization, fabric failover, policy-driven configuration, standby-power, single-wire management, VIC QinQ Tunneling
- Single architecture for various applications and workloads.
- Policy-driven topology abstraction with Cisco VIC for UCS Fabric Interconnect or Nexus 9000 network architectures

Performance

- 200Gbps throughput per interface card
- 100G end-to-end for LAN/SAN/NFS
- Multiple FC and Ethernet interfaces on one adapter with one set of cables
- Expand throughput with additional VICs
- Comprehensive hardware offload and acceleration feature-set
- Built with end-to-end network
 OoS

Management

- Centralized management built into the platform since day one.
- Scale out, maintain, monitor, troubleshoot in one management frame
- Single-connect with management integrated - no separate OOB network
- Surprising savings vs disparate LAN/SAN/OOB, cabling/switching infrastructure

Complete Your Session Evaluations

Complete a minimum of 4 session surveys and the Overall Event Survey to be entered in a drawing to **win 1 of 5 full conference passes** to Cisco Live 2025.

Earn 100 points per survey completed and compete on the Cisco Live Challenge leaderboard.

Level up and earn exclusive prizes!

Complete your surveys in the Cisco Live mobile app.

Continue your education

- Visit the Cisco Showcase for related demos
- Book your one-on-one Meet the Engineer meeting
- Attend the interactive education with DevNet, Capture the Flag, and Walk-in Labs
- Visit the On-Demand Library for more sessions at www.CiscoLive.com/on-demand

Contact me at: eljacob@cisco.com

Thank you

