

### Design and Automate VXLAN Multi-Site with NDFC

Parth Patel, Technical Leader, Technical Marketing Engineer: Data Center and Provider Connectivity BU BRKDCN-2988



#CiscoLive

### Cisco Webex App

#### **Questions?**

Use Cisco Webex App to chat with the speaker after the session

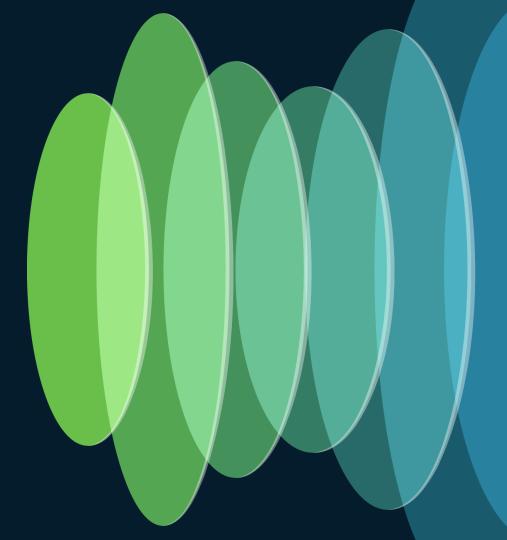
#### How

- Find this session in the Cisco Live Mobile App
- 2 Click "Join the Discussion"
- 3 Install the Webex App or go directly to the Webex space
- 4 Enter messages/questions in the Webex space

Webex spaces will be moderated by the speaker until June 7, 2024.

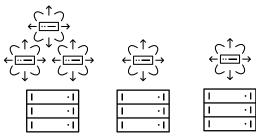
|               |     | KDCN-2988 |
|---------------|-----|-----------|
|               |     |           |
|               | • — | -         |
| 8:19 <b>-</b> |     |           |

| 8:19 🕇                      |                             | al 🕝                   |        |
|-----------------------------|-----------------------------|------------------------|--------|
| Cataly                      | st 9000 Serie               | s Switching Fami       | ily ∍  |
| technologie<br>9000 Switc   |                             | es in the Catalyst     |        |
| Speaker(s)                  | · • · · •                   |                        | R      |
| * 2                         | Kenny Lei<br>Cisco Systems, | Inc.   Technical Marke | ><br>t |
| Categories                  |                             |                        | B      |
| Technical Level             |                             |                        | >      |
| Tracks<br>Networking        | (220)                       |                        | >      |
| Session Type<br>Breakout (4 | 53)                         |                        | >      |
|                             | SHOW 2 N                    | IORE V                 |        |
| Webex                       |                             |                        | H      |
| 🚺 Join                      | the Discussio               | n                      | >      |
| Notes                       | ·                           |                        |        |
| Enter your per              | rsonal notes her            | e                      |        |
|                             |                             |                        |        |
|                             |                             |                        |        |
|                             |                             |                        | -      |

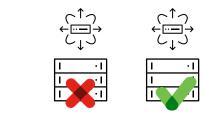

BRKDCN-2988



- VXLAN EVPN Multi-Site Overview
- Design VXLAN EVPN Multi-Site with NDFC
- Introduction to NDFC
- Automate VXLAN EVPN Multi-Site with NDFC
- Conclusion

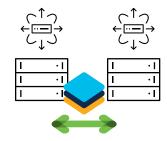

### First Design Highly Available Data Center

cisco live!




## What defines a Highly Available Data Center?

Do we have Network redundancy beyond a single rack?

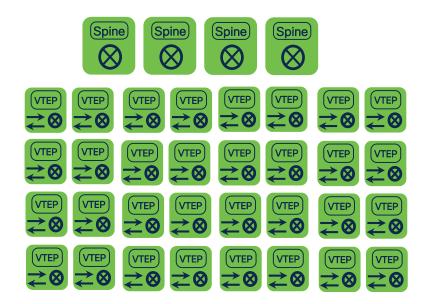



Can we survive a single rack failure? How big is the change or failure domain?





Do we have Application availability beyond a single rack?




Do we have Network and Application availability beyond a single location?

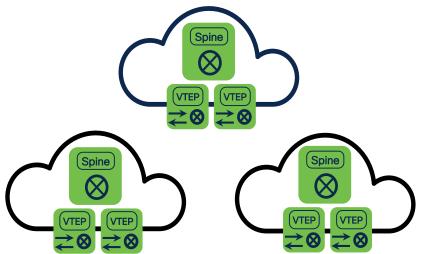


### Is your DC Highly Available Yet?

Where do you stand? "The Single" Or ...



"The Data Center of Yesterday"

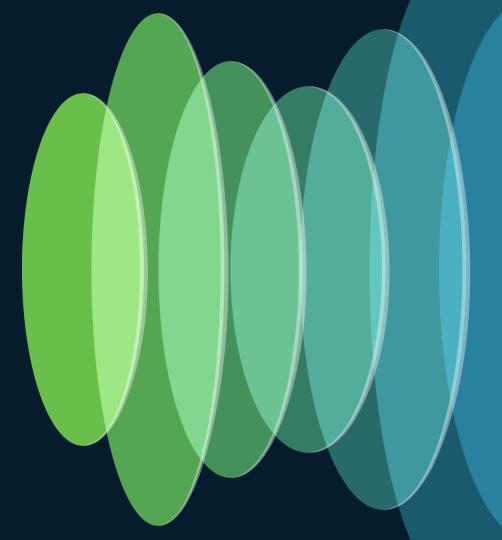

cisco / i

- Single Underlay Domain End-to-End
- Single Replication Domain for BUM
- Single Overlay Domain End-to-End Encapsulation
- Single Overlay Control-Plane Domain Endto-End EVPN Updates
- Single VNI Admin Domain

### Is your DC Highly Available Yet?

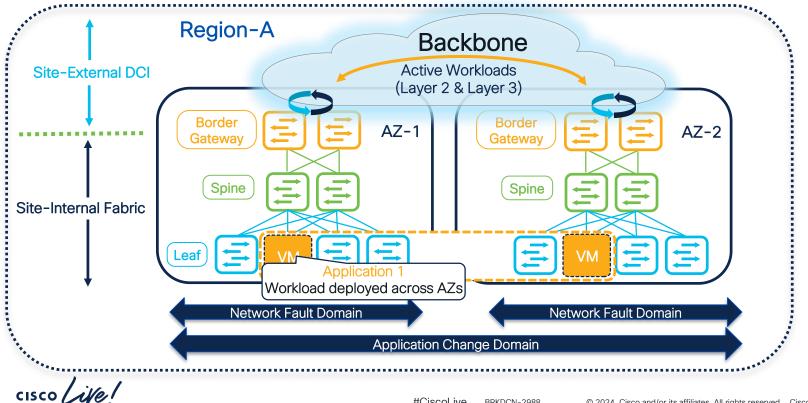
Where do you stand? "The Single" Or "The Multiple"

.




- Multiple Underlay Domains Isolated
- Multiple Replication Domain for BUM Interconnected and Controlled
- Multiple Overlay Domain Interconnected and Controlled
- Multiple Overlay Control-Plane Domains Interconnected and Controlled
- Multiple VNI Admin Domain Downstream VNI

"The Data Center of Today"


### VXLAN Multi-Site Design Options

cisco ite!



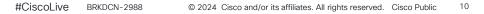
#### **VXLAN EVPN Multi-Site Overview**

#### **Functional Components**



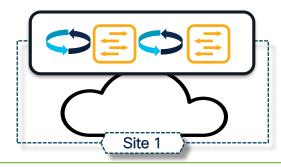
### Border Gateway

**Deployment Considerations** 


#### Border Gateways main functions and use-cases:

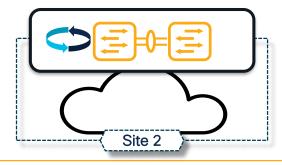
- Packet Re-Origination (L2 and L3)
  Inter-Site DCI (East-West)
  L3 Extension (North-South)
  PHandoff
  Connect L4-L7 services and EPs Lad Balancer
  - Integration with Legacy Networks (Co-existence and/or Migration) (<sup>v</sup><sub>Gr</sub>




VXLAN L3-extension to the Public Cloud






### Border Gateway

When to use what



#### Anycast Border Gateway

- Up to 6 BGW
  - Simple Failure Scenarios
- Any Deployments
  - No End-Point or Network Services
     Connectivity on BGW
- Greenfield Deployments



#### VPC Border Gateway

- 2 BGW with Physical Peer-Link
- Small Deployments
  - End-Point or Network Services Connectivity on BGW
- Migration Use-Cases (Brownfield)
- Classic Ethernet / FabricPath to VXLAN EVPN

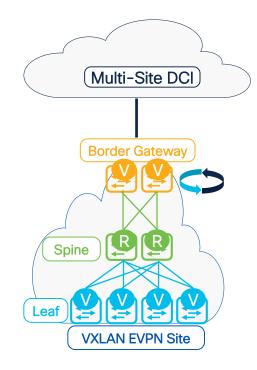
### **BGW Node Placement Option**

#### Flexible Design option-1 **Dedicated Border Gateway**



- Flexible scale-out approach for VXLAN EVPN Multi-Site DCI
- Flexible Anycast or VPC BGW models




- Capacity planning only for DCI traffic flows
- Clean role separation and uniform reachability from the entire fabric are the major advantages

#### **Border Gateway hosts:** VTEP for:

East-West (DCI Packet Re-Origination L2/L3)

= VTEP

= RR/RP





### **BGW Node Placement Option**

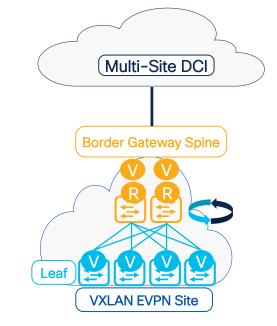
Flexible Design option-2 BGW on Spine nodes (Border Gateway Spine)



Flexible scale-out approach for VXLAN EVPN Multi-Site DCI

Anycast BGW only

Extra functional dependency (BGW + Spine)


Capacity planning needs to accommodate all flows

Border Gateway Spine hosts: VTEP for:

- East-West (DCI Packet Re-Origination L2/L3)
- Route Reflector (RR) (Site-Internal iBGP EVPN)
- Rendezvous Point (RP) (Site-Internal Multicast Underlay BUM)



= RR/RP



cisco live!

### **BGW Node Placement Option**

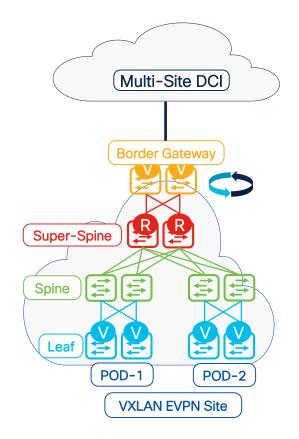
#### Flexible Design option-3 BGW on top of Super-Spine nodes



Scale-out Multi-Clos Fabric to Interconnect the PODs using Super-Spine



- Architecture beyond a single server room. Simpler capacity planning
- Capacity planning only for DCI traffic flows


Clean role separation and uniform reachability from the entire fabric are the major advantages

Border Gateway hosts: VTEP for:

- East-West (DCI Packet Re-Origination L2/L3)

#### Super-Spine hosts:

- Route Reflector (RR) (iBGP EVPN)
- Rendezvous Point (RP) (Multicast Underlay BUM)



### **Border Node Placement Option**

#### Flexible Design option-4

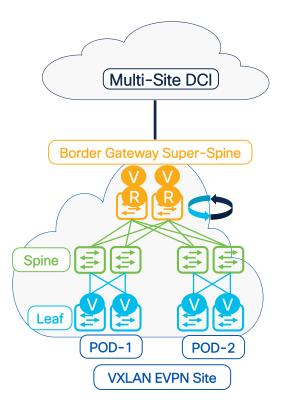
#### BGW on Super-Spine nodes (BGW Super-Spine)



Scale-out Multi-Clos Fabric to Interconnect the PODs using Super-Spine



Architecture beyond a single server room. Simpler capacity planning

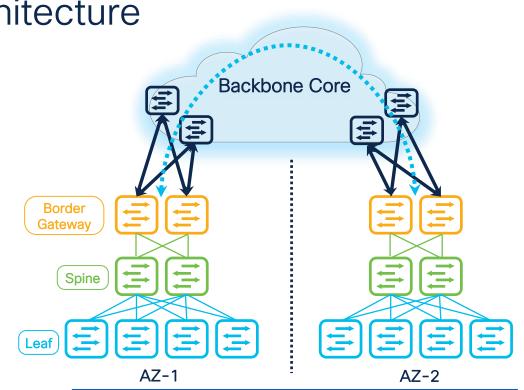



Capacity planning needs to accommodate all flows

Extra functional dependency (BGW + Super-Spine). Not recommended due to Multi-POD failure dependency

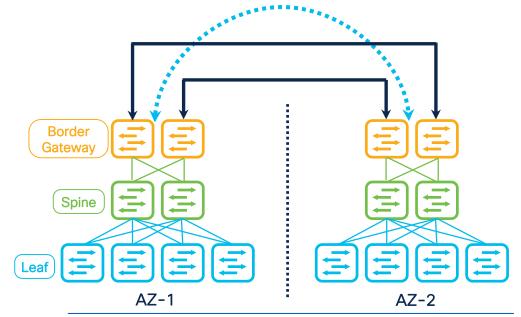
Border Gateway Super-Spine hosts: VTEP for:

- East-West (DCI Packet Re-Origination L2/L3)
- Route Reflector (RR) (Site-Internal iBGP EVPN)
- Rendezvous Point (RP) (Site-Internal Multicast Underlay BUM)

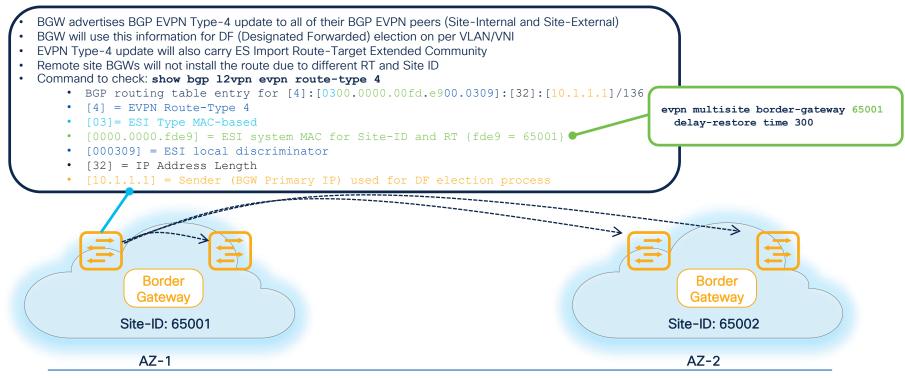





#### DCI- BGW to Cloud


- Scalable design option with horizontal scale-out • within and across multiple sites.
- Backbone/Cloud can be any routed service. (flat L3, ٠ MPLS-L3VPN)
- Multi-Site Underlay: eBGP IPv4 Unicast ٠
  - Advertise Lo0 (Overlay Control Plane), Lo1 (BUM, External networks), and Lo100 (Multi-Site Inter-Site Transit communication)
  - Site-External DCI BUM: Ingress-Replication or Multicast supported. \*Currently NDFC supports only Ingress-Replication.
  - Site-Internal Fabric BUM: Ingress-Replication or • Multicast supported independently at each site.
- Multi-Site Overlay: eBGP EVPN Overlay •
  - Full-mesh BGP EVPN peering across all BGWs.
- Ensure that PIP / VIP of all BGWs are known by every • BGW and MTU must accommodate VXLAN encapsulated traffic






#### DCI- BGW Back-to-Back

- Available option for connecting 2 or 3 sites.
- Minimum topology is the square. An enhanced option is to add links between site local BGWs for improved ECMP and Failure scenarios.
- Multi-Site Underlay: eBGP IPv4 Unicast
  - Advertise Lo0 (Overlay Control Plane), Lo1 (BUM, External networks), and Lo100 (Multi-Site Inter-Site Transit communication)
  - Site-External DCI BUM: Ingress-Replication or Multicast supported. \*Currently NDFC supports only Ingress-Replication.
  - Site-Internal Fabric BUM: Ingress-Replication or Multicast supported independently at each site.
- Multi-Site Overlay: eBGP EVPN Overlay
  - Full-mesh BGP EVPN peering across all BGWs.
- Ensure that PIP / VIP of all BGWs are known by every BGW and MTU must accommodate VXLAN encapsulated traffic.

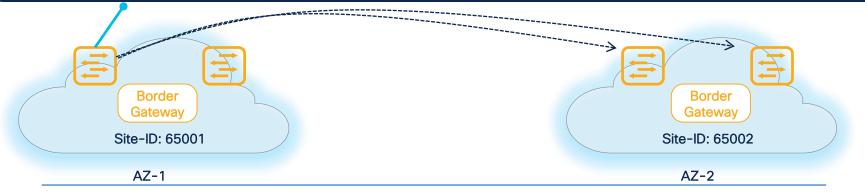


#### Multi-Destination Traffic Forwarding EVPN Route-Type 4 (Ethernet Segment Route)

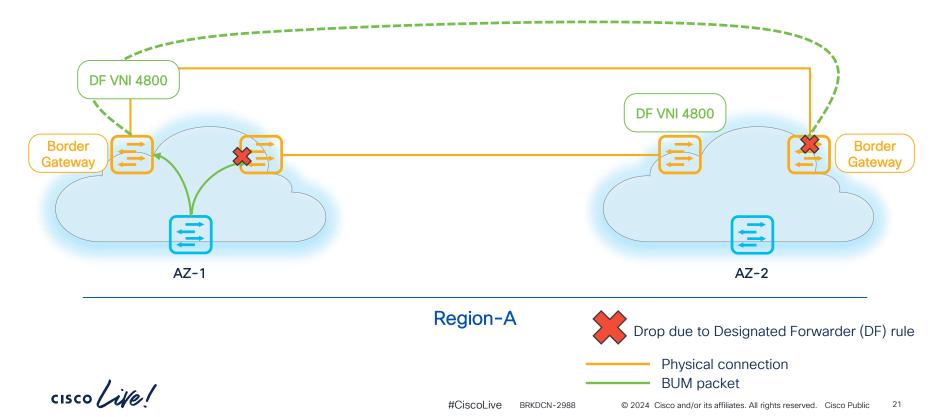


#### Multi-Destination Traffic Forwarding BGW Designated Forwarded (DF) Election

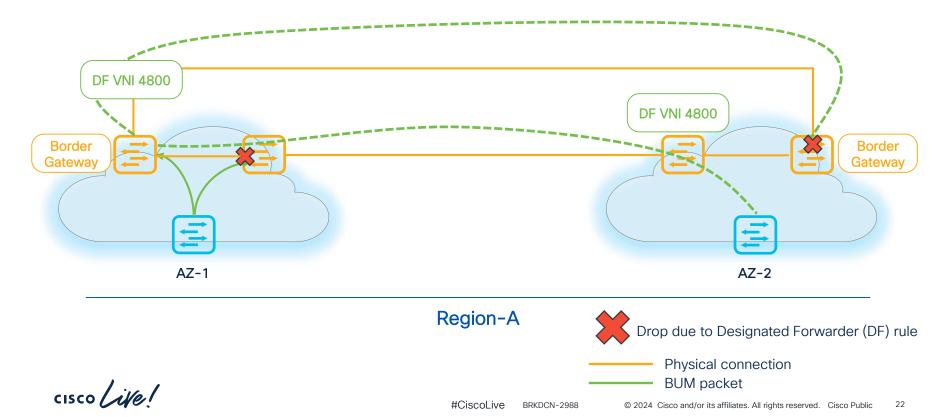
- BGW learns about other BGWs originator IPs on the same site from exchanging EVPN Type 4 routes. The originator IP address used is the BGW NVE source interface's primary IP address.
- Each BGW creates an ordinal list of originator IP in numerical order from lowest to highest. Every BGW is then given an ordinal value based on its position in the ordinal list starting from position 0. The BGW with the lowest originator IP would get an ordinal value of 0. The ordinal value decides which BGW will be the DF for a VLAN/VNI.
- DF election Formula uses "mod" operation:
- I = V mod N {I = ordinal value, V = VLAN #, N = # BGWs in a site}
- If there are 4 BGWs in one site. The ordinal list of the BGWs will be arranged as shown below.
- Ordinal List = 10.1.1.1, 10.1.1.2, 10.1.1.3, 10.1.1.4 {I=0, I=1, I=2, I=3}
- The DF for VLAN 48 will be: "I = 48 mod 4 = 0 = 10.1.1.1"
- The DF for VLAN 49 will be: "I = 49 mod 4 = 1 = 10.1.1.2"
- The DF for VLAN 50 will be: "I = 50 mod 4 = 2 = 10.1.1.3"
- The DF for VLAN 51 will be: "I = 51 mod 4 = 3 = 10.1.1.4"


#### Multi-Destination Traffic Forwarding

EVPN Route-Type 3 (Inclusive Multicast Ethernet Tag Route)

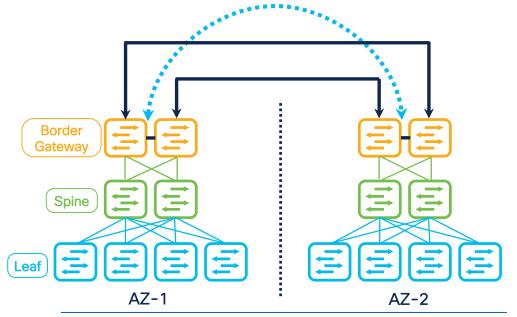

- BGW advertises BGP EVPN Type-3 only towards Site-External DCI
- Receiving BGW switch does not forward it to Site-Internal Fabric
- Command to check: show bgp 12vpn evpn route-type 3,
- show l2route evpn imet all detail
- Local: Advertising from Site 1 BGW to Site 2 BGW
   BGP routing table entry for [3]:[0]:[32]:[10.3.0.4]/88
   AS-Path: NONE, path locally originated
   Extcommunity: RT:65001:10000 ENCAP:8
   PMSI Tunnel Attribute:
   flags: 0x00, Tunnel type: Ingress Replication
   Label: 10000, Tunnel Id: 10.3.0.4
   Path-id 1 advertised to peers: 20.2.0.4

Remote: Learning from Site 2 BGW to Site 1 BGW
 BGP routing table entry for [3]:[0]:[32]:[20.3.0.4]/88
 Path type: external, path is valid, is best path
 Imported to 1 destination(s)
 Imported paths list: L2-10000
 AS-Path: 65002 , path sourced external to AS
 Extcommunity: RT:65001:10000 ENCAP:8
 PMSI Tunnel Attribute:


 flags: 0x00, Tunnel type: Ingress Replication
 Label: 10000, Tunnel Id: 20.3.0.4



#### VXLAN Multi-Site Architecture DCI- BGW Back-to-Back BUM (w/o Local L3 link)




#### VXLAN Multi-Site Architecture DCI- BGW Back-to-Back BUM (with Local L3 link)

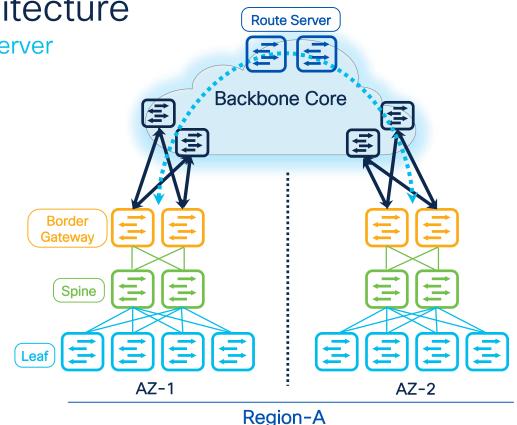


#### DCI- BGW Back-to-Back (with Local L3 link)

- Available option for connecting 2 or 3 sites.
- Minimum topology is the square. An enhanced option is to add links between site local BGWs for improved ECMP and Failure scenarios.
- Multi-Site Underlay: eBGP IPv4 Unicast
  - Site-External DCI BUM: Ingress-Replication or Multicast supported. \*Currently NDFC supports only Ingress-Replication.
  - Site-Internal Fabric BUM: Ingress-Replication or Multicast supported independently at each site.
- Multi-Site Overlay: eBGP EVPN Overlay
  - Full-mesh BGP EVPN peering across all BGWs.
- Ensure that PIP / VIP of all BGWs are known by every BGW and MTU must accommodate VXLAN encapsulated traffic.






#### DCI- BGW to Centralized Router-Server

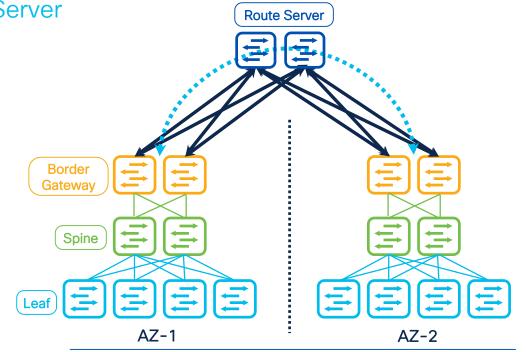
- BGP Route-Server (RS) function can be used in a highly scalable design to act as the central EVPN peering point for the Multi-Site.
- RS does not need to be on the data path.
- Multi-Site Underlay: eBGP IPv4 Unicast
  - Advertise Lo0 (Overlay Control Plane), Lo1 (BUM, External networks), and Lo100 (Multi-Site Inter-Site Transit communication)
  - Site-External DCI BUM: Ingress-Replication or Multicast supported.
     \*Currently NDFC supports only Ingress-Replication.
  - Site-Internal Fabric BUM: Ingress-Replication or Multicast supported independently at each site.
  - Multi-Site Overlay: eBGP EVPN Overlay
  - BGP EVPN peering only between BGWs and RS.
  - Route-Server (RS) must support...
  - EVPN AFI and Router-Server function per RFC 7947
  - Next-hop-unchanged, Retain RT, and RT Rewrite function
  - Ensure that PIP / VIP of all BGWs are known by every BGW and MTU must accommodate VXLAN encapsulated traffic.

•

٠

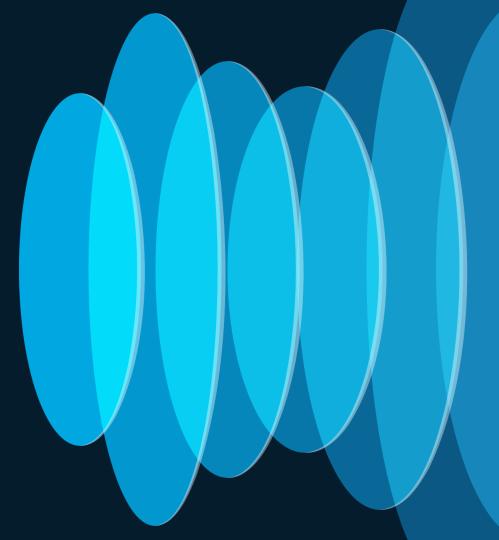
٠



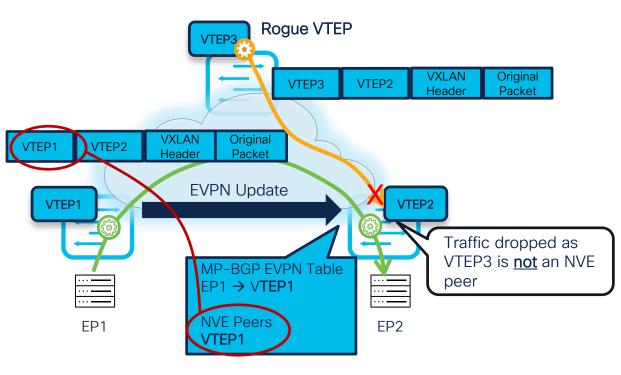

BRKDCN-2988 © 2024 Cisco and/or its affiliates, All rights reserved. Cisco Public

24

#CiscoLive


#### DCI- BGW to Centralized Router-Server

- BGP Route-Server (RS) function can be used in a highly scalable design to act as the central EVPN peering point for the Multi-Site.
- RS can also be on the data path.
- Multi-Site Underlay: eBGP IPv4 Unicast
  - Site-External DCI BUM: Ingress-Replication or Multicast supported.
     \*Currently NDFC supports only Ingress-Replication.
  - Site-Internal Fabric BUM: Ingress-Replication or Multicast supported independently at each site.
- Multi-Site Overlay: eBGP EVPN Overlay <---->
  - BGP EVPN peering only between BGWs and RS.
- Route-Server (RS) must support...
  - EVPN AFI and Router-Server function per RFC 7947
  - Next-hop-unchanged, Retain RT, and RT Rewrite function
- Ensure that PIP / VIP of all BGWs are known by every BGW and MTU must accommodate VXLAN encapsulated traffic.




### Special Considerations for Layer-3 extension across Multi-Site



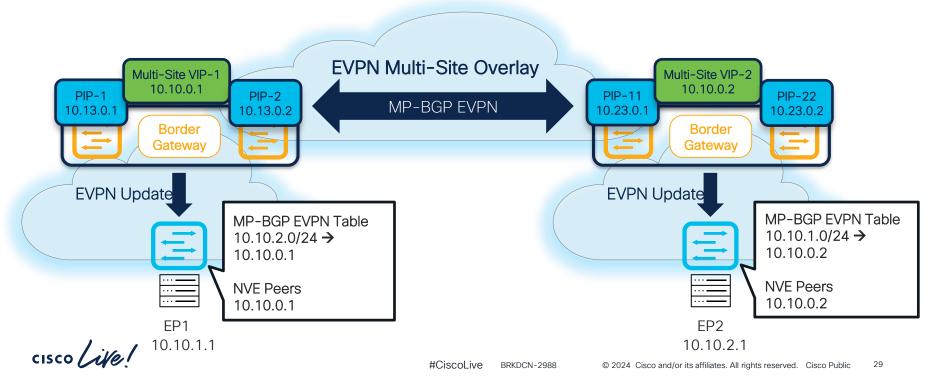


#### VXLAN Native Data Plane Security



cisco live!

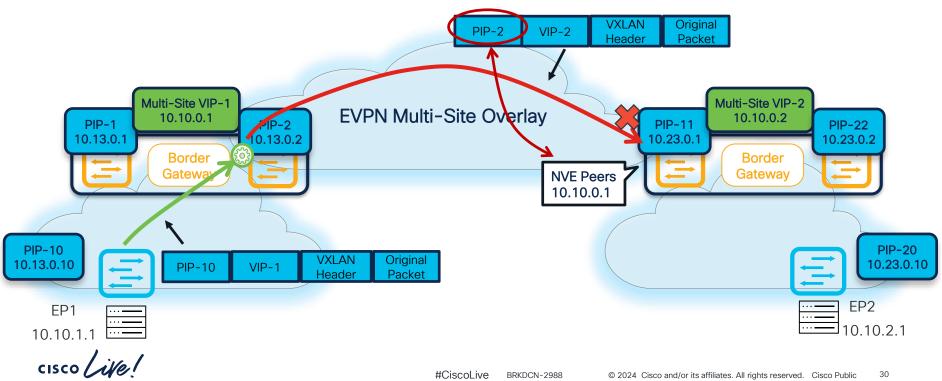
- VXLAN EVPN offers a native data plane security functionality
  - VXLAN traffic originated from a remote VTEP is only accepted when sourced from a TEP address that is an "NVE peer"
  - An NVE peer's address is added to the local table based on the reception of MP-BGP EVPN updates carrying that specific address as next-hop
- Prevents the insertion of rogue VTEPs in a VXLAN EVPN fabric


# Why can this become an issue for Layer-3 communication across sites?

cisco / ille

#### Inter-Site Layer 3 Traffic – Control Plane

Inter-Site Type-2 and Type-5 EVPN updates always carry the local Multi-Site VIP as next-hop address


• Only exception are Type-5 updates for L3 networks locally connected to the BGWs



#### Inter-Site Layer 3 Traffic – Data Plane

Inter-Site traffic is always sourced by local BGWs from their specific PIP address

Same applies to Intra-Site traffic between local BGW and leaf nodes

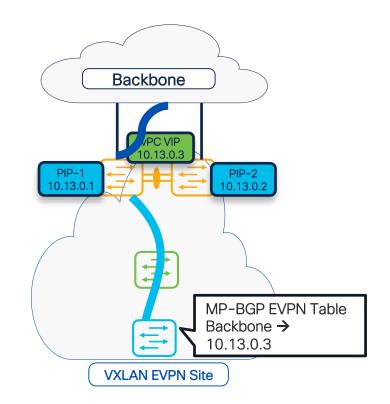


### How to Prevent this issue?

cisco live!

#### **Option-1: Advertise-PIP**



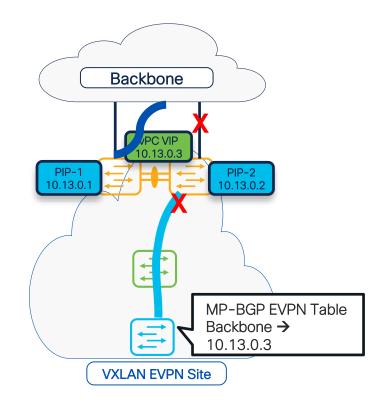

External routes are injected into VXLAN fabric

2

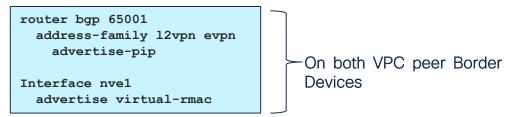
Border advertises External routes as EVPN Type-5 with the BGP Next-Hop of vPC VIP (Anycast)

From Leaf perspective the Next-Hop to reach Backbone is Border Anycast vPC VIP

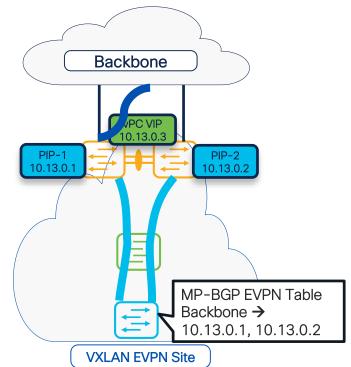
**Problem Statement:** While ARP/MAC/IPv6 ND entries are synced between the peers of a vPC pair, prefix routes belonging to an individual peer as well as external routes received by a peer are not synced between vPC peer switches. Using the VIP as the BGP next-hop for these routes can cause traffic to be forwarded to the wrong vPC peer and hence be black-holed.




#### **Option-1: Advertise-PIP**


Border-2 losses the link towards Backbone and Border-1 is the only available path towards the Fabric

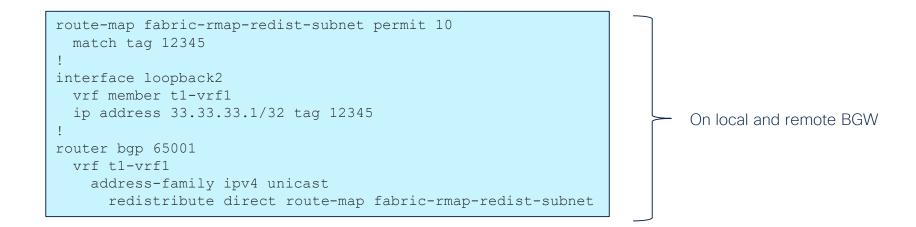
- Border-1 continues to advertise External routes as EVPN Type-5 with the BGP Next-Hop of vPC VIP (Anycast)
- From Leaf perspective the Next-Hop to reach Backbone is Border Anycast vPC VIP. Hence, traffic can hash to either Border-1 or Border-2. If packet hits Border-2, it will drop the traffic!


Note: Border-1 still has an active link towards the Backbone and advertises the routes towards the Spine (RR). Later, the Spine will reflect the route to Border-2, but it will reject it due to Next-Hop being its own IP (VIP 10.13.0.3)



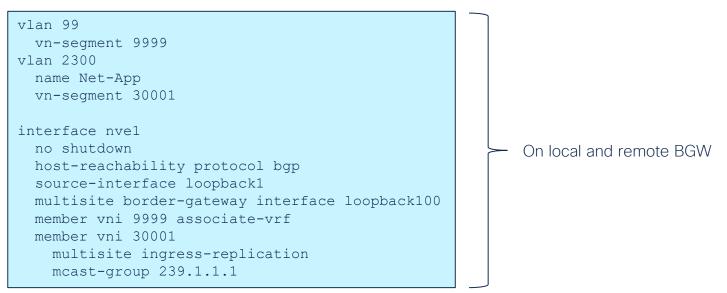
#### **Option-1: Advertise-PIP**




The advertise-pip command lets BGP use the PIP as next-hop when advertising prefix routes or leaf-generated routes if vPC is enabled. With the advertise-pip and advertise virtual-rmac commands, EVPN Type-5 routes are advertised with PIP, and EVPN Type-2 routes are still advertised with VIP. In addition, a virtual MAC will be used with the VIP that is shared by both vPC peers, and individual peer specific system Router MAC will be used with PIP when the advertise-pip feature is enabled. In this way, the traffic will always be destined to the right vPC peer.

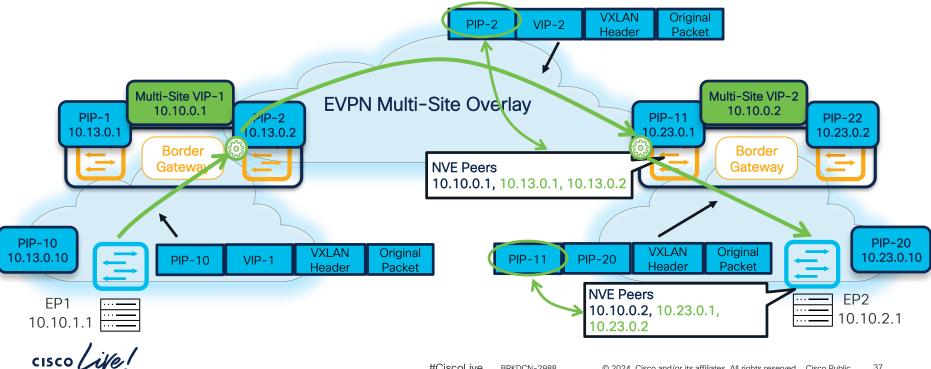


cisco / ila


#### Option-2: Per-VTEP, Per-VRF Loopback

• Define on all the BGW nodes a loopback interface (in a specific VRF) and advertise the information across site with a Type-5 EVPN update




#### Option-3: Extend one L2VNI End-to-End

 An L2VNI must be stretched between the local leaf nodes and BGW nodes. An L2VNI must be stretched across sites (i.e. defined on the local and remote BGW nodes). Does not necessarily need to be the same L2VNI




#### Installing PIP Addresses as NVE Peers

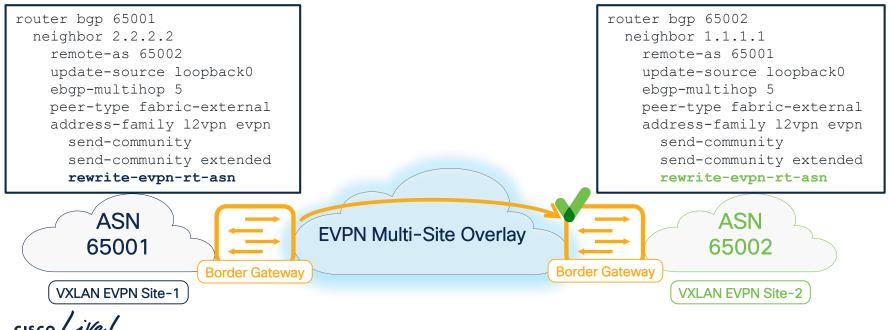
Adopting any of the 3 solutions described in the previous slide ensures that the PIP addresses of the BGWs can be installed as NVE peers in the local leaf nodes and in the remote BGW nodes



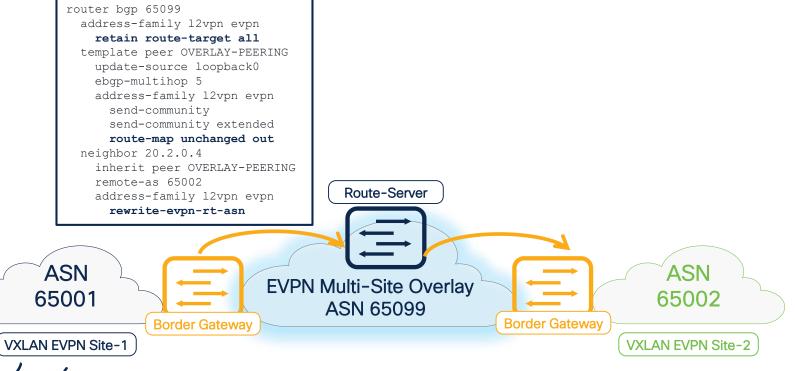
## Some more Important Requirements!



cisco ive!

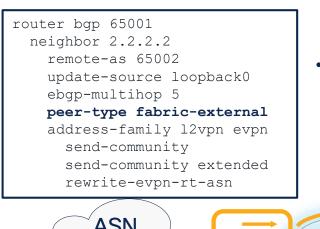

#### Multi-Site Route-Target Problem

```
vrf context myvrf 50000
vrf context myvrf 50000
 vni 50000
                                                                    vni 50000
 rd auto
                                                                    rd auto
 address-family ipv4 unicast
                                                                    address-family ipv4 unicast
                                                                      route-target both auto
    route-target both auto
    route-target both auto evpn {65001:50000}
                                                                      route-target both auto evpn {65002:50000}
                                                                    address-family ipv6 unicast
  address-family ipv6 unicast
                                                                      route-target both auto
    route-target both auto
    route-target both auto evpn {65001:50000}
                                                                      route-target both auto evpn {65002:50000}
                                                                  evpn
evpn
                                                                    vni 30000 12
 vni 30000 12
    rd auto
                                                                      rd auto
                                                                      route-target import auto {65002:30000}
    route-target import auto {65001:30000}
    route-target export auto {65001:30000}
                                                                      route-target export auto {65002:30000}
              ASN
                                                                                          ASN
                                         EVPN Multi-Site Overlay
             65001
                                                                                         65002
                           Border Gateway
                                                                      Border Gateway
         VXLAN EVPN Site-1
                                                                                     VXLAN EVPN Site-2
```


```
cisco live!
```

#### EVPN Route-Target Re-Write

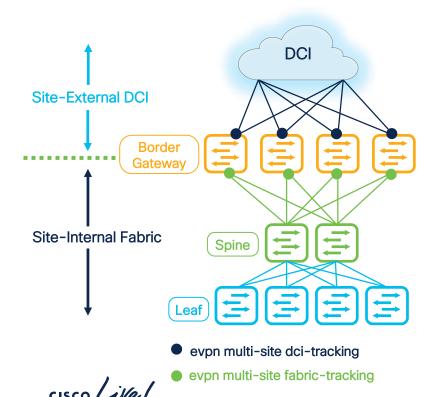
The "rewrite-evpn-rt-asn" command modifies the incoming EVPN advertisements by swapping the remote AS portion in the RT with the local ASN, provided the update is coming from a neighbor that is locally configured.




#### Route-Server in DCI EVPN Route-Target Re-Write by Route-Server

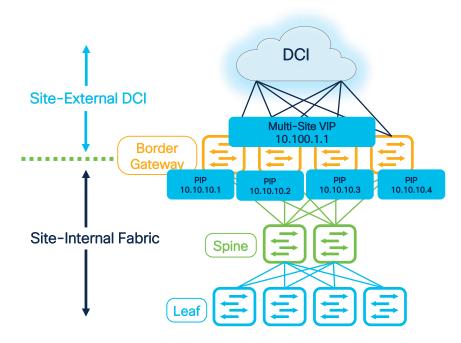


## Peer-Type Fabric-External


EVPN Split-Horizon and Route Re-Origination



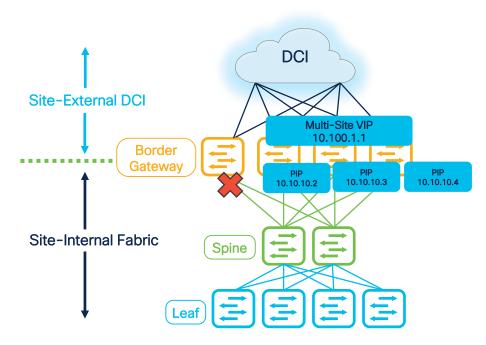
- The command is defined towards Site-External EVPN peering. It provides the capability of VXLAN packet re-origination and implements VPN split horizon mechanism.
- EVPN route coming from Site-External peer-type must not be re-advertised back into the VPN. The route is only advertised towards Site-Internal VTEPs




#### Use of Interface Tracking



- Because of the critical role played by the BGWs, it is critical to consider the required behavior during different failure scenarios.
- Tracking the state of the interfaces connecting the BGWs to the spines ("fabric-tracking") and to the ISN ("dcitracking")
- The "dci-tracking" configuration is also required on Layer-3 interfaces locally connecting Anycast BGW nodes, needed for example, back-to-back topologies.
- Allows to define via configuration how the BGW is connected in the topology and to take proper action depending on the specific failure.
- The BGW node that gets isolated from the fabric or from the ISN needs to stop receiving traffic flows if it can not forward them to the destination.


#### Fabric Isolation

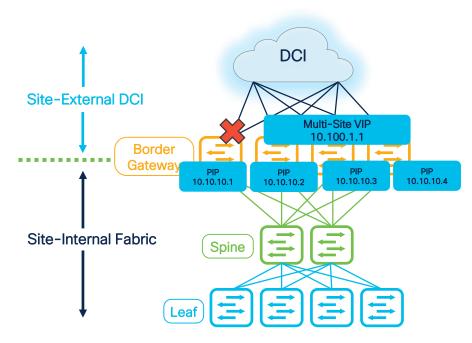


 The Site-Internal interfaces on BGW nodes are constantly tracked to determine their status ('evpn multisite fabrictracking' command)

cisco / il

#### Fabric Isolation




- The Site-Internal interfaces on BGW nodes are constantly tracked to determine their status ('evpn multisite fabrictracking' command)
- If all the Site-Internal interfaces are detected as down on a BGW:
  - The BGW will isolate itself from Multi-Site traffic. Hence, it will shutdown Lo100 aka VIP and stop advertising to remote sites. So, the traffic from remote site will never come to this BGW as it will no longer be part of the ECMP.
  - 2) The BGW site external BGP session will be up and running but it will withdraw all EVPN routes (Type 2,3,4,5)
  - The remaining BGWs withdraw all BGP EVPN Route Type 4 (Ethernet segment) routes received from the now isolated BGW because reachability is missing.
- As a result, the BGW becomes isolated from both the Site-Internal and Site-External networks.
- Seamless BGW node re-insertion using a "delay-restore" timer for the Multi-Site VIP address

#### DCI Site-External DCI Multi-Site VIP 10.100.1.1 Border Gateway PIP PIP PIP PIP 10.10.10.3 10.10.10.4 10.10.10.1 10.10.10.2 Site-Internal Fabric Spine Ē Leaf

 The Site-External interfaces on BGW nodes are constantly tracked to determine their status ('evpn multisite dci-tracking' command)

cisco ile

#### **DCI** Isolation



- The Site-External interfaces on BGW nodes are constantly tracked to determine their status ('evpn multisite dci-tracking' command)
- If all the Site-External interfaces are detected as down on a BGW:
  - The BGW will stop advertising Multi-Site VIP aka Lo100 towards Site-Internal network. Hence, all traffic destined to remote sites will be re-routed to remaining BGWs due to ECMP.
  - 2) The isolated BGW will also withdraw EVPN Type-4 as new DF election is triggered amongst the remaining BGWs.
  - 3) The isolated BGW do not need to withdraw Type-2,3, and 5 routes as DCI interfaces and remote BGP EVPN peering are down.
- As a result, the BGW continues to operate as a Site-Internal VTEP as it's PIP remains up. Hence, if any external network is connected to this BGW, traffic from local site can still be sent to this BGW.
- Seamless BGW node reinsertion using a "delay-restore" timer for the Multi-Site VIP address

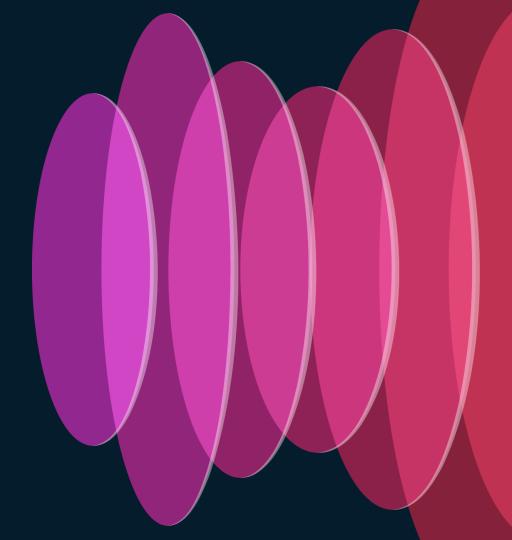


## Cool! But What's the Catch?

There is always a catch ©

This seems really cool! Is it easy to configure? *There are lots of moving parts: OSPF/BGP/VXLAN. Manual configuration can be challenging.* 



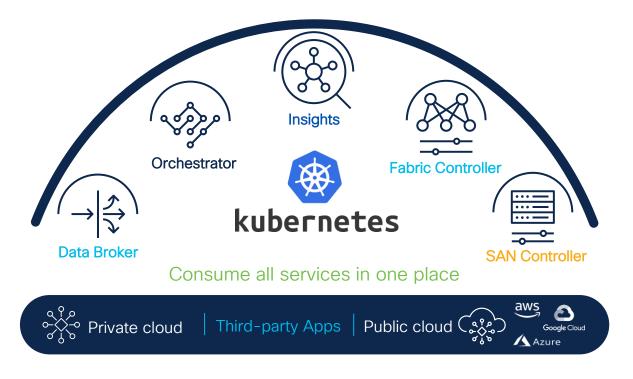

How easy is it to make changes?

You still rely on traditional SSH based management to each device, which can be cumbersome and error prone.



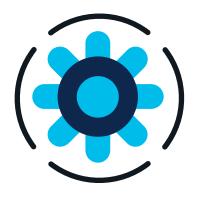
How much Visibility do I have into the network? Visibility and Troubleshooting is still performed on a "switch-byswitch" basis.

What is Nexus Dashboard Fabric Controller?




cisco ive!

#### Cisco Nexus Dashboard


Simple to automate, simple to consume

Powering automation Unified agile platform



#### Cisco Nexus Dashboard Fabric Controller





Automation

Accelerate provisioning and simplify deployments



#### Management

In depth Management and control for all network deployments



#### Visibility

Get Centralized Visibility and Monitoring views

cisco / ille

#### Automation

#### Accelerate provisioning from days to minutes

Easy to understand approach to auto-bootstrapping of entire fabric

Rapid Deployment with Fabric Builder best practice templates for VXLAN-EVPN, BGP Routed, Campus, and More!

Optimized for both large deployments and traditional deployment models

Service Insertion and Layer-3 handoff

DevOps friendly

|                             | Benefits          |                       |
|-----------------------------|-------------------|-----------------------|
| Simplify fabric deployments | Developer agility | VXLAN EVPN Multi-Site |
|                             |                   |                       |

#### Management

Single point for management for data center operations

Optimized for both large deployments and traditional deployment models

#### Granular RBAC

Image management

#### RMA

Scale within and across data centers with One-Manage Federation

Management for non-Nexus platforms



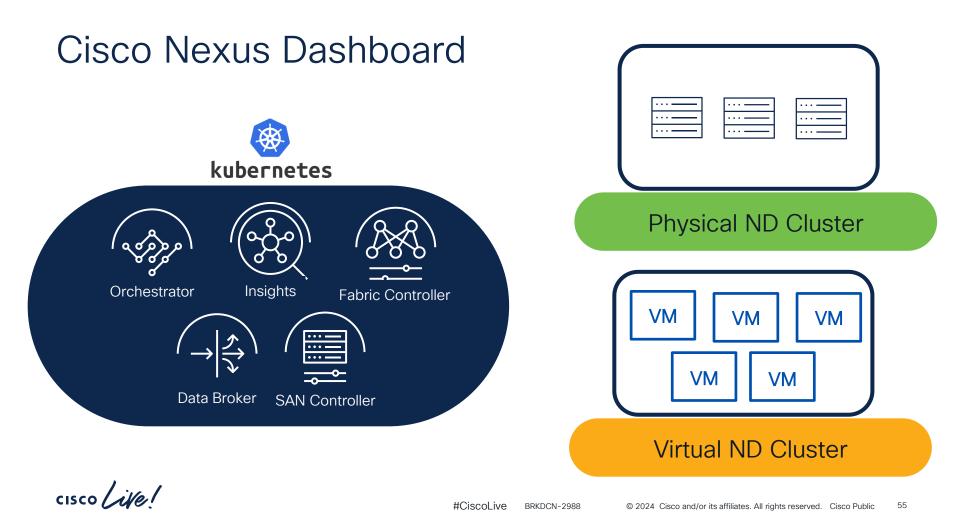
## Visibility & Monitoring



#### Get comprehensive monitoring

Enhanced topology views

Compute and endpoint visibility


VXLAN OAM support with NDFC

Obtain detailed inventory, health, resource consumption information on devices

End-to-end visibility, monitoring and troubleshooting

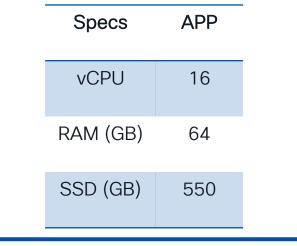
Integrate with NDI for Day 2 operations





#### Cisco Nexus Dashboard Formats - NDFC

Physical ND Cluster


Each node is a UCS Server with:

2.8GHz AMD CPU 256G RAM 4x2.4TB HDD 960 GB SSD 1.6 TB NVMe drive

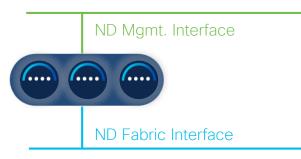
For the latest information check the specific scalability guide. <u>12.1.3b Verified Scalability</u>

Virtual ND Cluster

For NDFC each vND VM must satisfy the following requirements:

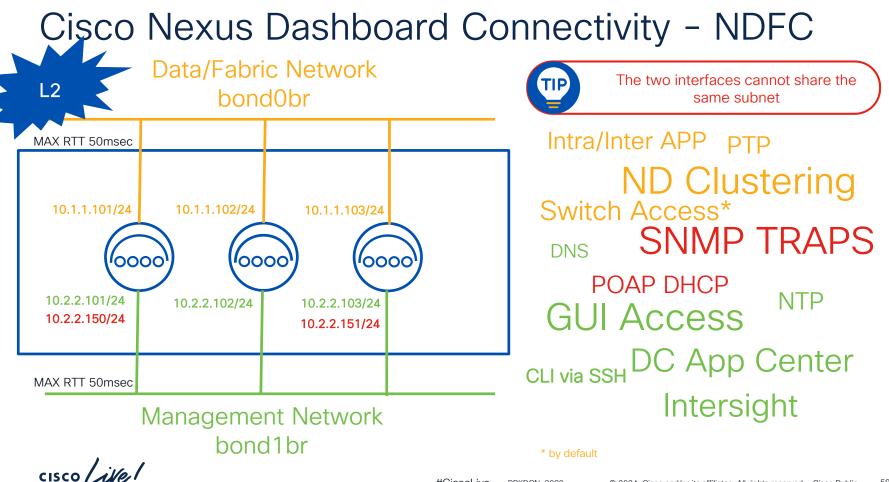





| Cluster                                                      | (Greenfield)                                                                                                                                            | VXLAN EVPN<br>(Brownfield)                                                                                                                                                                                                                                                                                                                                 |  |  |
|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Full scale for NDFC can<br>be achieved with 5<br>nodes       | Switches per Fabric:<br>200                                                                                                                             | Switches per Fabric:<br>200                                                                                                                                                                                                                                                                                                                                |  |  |
| Managed mode (VXLAN<br>and BGP fabrics): 400<br>switches     | <b>Overlays:</b> 500 VRF and<br>2000 Layer-3 Networks<br>OR 2500 Layer-2<br>Networks                                                                    | <b>Overlays:</b> 400 VRF and<br>1050 Layer-3/Layer-2<br>Networks                                                                                                                                                                                                                                                                                           |  |  |
| Managed/Monitor mode<br>(External fabrics): 1000<br>switches | <b>Multi-Site Domain:</b> 30 fabrics                                                                                                                    | Multi-Site Domain: 30<br>fabrics                                                                                                                                                                                                                                                                                                                           |  |  |
| Overall fabric count: 50                                     | <b>ToR/Leaf:</b> 40 Leaf<br>(VTEP) and 320 ToRs in<br>DC VXLAN EVPN fabric                                                                              |                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                                                              | be achieved with 5<br>nodes<br>Managed mode (VXLAN<br>and BGP fabrics): 400<br>switches<br>Managed/Monitor mode<br>(External fabrics): 1000<br>switches | be achieved with 5<br>nodes200Managed mode (VXLAN<br>and BGP fabrics): 400<br>switchesOverlays: 500 VRF and<br>2000 Layer-3 Networks<br>OR 2500 Layer-2<br>NetworksManaged/Monitor mode<br>(External fabrics): 1000<br>switchesMulti-Site Domain: 30<br>fabricsOverall fabric count: 50ToR/Leaf: 40 Leaf<br>(VTEP) and 320 ToRs in<br>DC VXLAN EVPN fabric |  |  |

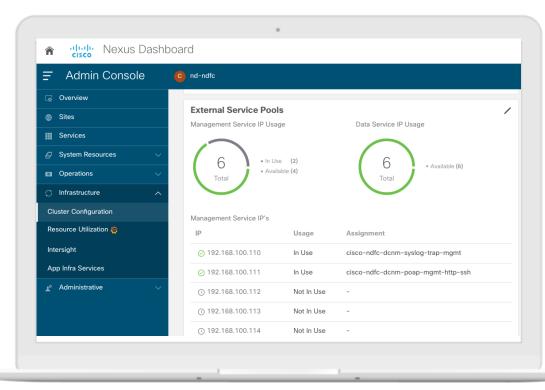


must be deployed for proper redundancy. 1x vND also supported for Production


TIP

## Nexus Dashboard




- Each ND node has two interface types:
  - Management Interface: should be dedicated to the management of the ND cluster → connectivity to NTP and DC Proxy servers, Intersight, DNS, ND (and ND Apps) UI access and to perform firmware upgrade (for ND or Apps)
  - Fabric Interface: used for the bring up of the ND cluster (node to node communication) and application to application (NDO, NDI, NDFC, etc.) communication



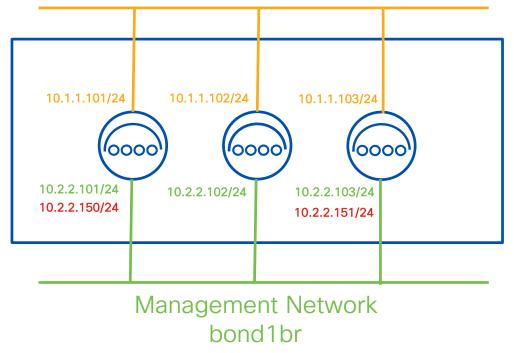


#CiscoLive BRKDCN-2988 © 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public 59

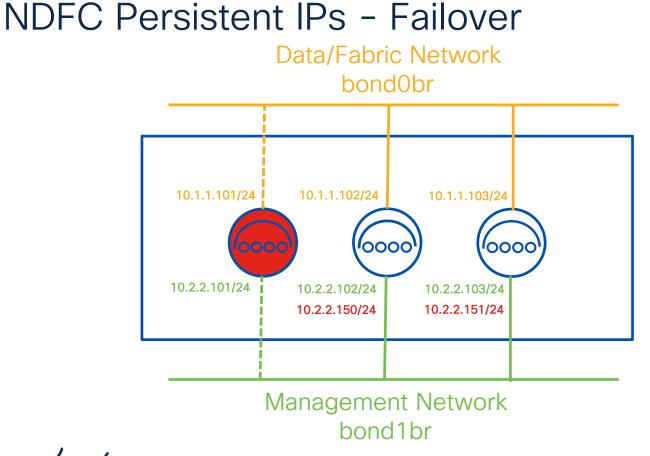
#### NDFC Persistent IPs



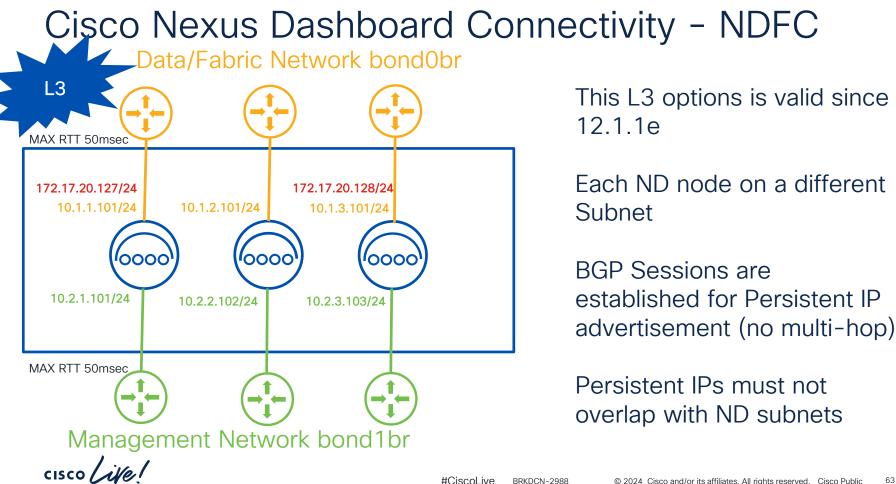
Persistent IPs are tied to a service, like the SNMP trap receiver

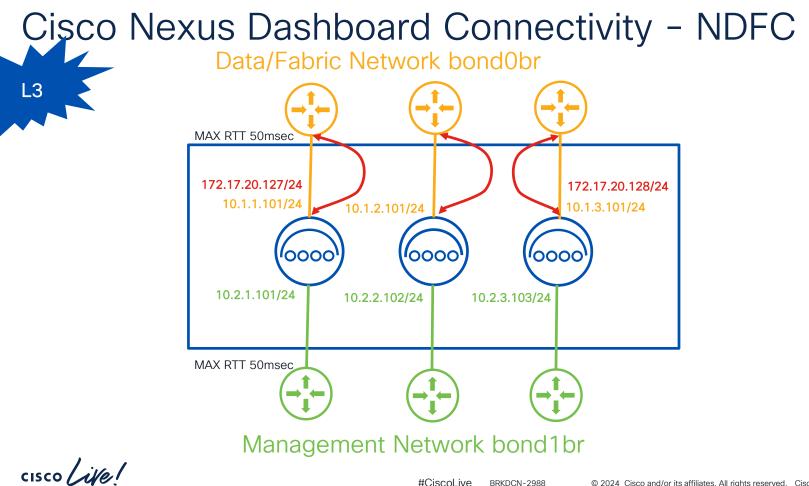

If the SNMP trap POD gets re-spawned into a different ND host the sticky IP will be moved there

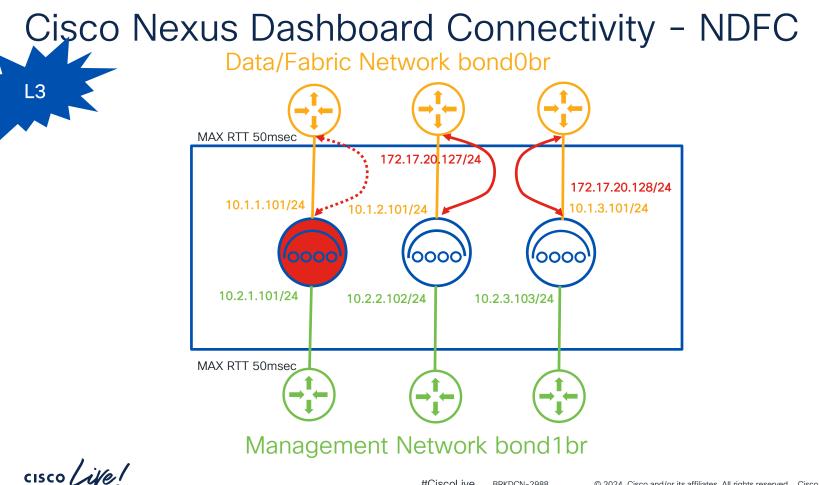
L2 adjacency uses ARP, L3 adjacency BGP announcements


#### NDFC Persistent IPs - Normal conditions

Data/Fabric Network


bond0br



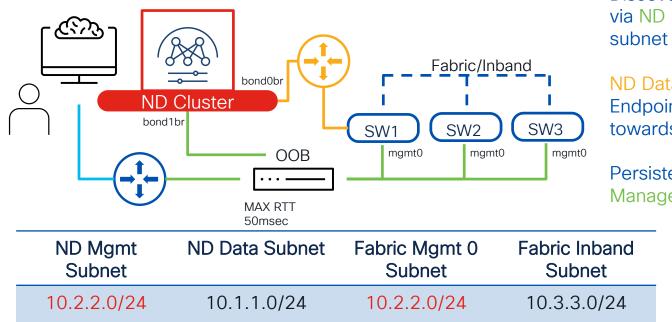


cisco / ille



cisco / ile







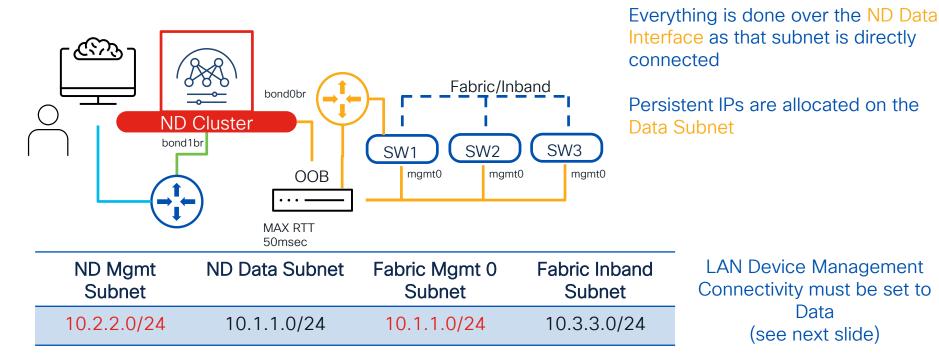

#CiscoLive

BRKDCN-2988

65

Use case #1




Discovery and Deployment happen via ND Management Interface as that subnet is directly connected

ND Data Interface eventually used for Endpoint Locator Feature (BGP towards Spine RR)

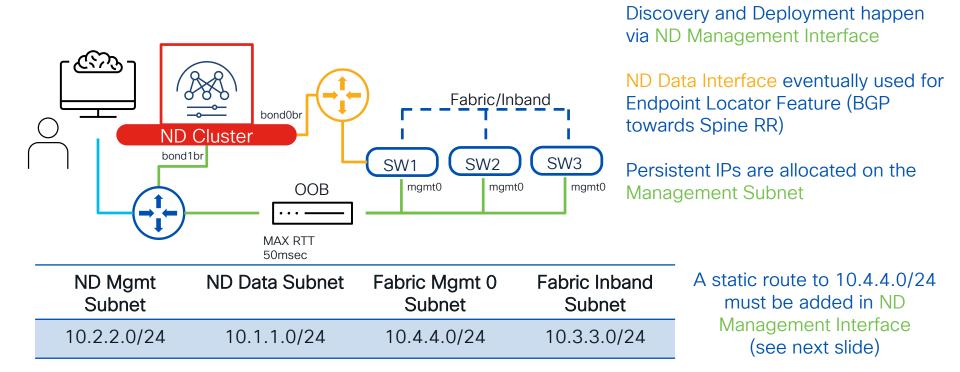
Persistent IPs are allocated on the Management Subnet

Works by default!

Use case #2



Use case #2 continues


| n diale Nexus D                        |        |                                     |              |               |           |                    |        |      |       |      |
|----------------------------------------|--------|-------------------------------------|--------------|---------------|-----------|--------------------|--------|------|-------|------|
| Fabric Controller                      |        |                                     |              |               |           |                    |        |      |       |      |
| Dashboard                              |        | Conver Cot                          | tion of o    |               |           |                    |        |      |       |      |
| 🖌 Topology                             |        | Server Settings                     |              |               |           |                    |        |      |       |      |
| LAN                                    | $\sim$ |                                     |              |               |           |                    |        |      |       |      |
| <ul> <li>Virtual Management</li> </ul> | $\sim$ | Alarms Events                       | Reports      | LAN-Fabric    | Discovery | SSH                | PM VMM | SNMP | Admin | SMTP |
| 🔅 Settings                             | ^      | LAN Device Management Connectivity* |              |               |           |                    |        |      |       |      |
| Server Settings                        |        | Data                                |              |               |           | $\sim$             |        |      |       |      |
| Feature Management                     |        | Specify connection                  | n pool, max  | active conne  | ction*    |                    |        |      |       |      |
| LAN Credentials Management             |        | 100                                 |              |               |           | $\hat{\cdot}$      |        |      |       |      |
| ▲ Operations                           | $\sim$ | Specify connection                  | n pool, max  | idle connecti | on*       |                    |        |      |       |      |
|                                        |        | 20                                  |              |               |           | $\hat{\mathbf{v}}$ |        |      |       |      |
|                                        |        | Specify connection                  | n validation | *             |           |                    |        |      |       |      |
|                                        |        | Specify validation                  | query for d  | atabase*      |           |                    |        |      |       |      |
|                                        |        | select 1                            |              |               |           |                    |        |      |       |      |
|                                        |        | Database perform                    | ance test in | iterval*      |           |                    |        |      |       |      |
|                                        |        | 20                                  |              |               |           | <u>^</u>           |        |      |       |      |

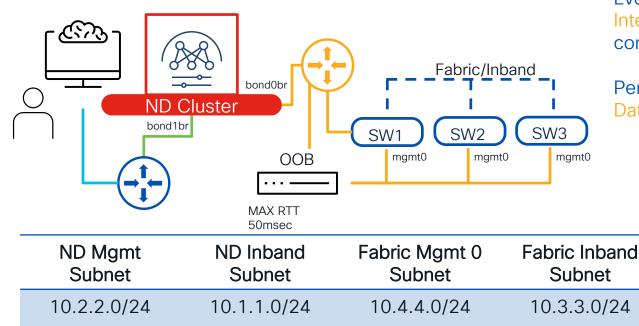
The change is global for the NDFC Instance

Persistent IPs will be provisioned over ND Data Interface

Settings --> Server Settings --> LAN Device Management Connectivity

Use case #3




Use case #3 continues

|                                                       | -                             |             |            |
|-------------------------------------------------------|-------------------------------|-------------|------------|
|                                                       | Routes                        | ×           |            |
| Cluster Details                                       |                               |             |            |
| nd-ndfc                                               | Management Network Routes     |             |            |
|                                                       |                               | 1           |            |
| Proxy Configuration                                   | Add Management Network Routes |             |            |
| Servers                                               | Data Network Routes           |             |            |
| Ignore Hosts                                          | Add Data Network Routes       |             |            |
|                                                       |                               |             | <u>н</u> . |
|                                                       |                               |             |            |
| Routes Management Network Routes                      |                               |             | C          |
| 192.168.101.0/24                                      |                               |             | C          |
| Data Network Routes                                   |                               |             |            |
|                                                       |                               |             |            |
| Estemal Cambra Daala                                  |                               |             |            |
| External Service Pools<br>Management Service IP Usage |                               |             |            |
|                                                       |                               | Cancel Save |            |

The static route needs to be added in the Nexus Dashboard Control Panel.

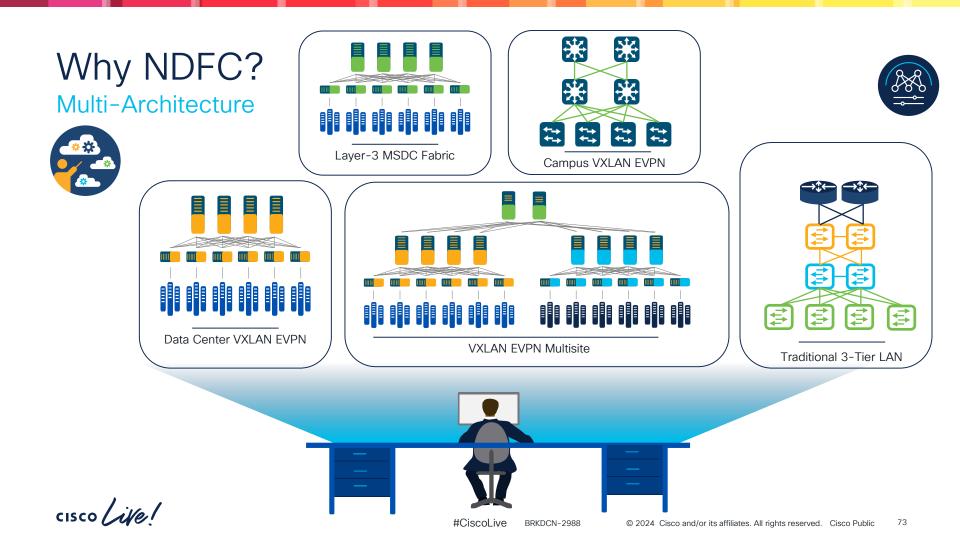
Infrastructure --> Cluster Configuration --> Routes

Use case #4



Everything is done over the ND Data Interface as that subnet is directly connected

Persistent IPs are allocated on the Data Subnet

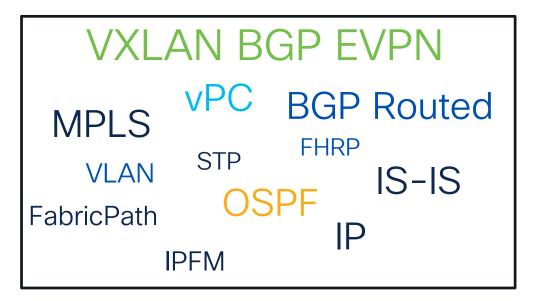

LAN Device Management Connectivity must be set to Data

A static route to 10.4.4.0/24 must be added in ND Data Interface, not for routing but for POAP

# Why do YOU need NDFC?



cisco live!




#### Why NDFC? Multi-Topology, Multi-Protocol





Rich set of control plane and data plane possibilities available





### Why NDFC? Multi-Domain, Multi-Platform



NX-OS Nexus 9000 and 3000



IOS-XE Catalyst 9000



**IOS-XR ASR 9000** 



NX-OS Nexus 7000







# Why NDFC?



Step into SDN via VXLAN BGP EVPN



Config and Compliance across Cisco Products



Single Source of Truth



End to End Automation



Multi-OS management and support



Simplify Complex Network Operations



Automate, Manage, and Interconnect Multi-Fabric topologies



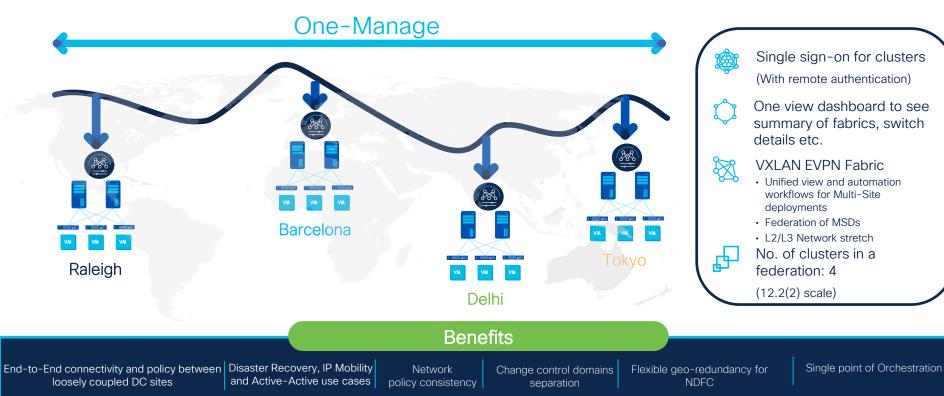
Layer-3 Boundary across Zones, L2/L3 across IOS-XE, NXOS, and Multicast Overlay



Single Pane of Glass for Day-0/Day-1 Provisioning



Programmability and Orchestration

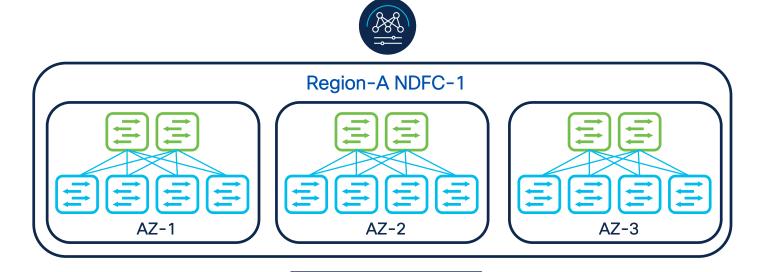



### NDFC Multi-Cluster One-Manage

cisco live!

### Multi-Cluster NDFC Deployments

🚆 Cisco NDFC 12.2(2)

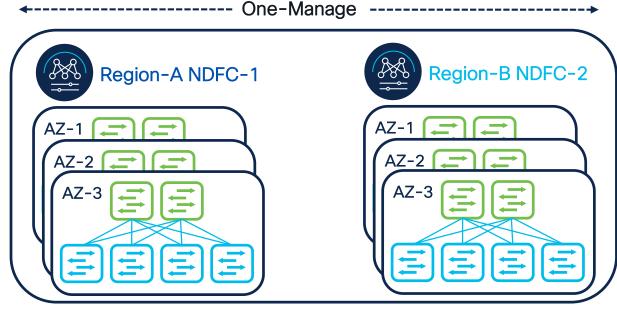



### NDFC-managed VXLAN Multi-Site

Currently Shipping

79

Use-case: Managing multiple DCs in a single instance of NDFC




#### VXLAN EVPN Multi-Site

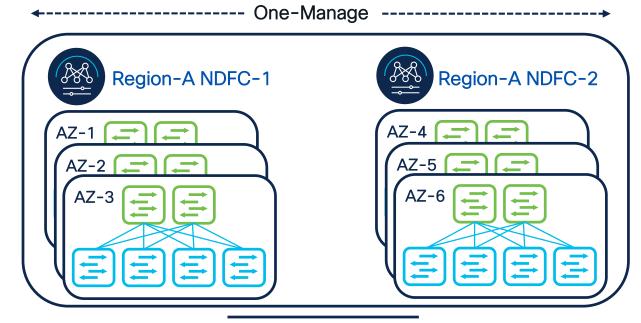
cisco / ile

### NDFC-managed VXLAN Multi-Site One-Manage

Use-case 1: Managing multiple DCs with multiple instances of NDFC



cisco / ile


VXLAN EVPN Multi-Site

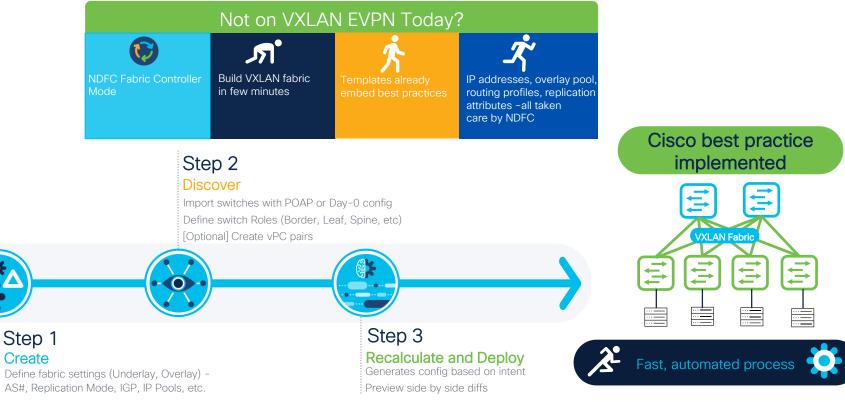
Cisco NDFC 12.2(2)

(<u>A</u>

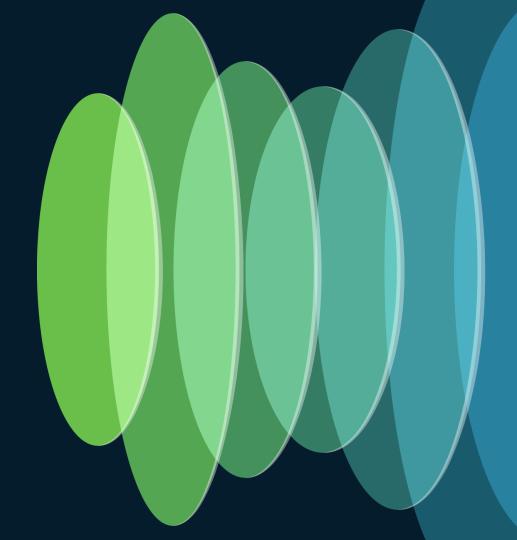
### NDFC-managed VXLAN Multi-Site One-Manage

Use-case 2: Managing single large-scale DC with 500+ switches



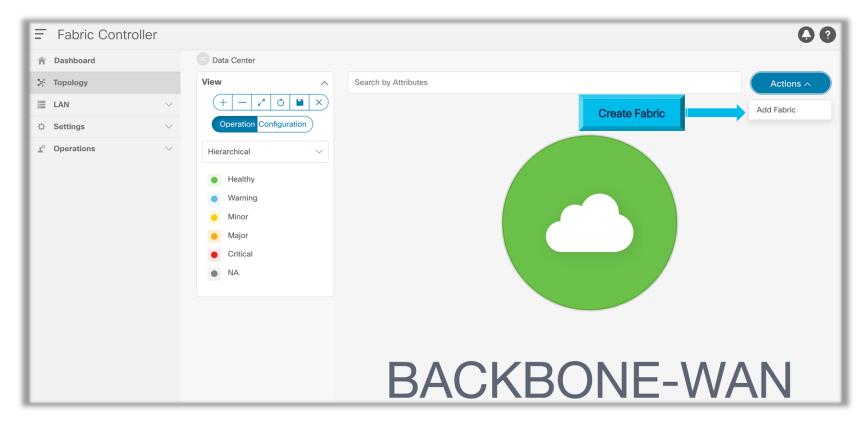



VXLAN EVPN Multi-Site


Automate VXLAN Multi-Site with NDFC

cisco live!

### VXLAN BGP EVPN Greenfield




## NDFC Day-0: VXLAN EVPN Underlay



cisco ive!

### Step1 -> Create a Fabric

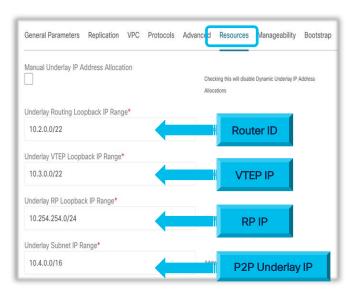


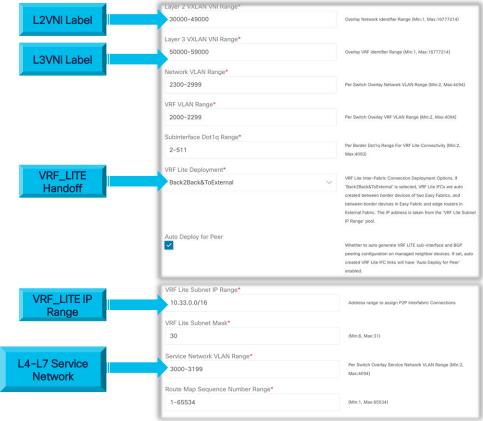


|                     | -> Create a Fabr<br>d)<br>General Parameters Replication VPC Protocol |        | anced Resources Manageability Bootstrap                                                                                         |
|---------------------|-----------------------------------------------------------------------|--------|---------------------------------------------------------------------------------------------------------------------------------|
| BUM >               | Replication Mode*                                                     |        |                                                                                                                                 |
| ngress<br>plication | Multicast                                                             | $\sim$ | Replication Mode for BUM Traffic                                                                                                |
| L2VNI               | Multicast Group Subnet*                                               |        |                                                                                                                                 |
| lulticast<br>Group  | 239.1.1.0/25                                                          |        | Multicast pool prefix between 8 to 30. A multicast group IP from<br>this pool is used for BUM traffic for each overlay network. |
|                     | Enable Tenant Routed Multicast (TRM)                                  |        | For Overlay Multicast Support In VXLAN Fabrics                                                                                  |
|                     | Default MDT Address for TRM VRFs                                      |        |                                                                                                                                 |
|                     |                                                                       |        | Default Underlay Multicast group IP assigned for every overlay<br>VRF.                                                          |
|                     | Rendezvous-Points*                                                    |        |                                                                                                                                 |
| RP > 2 or 4         | 2                                                                     | $\sim$ | Number of spines acting as Rendezvous-Point (RP)                                                                                |
|                     | RP Mode*                                                              |        |                                                                                                                                 |
|                     | asm                                                                   | $\sim$ | Multicast RP Mode                                                                                                               |
|                     | Underlay RP Loopback Id*                                              |        |                                                                                                                                 |
|                     | 254                                                                   |        | (Min:0, Max:1023)                                                                                                               |

#### 87 #CiscoLive BRKDCN-2988 © 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

#### Step1 -> Create a Fabric (continued)


Cisco's Best Practice Configuration Templates

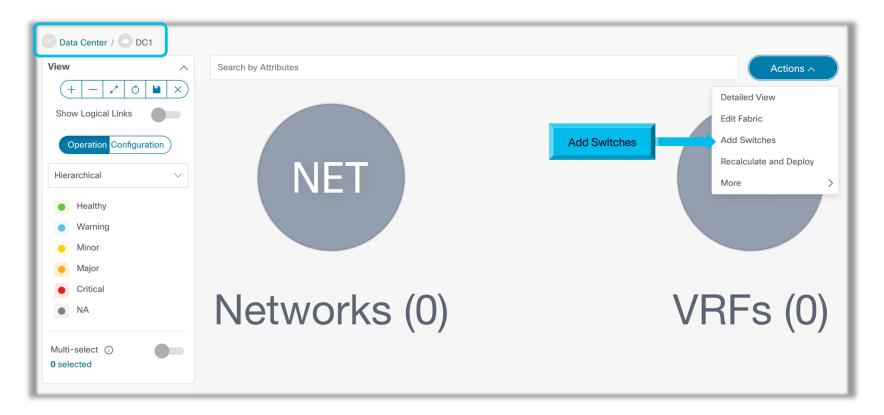

VXLAN Overlay Mode > CLI or Config-Profile

| $\sim$ | Default Overlay VRF Template For Leafs                                             |
|--------|------------------------------------------------------------------------------------|
|        |                                                                                    |
| $\sim$ | Default Overlay Network Template For Leafs                                         |
|        |                                                                                    |
| $\sim$ | Default Overlay VRF Template For Borders                                           |
|        |                                                                                    |
| $\sim$ | Default Overlay Network Template For Borders                                       |
|        |                                                                                    |
| ^      | VRF/Network configuration using config-profile or CLI, defaul<br>config-profile    |
|        |                                                                                    |
| ~      | Enable PVLAN on switches except spines and super spines                            |
|        |                                                                                    |
| $\sim$ | Default PVLAN Secondary Network Template                                           |
|        |                                                                                    |
|        | For EVPN Multi-Site Support (Min:1, Max: 281474976710655<br>Defaults to Fabric ASN |
|        |                                                                                    |
|        | (Min:576, Max:9216). Must be an even number                                        |
|        |                                                                                    |
|        | (Min:1500, Max:9216). Must be an even number                                       |
|        |                                                                                    |

cisco ive!

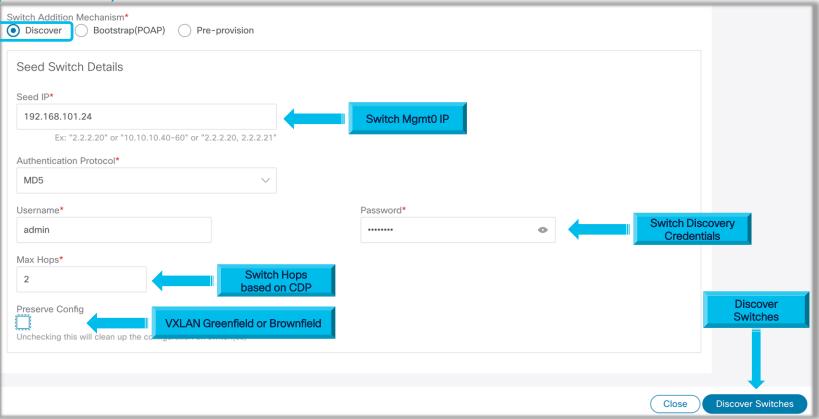
# Step1 -> Create a Fabric



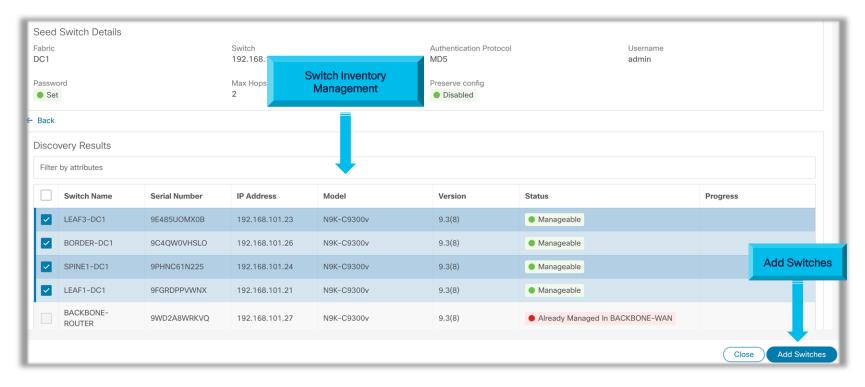





|                                 | Create a Fabric<br>General Parameters Replication VPC Prof | tocols Advanced Resources Manageability Bootstra        |
|---------------------------------|------------------------------------------------------------|---------------------------------------------------------|
|                                 | Enable Bootstrap                                           | Automatic IP Assignment For POAP                        |
|                                 | Enable Local DHCP Server                                   | Automatic IP Assignment For POAP From Local DHCP Server |
|                                 | DHCP Version                                               |                                                         |
|                                 | DHCPv4                                                     | $\sim$                                                  |
| NDFC Built-In<br>Bootstrap POAP | DHCP Scope Start Address*                                  |                                                         |
| ervices. Supports               | 192.168.101.81                                             | Start Address For Switch POAP                           |
| POAP                            | DHCP Scope End Address*                                    |                                                         |
|                                 | 192.168.101.91                                             | End Address For Switch POAP                             |
|                                 | Switch Mgmt Default Gateway*                               |                                                         |
|                                 | 192.168.101.254                                            | Default Gateway For Management VRF On The Switch        |
|                                 | Switch Mgmt IP Subnet Prefix*                              |                                                         |
|                                 | 24                                                         | (Min:8, Max:30)                                         |

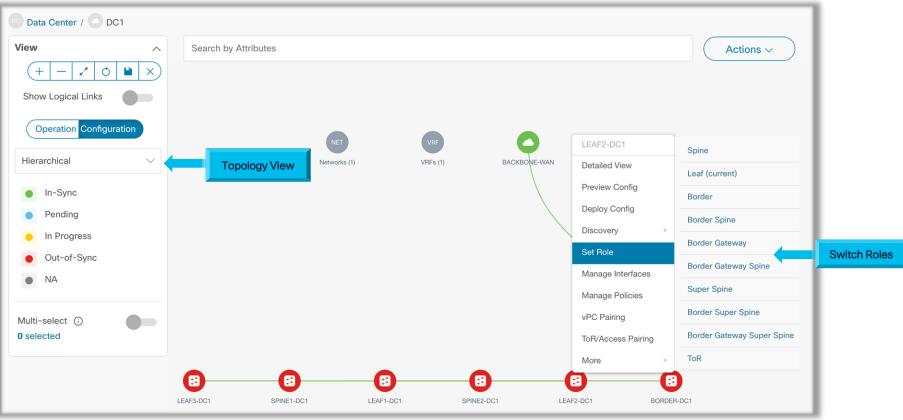

cisco ive!

### Step2 -> Add Switches



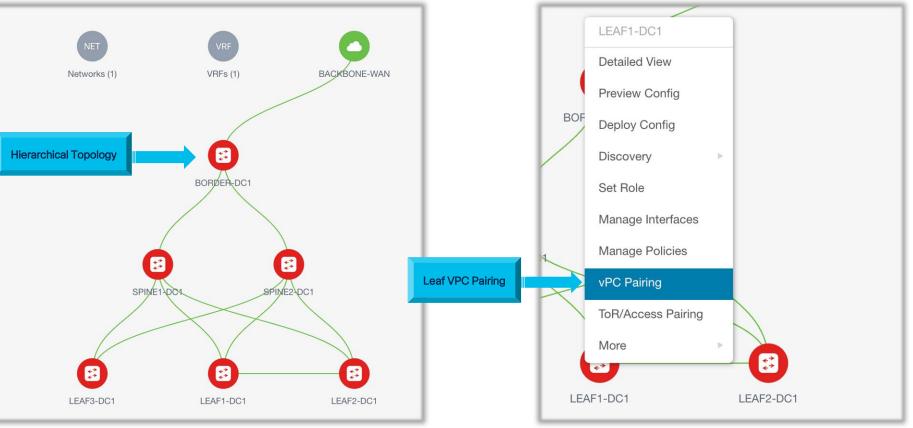

cisco livel

# Step2 -> Add Switches




#### Step2 -> Add Switches (continued)

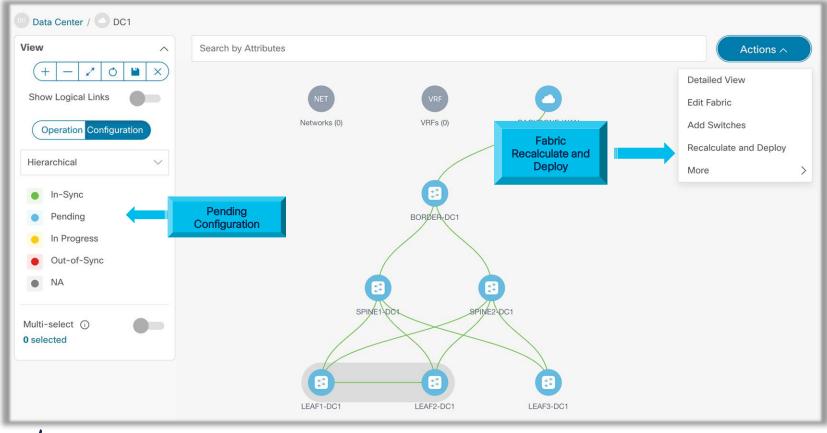



cisco / ile/

### Step3 -> Set Role



cisco ive!


# Step4 -> VPC Pairing



# Step4 -> VPC Pairing

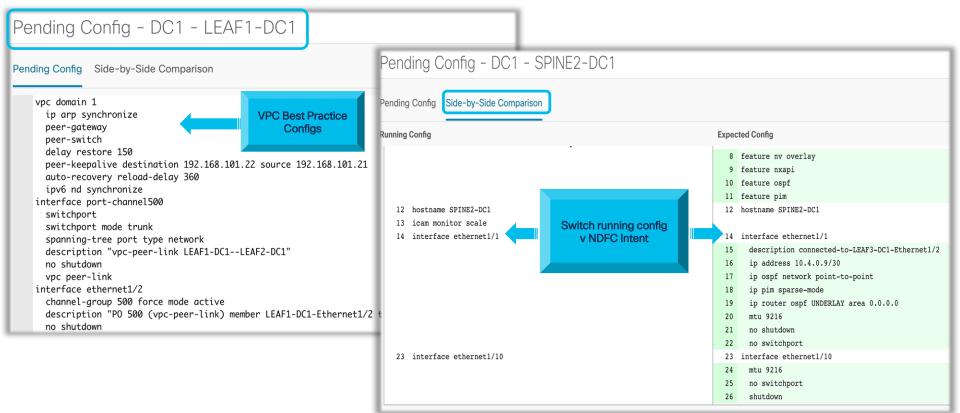
|            | vPC Peer for LEAF       |            |                                                                                   |                                                    |                                                                                                                |                                           |                                                    |  |
|------------|-------------------------|------------|-----------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------|--|
| Filter     | by attributes           |            |                                                                                   |                                                    |                                                                                                                |                                           | - 1                                                |  |
|            | Device                  | Recomme    | nded                                                                              | Reason                                             | Serial Number                                                                                                  |                                           | IP Address                                         |  |
| $\bigcirc$ | SPINE2-DC1              | False      |                                                                                   | Switches have different role                       | es 922ANP25GML                                                                                                 |                                           | 192.168.101.25                                     |  |
| ۲          | LEAF2-DC1               | False      |                                                                                   | N9K-C9300v doesn't suppo<br>Virtual Fabric Peering | ort 988KWTIDPZ2                                                                                                |                                           | 192.168.101.22                                     |  |
| $\bigcirc$ | SPINE1-DC1              | False Sele | ect vPC Peer for LE                                                               | AF1-DC1                                            |                                                                                                                |                                           | -                                                  |  |
|            |                         |            |                                                                                   |                                                    |                                                                                                                |                                           |                                                    |  |
| $\bigcirc$ | BORDER-DC1              | False      | Virtual Peerlink                                                                  |                                                    |                                                                                                                |                                           |                                                    |  |
| $\bigcirc$ |                         | F          | Virtual Peerlink                                                                  |                                                    |                                                                                                                |                                           |                                                    |  |
| 0          | BORDER-DC1<br>LEAF3-DC1 |            |                                                                                   | Recommended                                        | Reason                                                                                                         | Serial Number                             | IP Address                                         |  |
| $\bigcirc$ |                         | False      | ilter by attributes                                                               | Recommended                                        | Reason<br>Switches are connected and<br>have same role                                                         | Serial Number<br>988KWTIDPZ2              | IP Address<br>192.168.101.22                       |  |
| 0          |                         | False      | ilter by attributes Device                                                        |                                                    | Switches are connected and                                                                                     |                                           |                                                    |  |
| 0          |                         | False      | Device LEAF2-DC1                                                                  | True                                               | Switches are connected and have same role                                                                      | 988KWTIDPZ2                               | 192.168.101.22                                     |  |
| 0          |                         | False      | Device<br>Device<br>LEAF2-DC1<br>SPINE2-DC1                                       | True<br>False                                      | Switches are connected and<br>have same role<br>Switches have different roles                                  | 988KWTIDPZ2<br>922ANP25GML                | 192.168.101.22<br>192.168.101.25                   |  |
|            |                         | False      | Iter by attributes       Device       LEAF2-DC1       SPINE2-DC1       SPINE1-DC1 | True<br>False<br>False                             | Switches are connected and<br>have same role<br>Switches have different roles<br>Switches have different roles | 988KWTIDPZ2<br>922ANP25GML<br>9PHNC61N225 | 192.168.101.22<br>192.168.101.25<br>192.168.101.24 |  |

### Step5 -> Recalculate and Deploy



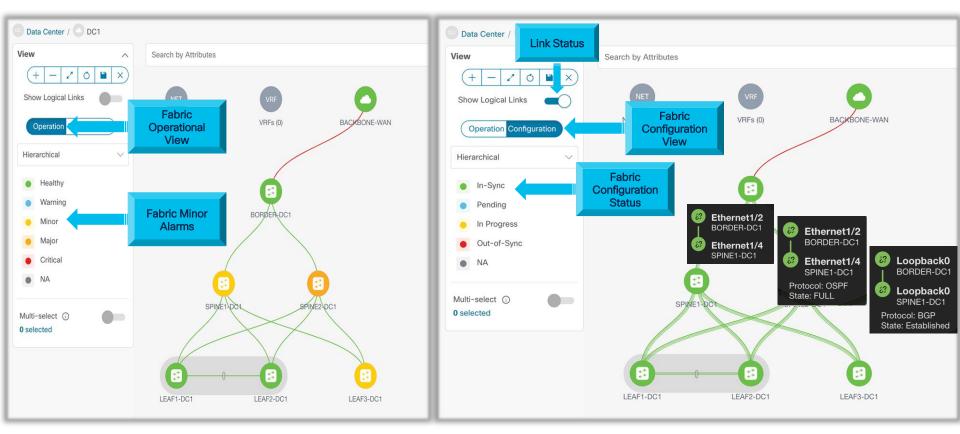
cisco live!

# Step5 -> Recalculate and Deploy

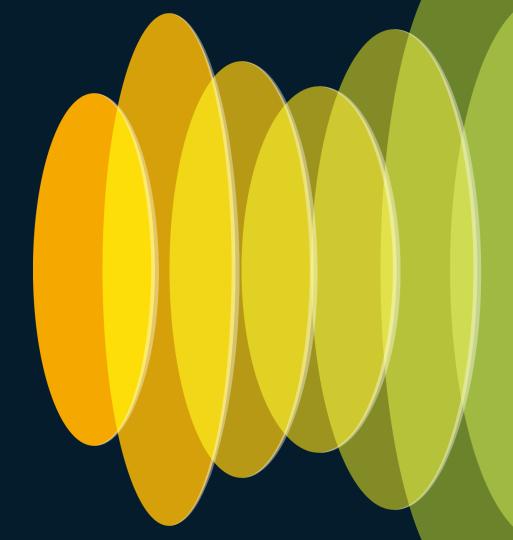

| oloy Config          | guration - D          | C1                               |             |               |                |                       |          | ? — 3         |
|----------------------|-----------------------|----------------------------------|-------------|---------------|----------------|-----------------------|----------|---------------|
|                      | (1)<br>Config Preview |                                  |             |               |                | 2<br>y Progress       |          |               |
| Filter by attributes |                       |                                  |             |               |                |                       |          | Resync All    |
| Switch Name          | IP Address            |                                  | Number      | Fabric Status | Pending Config | Status<br>Description | Progress | Resync Switch |
| BORDER-DC1           | 192.168.101.26        | Fabric<br>Configuratio<br>status | n 🕴         | Out-Of-Sync   | 357 Lines      | Out-of-Sync           |          | Resync        |
| LEAF3-DC1            | 192.168.101.23        | leaf                             | 9E485UOMX0B | Out-Of-Sync   | 523 Lines      | Out-of-Sync           |          | Resync        |
| LEAF2-DC1            | 192.168.101.22        | leaf                             | 988KWTIDPZ2 | Out-Of-Sync   | 549 Lines      | Pendi<br>Configur     |          | Resync        |
| LEAF1-DC1            | 192.168.101.21        | leaf                             | 9FGRDPPVWNX | Out-Of-Sync   | 549 Lines      | Out-of-Sync           |          | Resync        |
| SPINE2-DC1           | 192.168.101.25        | spine                            | 922ANP25GML | Out-Of-Sync   | 341 Lines      | Out-of-Sync           |          | Resync        |
| SPINE1-DC1           | 192.168.101.24        | spine                            | 9PHNC61N225 | Out-Of-Sync   | 349 Lines      | Out-of-Sync           |          | Resync        |
|                      |                       |                                  |             |               |                |                       |          | Close Deploy  |

# Step5 -> Recalculate and Deploy (continued)

| Pending Config - DC1 - SPINE2-DC1      | Pending Config - DC1 - SPINE2-DC1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pending Config Side-by-Side Comparison | Pending Config Side-by-Side Comparison<br>interface ethernet1/1<br>no switchport<br>ip address 10.4.0.9/30<br>description connected-to-LEAF3-DC1-Ethernet1/2<br>mtu 9216<br>ip router ospf UNDERLAY area 0.0.0.0<br>ip ospf network point-to-point<br>ip pim sparse-mode<br>no shutdown<br>interface ethernet1/2<br>no switchport<br>ip address 10.4.0.13/30<br>description connected-to-BORDER-DC1-Ethernet1/3<br>mtu 9216<br>ip router ospf UNDERLAY area 0.0.0.0<br>ip ospf network point-to-point<br>ip pim sparse-mode<br>no shutdown |

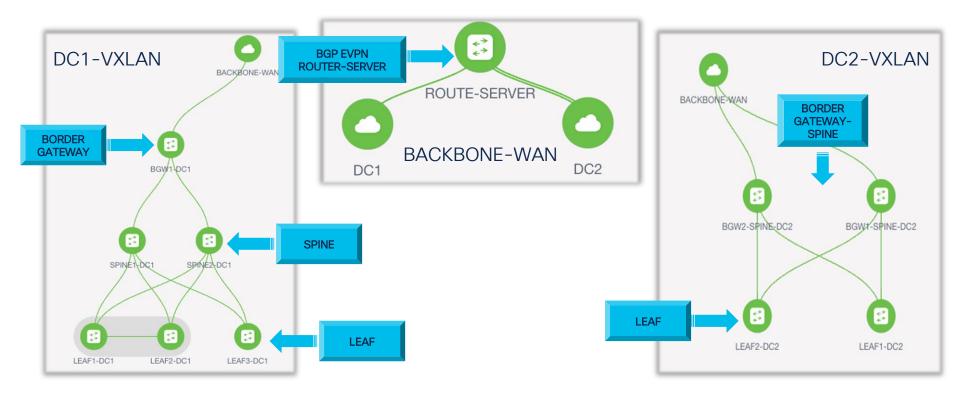

cisco iver

# Step5 -> Recalculate and Deploy (continued)

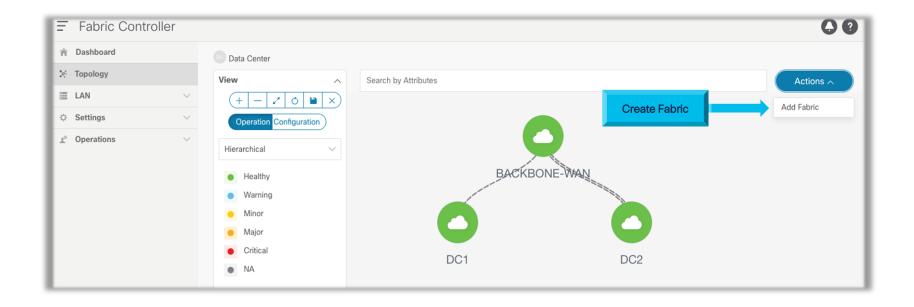



cisco live!

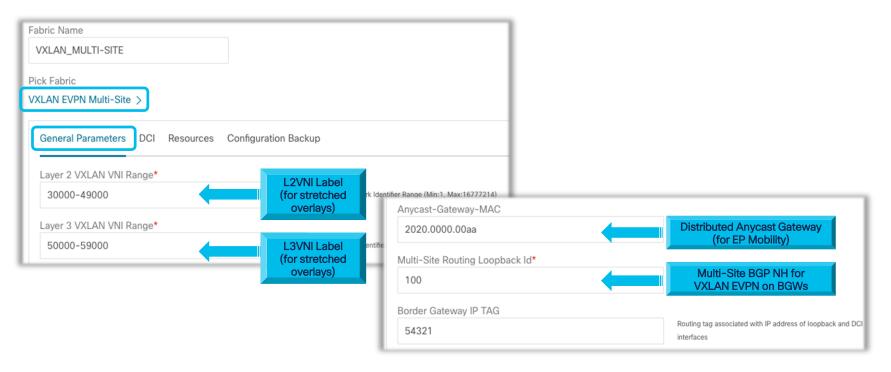
### NDFC VXLAN EVPN Topology View




## NDFC Day-0: Multi-Site DCI

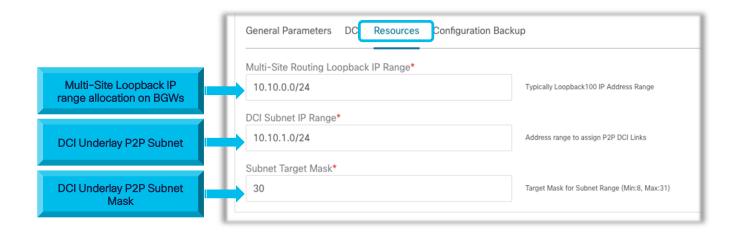



cisco ite!

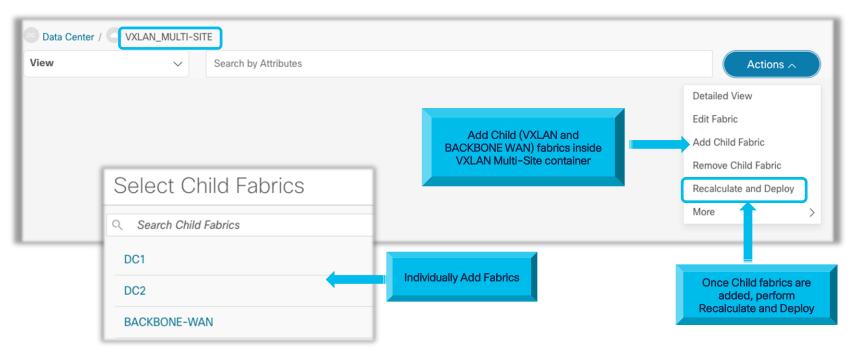

### Step 1 & 2 -> Create Individual Fabrics Set appropriate roles



### Step 3 -> Create VXLAN EVPN Multi-Site Fabric

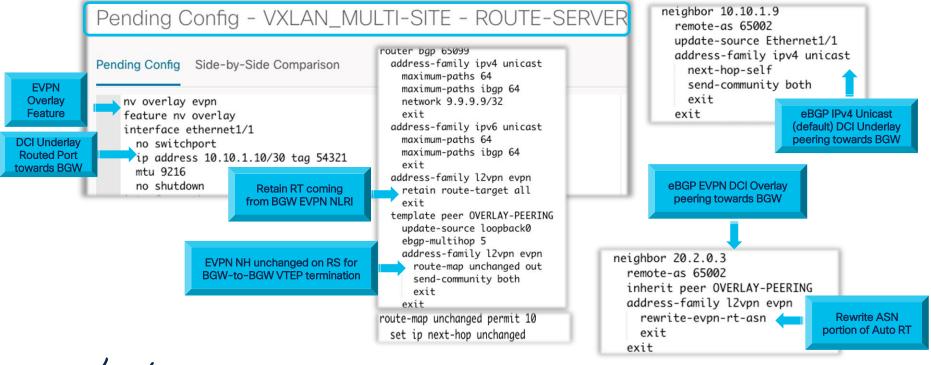



cisco ile




cisco / iller

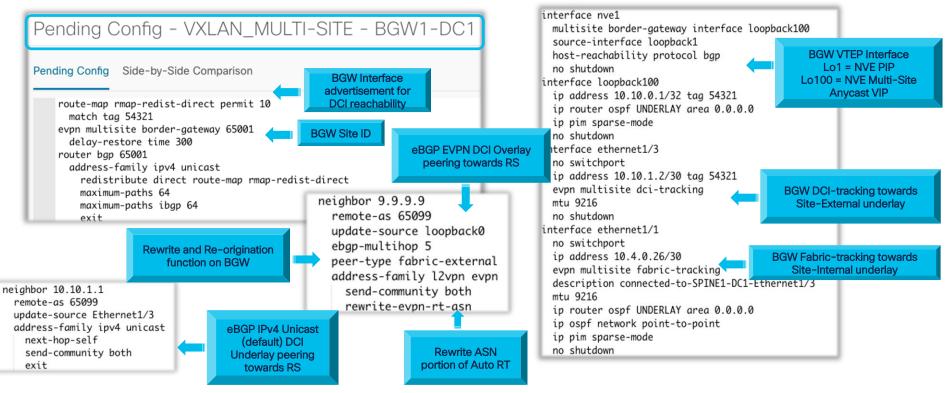
|                                            | General Parameters DCI Resources Configuration B                      | ackup                                                                                                                                                          |
|--------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VXLAN Multi-Site<br>BGW Design Model       | Multi-Site Overlay IFC Deployment Method* Centralized_To_Route_Server | Manual, Auto Overlay EVPN Peering to Route Servers, Auto<br>Overlay EVPN Direct Peering to Border Gateways                                                     |
| BGP EVPN Router-<br>Server Loopback IP     | Multi-Site Route Server List*<br>9.9.9.9                              | Multi-Site Router-Server peer list, e.g. 128.89.0.1, 128.89.0.2                                                                                                |
| for EVPN peering                           | Multi-Site Route Server BGP ASN List* 65099                           | BGP ASN of Route-Server 55000, 65001                                                                                                                           |
|                                            | Enable 'redistribute direct' on Route Servers                         | For auto-created Multi-Site overlay IFCs in Route Servers.<br>Applicable only when Multi-Site Overlay IFC Deployment Method<br>is Centralized_To_Route_Server. |
|                                            | Route Server IP TAG                                                   | Routing tag associated with Route Server IP for redistribute<br>direct. This is the IP used in eBGP EVPN peering.                                              |
| Auto Deploy Multi-Site<br>Underlay Configs | Multi-Site Underlay IFC Auto Deployment Flag                          |                                                                                                                                                                |
| cisco Live!                                | BGP Send-community on Multi-Site Underlay IFC                         | Enable BGP send-community                                                                                                                                      |




cisco / ile

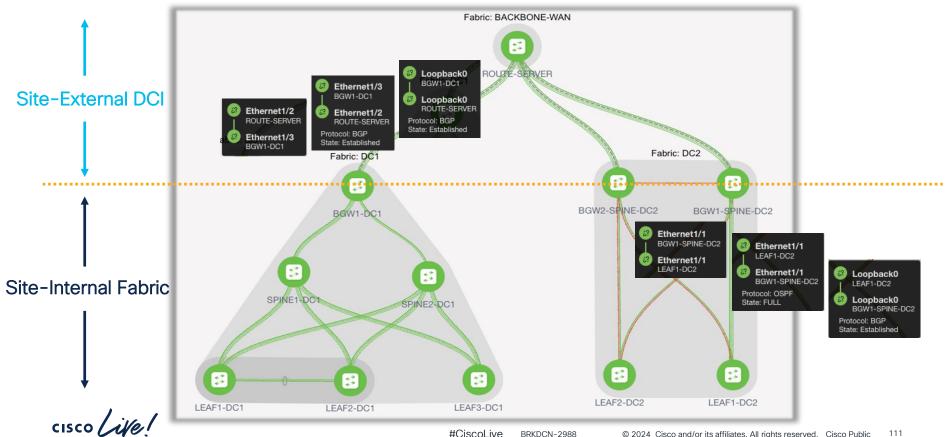


cisco live!

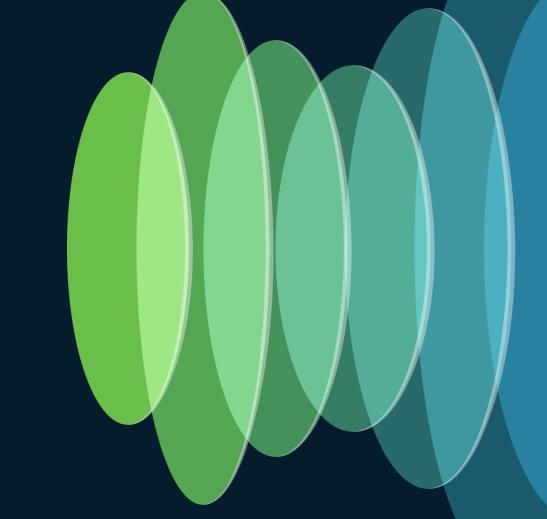

### Step 4 -> Recalculate & Deploy In VXLAN EVPN Multi-Site Fabric



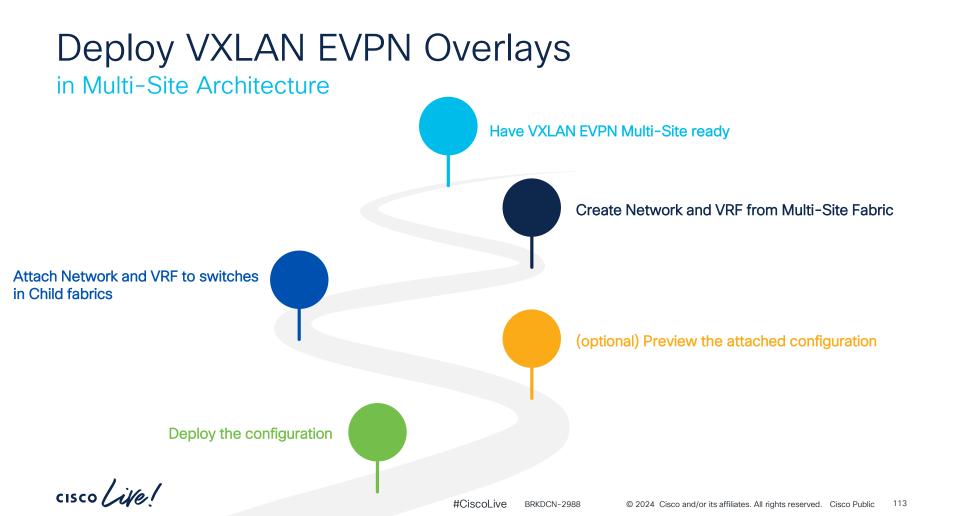
cisco live!


#CiscoLive BRKDCN-2988 © 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public 109

# Step 4 -> Recalculate & Deploy




#CiscoLive BRKDCN-2988


## NDFC VXLAN EVPN Multi-Site Topology View

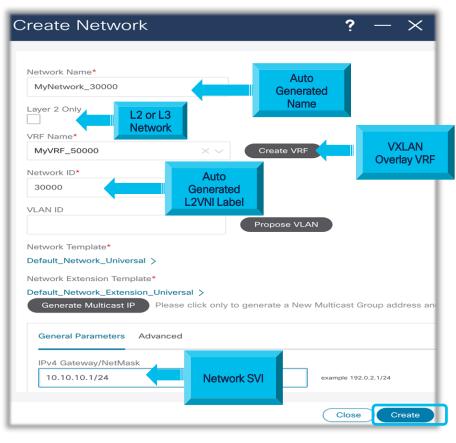


## NDFC Day-1: VXLAN EVPN Overlay



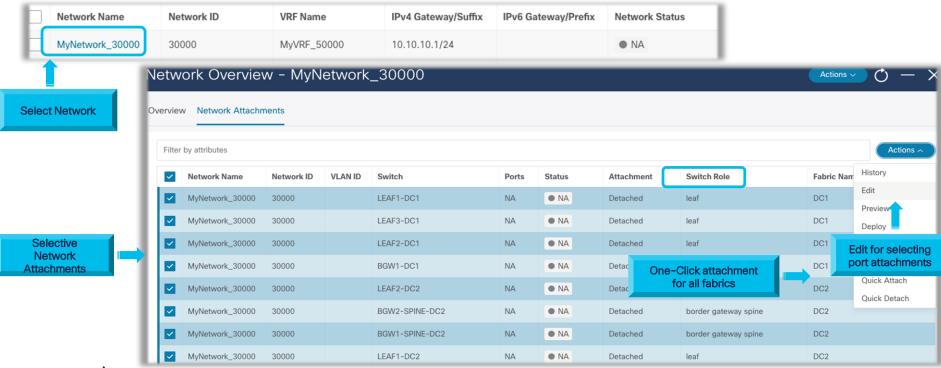
cisco live!




## Step 1 -> Navigate to VXLAN Multi-Site Fabric

| L                        | _AN F      |                                          |                   |                     |       |               |
|--------------------------|------------|------------------------------------------|-------------------|---------------------|-------|---------------|
|                          |            | Fabric Name                              | Fabric Technology | Fabric Type         | ASN   | Fabric Health |
| Select Multi-Site Fabric | ۲          | VXLAN_MULTI-SITE<br>Hide child Fabrics ~ | VXLAN Fabric      | Multi-Fabric Domain | NA    | ♥ Healthy     |
|                          | 0          | DC1                                      | VXLAN Fabric      | Switch Fabric       | 65001 | Healthy       |
|                          | $\bigcirc$ | DC2                                      | VXLAN Fabric      | Switch Fabric       | 65002 | Healthy       |
| L                        | $\bigcirc$ | BACKBONE-WAN                             | External          | External            | 65099 | Healthy       |

\*UI Navigation: LAN Fabrics > Select Fabric > Fabric Overview > Networks > Create


cisco ile

## Step 2 -> Create VRF and Network



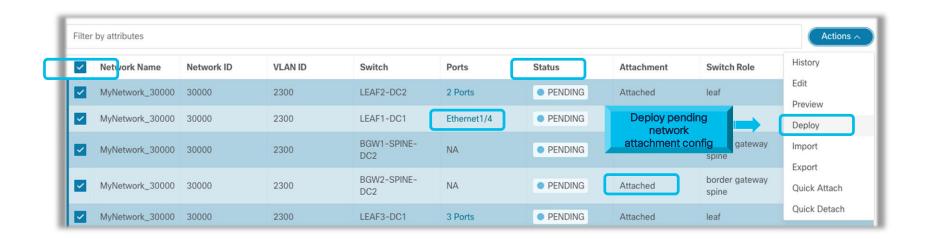
cisco ile

## Step 3 -> Attach VRF and Network



cisco live!

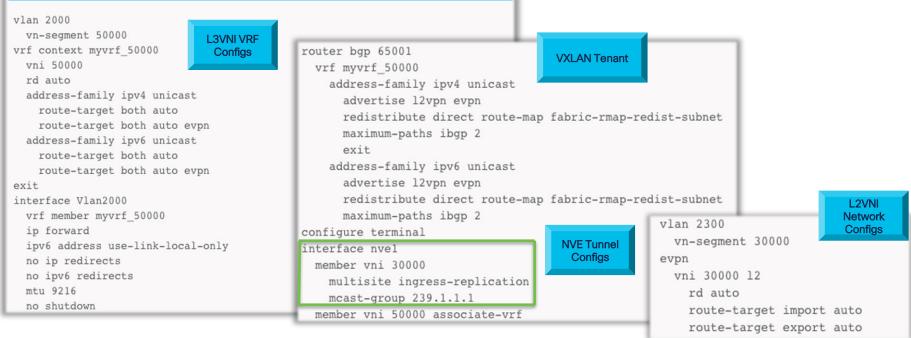
#CiscoLive BRKDCN-2988 © 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public


116

## Step 3 -> Attach VRF and Network

#### (continued)

|                   | 2 of 7 : MyNetwork_3      |           | C1(0)/70¥35 |           |                  |               |          |
|-------------------|---------------------------|-----------|-------------|-----------|------------------|---------------|----------|
|                   |                           |           | 01(977QX33  | (1977)    |                  |               |          |
|                   | LEAF3-DC1 (9V7QX35H9      | 7X)       |             |           |                  |               |          |
|                   | Detach Contract Attach    |           |             |           |                  |               |          |
|                   | VI.AN*                    |           |             |           |                  |               |          |
|                   | 2300                      |           |             |           |                  |               |          |
|                   | 'Interface Attachment(s)' |           |             |           |                  |               |          |
|                   | Filter by attributes      |           |             |           |                  |               |          |
|                   |                           |           |             |           |                  |               |          |
|                   | Interface/Ports           | Switch    | Status      | Port Type | Port Description | Neighbor Info |          |
|                   | Ethernet1/4               | LEAF3-DC1 | false       | trunk     |                  |               |          |
| ts for the<br>ork | Ethernet1/5               | LEAF3-DC1 | false       | trunk     |                  |               |          |
| nents             | Ethernet1/6               | LEAF3-DC1 | false       | trunk     |                  |               |          |
|                   | Ethernet1/7               | LEAF3-DC1 | false       | trunk     |                  |               |          |
|                   |                           |           |             |           |                  |               | Save & N |


## Step 4 -> Preview and Deploy VRF and Network



cisco / illo

## VRF and Network Configs

#### Pending Config - VXLAN\_MULTI-SITE - BGW1-DC1



## VRF and Network Configs

#### Pending Config - VXLAN\_MULTI-SITE - LEAF3-DC1

| vla | in | 2 | υ | υ | 0 |
|-----|----|---|---|---|---|

vn-segment 50000 vrf context myvrf\_50000 vni 50000 rd auto

address-family ipv4 unicast route-target both auto route-target both auto evpn address-family ipv6 unicast route-target both auto route-target both auto evpn exit interface Vlan2000 vrf member myvrf\_50000 ip forward

ipv6 address use-link-local-only
no ip redirects
no ipv6 redirects
mtu 9216

no shutdown

cisco / illo



router bgp 65001
vrf myvrf\_50000
address-family ipv4 unicast

advertise l2vpn evpn



redistribute direct route-map fabric-rmap-redist-subnet maximum-paths ibgp 2

exit

address-family ipv6 unicast

advertise 12vpn evpn

redistribute direct route-map fabric-rmap-redist-subnet

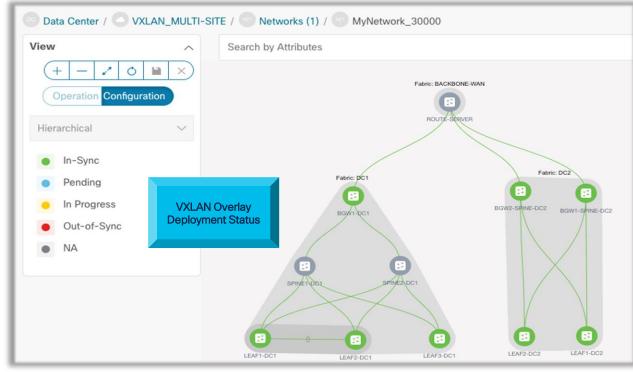
maximum-paths ibgp 2

configure terminal

interface nvel

member vni 30000

mcast-group 239.1.1.1


member vni 50000 associate-vrf



L3 SVI vlan 2300 Confias vn-segment 30000 interface Vlan2300 vrf member myvrf 50000 ip address 10.10.10.1/24 tag 12345 fabric forwarding mode anycast-gateway no shutdown L2VNI exit Network evpn Configs vni 30000 12 rd auto route-target import auto route-target export auto configure terminal interface ethernet1/4 switchport trunk allowed vlan add 2300 interface ethernet1/5 switchport trunk allowed vlan add 2300 interface ethernet1/6

switchport trunk allowed vlan add 2300

# VRF and Network Deployment Status



cisco/il

# Verification and Validation with NDFC

cisco ive!

## Verification through NDFC

#### Keeping you away from CLI

#### Step 2 Deployment History

Configuration Execution Status: Verify Deployment History Status **Success** for Underlay, Overlay, Interfaces, and more

Step 1 Verify Network and VRF attackements Status: Network Status Deployed VRF Status Deployed

#### Step 3 Show commands

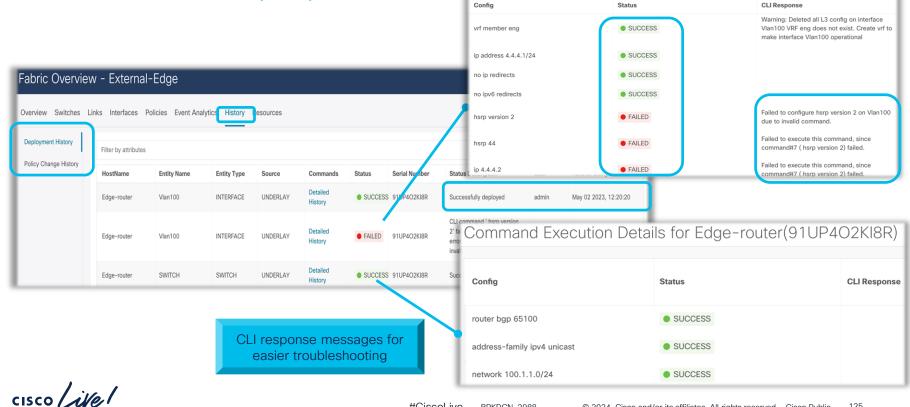
Service / features status (CLI through NDFC)



## Attachment deployment status

#### Job execution perspective

|                      | Config         |           | 2<br>Deploy Progress    |                |
|----------------------|----------------|-----------|-------------------------|----------------|
|                      | Coning I       | rieview   | Deploy Progress         |                |
| Filter by attributes |                |           |                         |                |
| Switch Name          | IP Address     | Status    | Status Description      | Progress       |
| LEAF3-DC1            | 192.168.101.23 | SUCCESS   | Deployment completed.   | Executed 5 / 5 |
| SPINE1-DC1           | 192.168.101.24 | COMPLETED | No Commands to execute. |                |
| SPINE2-DC1           | 192.168.101.25 | COMPLETED | No Commands to execute. |                |


| Success or | Failure de | plovment d | etails |
|------------|------------|------------|--------|
|            |            |            |        |

|                 |                   |                | Switch Name           |       | IP Address      | ſ | Statu | ar           | Status Desc | ription                  |                                     | Progress        |
|-----------------|-------------------|----------------|-----------------------|-------|-----------------|---|-------|--------------|-------------|--------------------------|-------------------------------------|-----------------|
| Multi-Stage Pre | view and Deployme | nt             | Edge-router           |       | 192.168.101.99  | l | • F   | AILED        | Deployment  | failed. Check deployment | history for more information.       | Executed 1 / 12 |
|                 |                   |                | Edge-Catalyst         |       | 192.168.101.101 | _ | • 0   | COMPLETED    | No Comman   | ds to execute.           |                                     |                 |
| Role            | VRF Status        | Status I       | Description           | Progr | ess             |   | ſ     | Role         |             | VRF Status               | Status Description                  | Progress        |
| border gateway  | Deployment In-Pr  | Adding deploym | diff to<br>nent queue |       |                 |   |       | border gatew | vay         | In-Sync                  | Config compliance<br>sync completed |                 |

## **Deployment History Tool**

#### Commands execution perspective





#CiscoLive BRKDCN-2988 © 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public 125

## Show Commands Tool

chow nuo ototo

#### Switch Config perspective

| Fabric Name == DC1 ×                                                                         |                                                                                    |                                                     |                                                            |                                                                                       | > Actions ^                                                                                                             | 1                                                                                                                                                                                                                                                                            |                                                                                         | • August •                              |                                            |                                       |                                           |
|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------|---------------------------------------|-------------------------------------------|
| Switch         BGW1-DC1           LEAF1-DC1         LEAF2-DC1           LEAF3-DC1         S0 | IP Address<br>192.168.101.26<br>192.168.101.21<br>192.168.101.22<br>192.168.101.23 | Role       Gateway       Leaf       Leaf       Leaf | Seria<br>9597<br>97EV<br>988k<br>9V70                      | Change Mode<br>Provision RMA<br>V Change Serial Number<br>k Copy Run Start<br>Reloard | Add Switches<br>Preview<br>Deploy<br>Discovery<br>Set Role<br>vPC Pairing<br>ToR/Access Pairing<br>vPC Overview<br>More | 3 OSPF<br>4 Tot<br>5 Nei<br>6 10.<br>7 10.<br>8<br>9 #shc<br>10 BGP                                                                                                                                                                                                          | tal number<br>ighbor ID<br>.2.0.6<br>.2.0.1<br>ww bgp l2v<br>summary i                  | ID UNDERLAY VRF defa<br>of neighbors: 2 | Up Time<br>2d22h<br>2d22h<br>2d22h         | · · · · · · · · · · · · · · · · · · · | Interface<br>Eth1/2<br>Eth1/3<br>/PN EVPN |
| NDFC pre-built<br>commands or use<br>commands                                                |                                                                                    | _ 0.                                                | running_<br>gp_evpn_<br>gp_l2vpn<br>gp_sessie<br>apture_el | n_neighbors<br>n_evpn_summary<br>sions<br>elam                                        |                                                                                                                         | 13         9 ne           14         BGP           15         BGP           16         17           17         Neig           18         10.2           20         20           21         #shc           22         nvel           23         admit           24         MT | etwork ent<br>attribute<br>community<br>ghbor<br>2.0.1<br>2.0.6<br>w int nve<br>L is up | s up, Hardware: NVE<br>tes              | ing 2436 byt<br>3GP AS path<br>clusterlist | es of memory<br>entries [1/10]        | Up/Down State                             |

cisco ite

## Appendix White Paper and Document References

- VXLAN BGP EVPN
  - <u>https://www.cisco.com/c/en/us/products/switches/nexus-9000-series-</u> <u>switches/white-paper-listing.html</u>
- NDFC
  - <u>https://www.cisco.com/c/en/us/products/cloud-systems-</u> management/prime-data-center-network-manager/white-paperlisting.html

## Conclusion

#### Key points to remember



AZ-1

- VXLAN EVPN Multi-Site maintains clear change and fault domain separation to deploy large-scale and highly available DC architectures.
- NDFC provides simplified mechanism to extend and provide end-to-end network and policy consistency across regions, all with a single point of orchestration.
- NDFC provides a single plane of glass solution to automate and manage Nexus and Non-Nexus devices

## **Complete Your Session Evaluations**



Complete a minimum of 4 session surveys and the Overall Event Survey to be entered in a drawing to **win 1 of 5 full conference passes** to Cisco Live 2025.



Earn 100 points per survey completed and compete on the Cisco Live Challenge leaderboard.



Level up and earn exclusive prizes!



Complete your surveys in the Cisco Live mobile app.



## Continue your education

 Visit the Cisco Showcase for related demos

- Book your one-on-one
   Meet the Engineer meeting
- Attend the interactive education with DevNet, Capture the Flag, and Walk-in Labs
- Visit the On-Demand Library for more sessions at <u>www.CiscoLive.com/on-demand</u>

Contact me at: Cisco Webex



## Thank you



#CiscoLive