

Join at slido.com #1220 711

Goodbye Legacy,

the move to an IPv6-Only Enterprise

David Prall Systems Architect @pralldc

BRKENT-2008

cisco Live!

#CiscoLive

Cisco Webex App

Questions?

Use Cisco Webex App to chat with the speaker after the session

How

- 1 Find this session in the Cisco Live Mobile App
- 2 Click "Join the Discussion"
- 3 Install the Webex App or go directly to the Webex space
- 4 Enter messages/questions in the Webex space

Webex spaces will be moderated by the speaker until June 7, 2024.

https://ciscolive.ciscoevents.com/ciscolivebot/#BRKENT-2008

- Introduction
- Our Dual Stacked Network
- IPv4 vs IPv6
- NAT64/DNS64
- IPv6-Only
- Conclusion
- Additional Learning

Introduction

Your speaker

- David Prall
- Solutions Engineer
- US Federal Area Defense
- dprall@cisco.com
- CCIE 6508 (R&S/SP/Security)
- 23 Years at Cisco
- Washington, DC
- Working with Dual-Stacked networks since September 2007

Abstract

- This session is for those who currently have IPv6 deployed in a dual-stack environment and are looking to transition from dual stack, to IPv6-mostly, and on to IPv6-only.
- Just as we've said goodbye to legacy protocols IPX/SPX, DECnet, AppleTalk, and others, it is now time to say goodbye to IPv4.
- We will focus on the move from dual-stacked IPv4 and IPv6 enterprise infrastructure to an IPv6-only infrastructure.
- What do we need to know before we make the move?
- What about IPv4-only enclaves?
- We will look at NetFlow as the picture of truth and NAT64/DNS64 as the transition gateway(s).

Join at slido.com #1220711

(i) Start presenting to display the joining instructions on this slide.

Your IPv6 Journey

(i) Start presenting to display the poll results on this slide.

Systems deployed in your Enterprise?

(i) Start presenting to display the poll results on this slide.

IPv6-Only is the Future

- RFC 1883 December 1995
 - Updated RFC 8200 (STD86) July 2017
- US Government Memorandum M-21-07 Completing the Transition to Internet Protocol Version 6 (IPv6) - November 2020
 - September 2025 for 80% IPv6-only completion
 - US Government Memorandum M-05-22, Transition Planning for Internet Protocol Version 6 (IPv6) - August 2005
 - Transition to IPv6 September 2010
- Germany (2030), China (2030), India (2022 DS), Brazil (2024 DS), The Netherlands (2024 DS), Czech Republic (2032), Vietnam (2024 DS), Botswana (2030), and others have released dates for IPv6-only completion

Our Dual Stacked Network

Our Dual Stacked Network

- IPv4 and IPv6 are both available
- Address Selection
- Happy Eyeballs RFC 8305
 - Users are happy
- How did my Web Browser Connect
- SNMP
- NetFlow/IPFIX shows us what is being utilized
- IPv6 is Faster

IPv4 and IPv6 are both available for use

```
$ ifconfig en0
en0: flags=8863<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST> mtu 1500
options=400<CHANNEL_IO>
ether 88:66:5a:4b:a2:38
inet6 fe80::c5:d6d9:3a53:5bb3%en0 prefixlen 64 secured scopeid 0x6
inet 192.168.141.108 netmask 0xfffffe00 broadcast 192.168.141.255
inet6 2001:db8:8000:140:58d:6787:27f2:9aab prefixlen 64 dynamic
nd6 options=201<PERFORMNUD,DAD>
media: autoselect
status: active
```


Address Selection

- RFC 6724 Default Address Selection for IPv6
 - RFC 6724bis current work in 6MAN
 - Address Selection Test https://rfc6724.vvncke.org/
- Globally Unique Addresses (GUA) are the only option
- Unique Local Addresses (ULA) are of limited use
 - Not the same as RFC1918
 - There is no NATv6 (?)
 - NPTv6 as defined changes only the prefix
 - As of RFC 6724 IPv4 is preferred over IPv6 ULA
 - Unless IPv6 ULA to IPv6 ULA

Happy Eyeballs RFC6555/8305

- On a dual-stacked system give IPv6 the edge but start an IPv4 session and see which is fastest.
- Before Happy Eyeballs dual-stacked systems would start an IPv6 session and if it didn't work after several attempts. Possibly fallback to IPv4.
- Typically, only needed today when a site is advertising an IPv6
 AAAA but not functioning. Or when Cogent (AS174) and Hurricane Electric (AS6939) are involved.

Are you sure both are available?

Android doesn't support DHCPv6

```
show running interface vlan 150
<snip>
  ipv6 nd prefix default 2592000 604800 no-autoconfig
  ipv6 nd managed-config-flag
  ipv6 dhcp relay destination 2001:DB8::547
<snip>
```

For Android we must leave SLAAC enabled and provide DNS

```
config terminal
interface vlan 150
  no ipv6 nd prefix default
  ipv6 nd ra dns-search-list domain example.com
  ipv6 nd ra dns server 2001:DB8:53::111
  ipv6 nd ra dns server 2001:DB8:53::112
end
```


Clears A bit

disables SLAAC

How did my Web Browser Connect?

- IPvFoo
 - Extension for Firefox and Chrome
 - Can be added to Edge enabling "Allow extensions from other stores."

		4°
ெ	test-ipv6.com	216.218.228.115
ਾ	ds.v6ns.vm3.test-ipv6.com	2001:470:1:18::115
eſ	ds.vm3.test-ipv6.com	2001:470:1:18::115
	ip4.8n1.org	213.154.236.181
₽	ip6.8n1.org	2001:7b8:633:1:213:154:236:181
₽	ipv4-test-ipv6.eurobilltracker.com	80.69.163.42
₽	ipv4.ams2.test-ipv6.com	176.58.93.101
₽	ipv4.antradar.com	104.237.151.65
₽	ipv4.duiadns.net	37.59.105.41
₽	ipv4.excathedra.co	185.81.232.50
₽	ipv4.fra.test-ipv6.com	185.40.234.35
ਾ	ipv4.ipv6-test.ch	212.51.152.25
₽	ipv4.ipv6-test.pl	91.189.218.145
₽	ipv4.jamieweb.net	157.230.83.95
₽	ipv4.joram.it	85.94.210.202
ਾ	ipv4.lookup.test-ipv6.com	216.218.223.250
ਾ	ipv4.master.test-ipv6.com	216.218.228.115
₽	ipv4.mudgee.host	27.50.64.244
ਾ	ipv4.nop.hu	81.2.241.46
₽	ipv4.nsx.de	88.99.149.5
₽	ipv4.sixte.st	180.150.84.39
₽	ipv4.stdio.be	178.63.50.250
₽	ipv4.test-ipv6.alpinedc.ch	37.35.104.163
₽	ipv4.test-ipv6.arauc.br	200.238.130.45
₽	ipv4.test-ipv6.belwue.net	129.143.4.17
ਾ	ipv4.test-ipv6.bvconline.com.ar	190.1.0.7
₽	ipv4.test-ipv6.carnet.hr	161.53.160.69
ਾ	ipv4.test-ipv6.cgates.lt	5.20.0.41

SNMP

- SNMP is traditionally used to monitor Throughput on an Interface, %CPU, number of Routes.
- It can be used to specifically monitor IPv4 or IPv6

That's a WRAP from #CiscoLive NOC. The total record-breaking Internet volume was 90.54 Terabytes.

Max 19,943 wireless clients. IPv6 averaged 50%

SNMP Object Navigator

NetFlow/IPFIX shows us what is being utilized

- NetFlow v9 / IPFIX (RFC 7011/STD 77) allows the network operator to see what is flowing on the network.
 - Secure Network Analytics / StealthWatch
 - DNA Center Assurance
 - Other Third Party
- What is using IPv4 still?
 - Internal or External?
- Why is it using IPv4 still?
 - Focus on Internal

How are you monitoring IPv6 usage?

(i) Start presenting to display the poll results on this slide.

IPv6 is Faster?

- Google shows current latency impact for IPv6 from 0.00% in low deployment to -20ms / -0.09% in high deployment countries https://www.google.com/intl/en/ipv6/statistics.html#tab=per-country-ipv6-adoption
- Why is IPv6 Faster? I don't know. So let's look at some measurements.
- "We've observed that accessing Facebook can be 10-15 percent faster over IPv6. We believe other developers will see similar advantages from migrating." IPv6: It's time to get on board
- "Akamai's customer AbemaTV did a case study in 2019, which showed that IPv6 improved the throughput by 38% on average when compared with connections via IPv4." 10 Years Since World IPv6 Launch

NAT64/DNS64

cisco Live!

NAT64/DNS64

- RFC 6052 IPv6 Addressing of IPv4/IPv6 Translators
 - Well-Known Prefix for NAT64 64:ff9b::/96
- RFC 6144 Framework for IPv4/IPv6 Translation
- RFC 6145/7915 Stateless IP/ICMP Translation Algorithm
- RFC 6146 Stateful NAT64: Network Address and Protocol Translation from IPv6 Clients to IPv4 Servers
- RFC 6147 DNS64: DNS Extensions for Network Address Translation from IPv6 Clients to IPv4 Servers

IPv6 AAAA DNS Request

BRKENT-2008

IPv6 AAAA DNS64 Request

cisco Livel

NAT64 Traffic Flow

IOS-XE Router Configuration

IPv6-Only Network to IPv4 Internet

- When using Well-Known Prefix 64:ff9b::/96
 - Can utilize public DNS64 servers

```
interface GigabitEthernet1
ip address 192.168.67.2 255.255.255.0
                                                   Must be Public
nat64 enable
                                                   per RFC 6052
interface GigabitEthernet2
no ip address
nat64 enable
ipv6 address 2001:DB8:8000:666::5/64
ipv6 access-list nat64-acl
 sequence 10 permit ipv6 2001:DB8::/32 any
nat64 v4 pool nat64-pool 192.0.2.252 192.0.2.252
nat64 v6v4 list nat64-acl pool nat64-pool overload
```


IP NAT and NAT64 cannot be together

IOS-XE Router Configuration

IPv6-only Network to IPv4 Network

- Let's use a Global Unicast Address (GUA) Prefix
 - Must utilize own DNS64 server

```
interface GigabitEthernet1
 ip address 192.168.67.2 255.255.255.0
nat64 enable
interface GigabitEthernet2
                                                 Can be RFC 1918
no ip address
nat64 enable
ipv6 address 2001:DB8:8000:666::5/64
ipv6 access-list nat64-acl
 sequence 10 permit ipv6 2001:DB8::/32 any
nat64 prefix stateful 2001:DB8:FFFF::/96
nat64 v4 pool nat64-pool 192.168.255.254 192.168.255.254
nat64 v6v4 list nat64-acl pool nat64-pool overload
```

IOS-XE Router Configuration

IPv4 Internet to IPv6-Only Server

While this is possible, this would typically be handled by a server load balancer or reverse proxy.

```
interface GigabitEthernet1
  ip address 192.168.67.2 255.255.255.0
  nat64 enable
interface GigabitEthernet2
  no ip address
  nat64 enable
  ipv6 address 2001:DB8:8000:666::5/64
  nat64 v6v4 static 2001:DB8:8000:150::10 192.0.2.10
```


Public Recursive DNS64 Servers

- https://gist.github.com/mutin-sa/5dcbd35ee436eb629db7872581093bc5
- Google Public DNS64 https://developers.google.com/speed/public-dns/docs/dns64
 - 2001:4860:4860::6464
 - 2001:4860:4860::64
- Cloudflare DNS64
 - 2606:4700:4700::64
 - 2606:4700:4700::6400

DNS64 Configuration

• Bind 9 https://www.oreilly.com/library/view/dns-and-bind/9781449308025/ch04.html

Breaks IPv6-mostly RFC 8880 ipv4only.arpa

Well-Known or Chosen Prefix

```
Limit DNS64
to specific clients

clients { 2001:db8:8000:150::/64; };

mapped { !10/8; !172.16/12; !192.168/16;

!100.64/10;!169.254/16;!127/8;!192.0.0/24;!192.0.2/24;!192
.88.99/24;!198.18/15;!198.51.100/24;!203.0.113/24;!224/4;!
240/4; any; };

exclude { 64:ff9b::/96; };

recursive-only yes;

Deny(!) Private
Allow any; others
```

- Infoblox https://docs.infoblox.com/space/nios86/36704017/About+DNS64
- Unbound https://github.com/NLnetLabs/unbound/blob/master/doc/README.DNS64

Placement NAT64/DNS64

- Service Block
 - Placed near IPv4-Only Resources
 - NAT64 prefix must be advertised to network

Placement NAT64/DNS64

- Service Block
 - Placed near IPv4-Only Resources
 - NAT64 prefix must be advertised to network
- Integrated
 - NAT64 placed near IPv6-only Users
 - DNS64 can be limited to specific source addresses
 - NAT64 prefix resides with default

Placement NAT64/DNS64

- Service Block
 - Placed near IPv4-Only Resources
 - NAT64 prefix must be advertised to network
- Integrated
 - NAT64 placed near IPv6-only Users
 - DNS64 can be limited to specific source addresses
 - NAT64 prefix resides with default
- Edge
 - IPv6 is fully functional internally for everything(?)
 - IPv6-only Users can reach internal IPv6-only and Dual Stack Resources
 - Only required for external/Internet sites that haven't Dual Stacked

IPv6-Only

cisco live!

- Where do we start?
- Do I need to disable IPv4 in OS?
- IPv6-Mostly
- Stop IPv4 on the Network
- How did my Web Browser Connect
- NetFlow shows us what is being utilized
- Network Equipment

Where do we start?

- Outside In
 - Network Engineers
 - Help Desk
 - Select user VLAN's
 - VLAN by VLAN
 - Site by Site
 - Data Center
 - Network Infrastructure

Do I need to disable IPv4 in OS?

No support for IPv4 Literals

On an IPv6-only VLAN

```
C:\>ipconfig
Windows IP Configuration
Ethernet adapter Ethernet0:
  Connection-specific DNS Suffix .:
  IPv6 Address. . . . . . . . . . . . . 2001:db8:8000:150::2
  Link-local IPv6 Address . . . . : fe80::9c73:7c11:8a59:3f3d%13
  Autoconfiguration IPv4 Address. .: 169.254.42.133
  fe80::272:78ff:fe55:17d%13
```

What happens while travelling?

IPv6-Mostly

- For Your Reference
- draft-link-v6ops-6mops IPv6-Mostly Networks: Deployment and Operations Considerations
- RFC 6877 464XLAT: Combination of Stateful and Stateless Translation
 - Host translation of IPv4 to IPv6
- RFC 7050 / 8880 Special Use Domain Name 'ipv4only.arpa'
 - Learn NAT64 prefix via DNS64 query for ipv4only.arpa
 - Can host authoritative DNS zone for ipv4only.arpa with AAAA record to relieve load on IANA DNS servers.

 Hosts require
- RFC 8781 Discovering PREF64 in Router Advertisements
 - Use Router Advertisement (RA) to advertise NAT64 prefix
- RFC 8925 IPv6-Only Preferred Option for DHCPv4
 - DHCP Option 108 signal to clients to utilize IPv6-only if possible

cisco Live!

support for

and 8925 to

function

8880 or 8781,

```
$ ifconfig en0
en0: flags=88e3<UP, BROADCAST, SMART, RUNNING, NOARP, SIMPLEX, MULTICAST> mtu 1500
options=400<CHANNEL IO>
ether 88:66:5a:56:d4:df
inet6 fe80::ccd:72d8:8979:ab49%en0 prefixlen 64 secured scopeid 0x6
inet6 2001:db8:8000:150:ca:5788:879f:170b prefixlen 64 autoconf secured
inet6 2001:db8:8000:150:e934:6cd8:39be:6eaf prefixlen 64 autoconf temporary
inet 192.0.0.2 netmask 0xffffffff broadcast 192.0.0.2
inet6 2001:db8:8000:150:1061:3d95:4cc4:563b prefixlen 64 clat46
nat64 prefix 64:ff9b:: prefixlen 96
nd6 options=201<PERFORMNUD, DAD>
media: autoselect
status: active
```

- Windows 11 Plans to Expand CLAT Support
 - https://techcommunity.microsoft.com/t5/networking-blog/windows-11-plans-to-expand-clat-support/ba-p/4078173


```
$ ifconfig en0
en0: flags=88e3<UP, BROADCAST, SMART, RUNNING, NOARP, SIMPLEX, MULTICAST> mtu 1500
options=400<CHANNEL IO>
ether 88:66:5a:56:d4:df
inet6 fe80::ccd:72d8:8979:ab49%en0 prefixlen 64 secured scopeid 0x6
inet6 2001:db8:8000:150:ca:5788:879f:170b prefixlen 64 autoconf secured
inet6 2001:db8:8000:150:e934:6cd8:39be:6eaf prefixlen 64 autoconf temporary
inet 192.0.0.2 netmask 0xffffffff broadcast 192.0.0.2
inet6 2001:db8:8000:150:1061:3d95:4cc4:563b prefixlen 64 clat46
nat64 prefix 64:ff9b:: prefixlen 96
                                                            Dependent on SLAAC
nd6 options=201<PERFORMNUD, DAD>
media: autoselect
status: active
```



```
$ ifconfig en0
en0: flags=88e3<UP, BROADCAST, SMART, RUNNING, NOARP, SIMPLEX, MULTICAST> mtu 1500
options=400<CHANNEL IO>
ether 88:66:5a:56:d4:df
inet6 fe80::ccd:72d8:8979:ab49%en0 prefixlen 64 secured scopeid 0x6
inet6 2001:db8:8000:150:ca:5788:879f:170b prefixlen 64 autoconf secured
inet6 2001:db8:8000:150:e934:6cd8:39be:6eaf prefixlen 64 autoconf temporary
inet 192.0.0.2 netmask 0xffffffff broadcast 192.0.0.2
inet6 2001:db8:8000:150:1061:3d95:4cc4:563b prefixlen 64 clat46
nat64 prefix 64:ff9b:: prefixlen 96
nd6 options=201
                                         RFC 7050/8880
media: autosele jpv6 nd ra nat64-prefix
                                       DNS64 ipv4only.arpa
status: active
```



```
$ ifconfig en0
en0: flags=88e3<UP, BROADCAST, SMART, RUNNING, NOARP, SIMPLEX, MULTICAST> mtu 1500
options=400<CHANNEL IO>
ether 88:66:5a:56:d4:df
inet6 fe80::ccd:72d8:8979:ab49%en0 prefixlen 64 secured
                                                               RFC 8925
inet6 2001:db8:8000:150:ca:5788:879f:170b prefixlen 6
                                                           DHCPv4 Option 108
inet6 2001:db8:8000:150:e934:6cd8:39be:6eaf prefixlen 64
inet 192.0.0.2 netmask 0xffffffff broadcast 192.0.0.2
inet6 2001:db8:8000:150:1061:3d95:4cc4:563b prefixlen 64 clat46
nat64 prefix 64:ff9b:: prefixlen 96
nd6 options=201<PERFORMNUD, DAD>
                                            ip dhcp pool <name>
media: autoselect
                                             network <ip address> <subnet mask>
status: active
                                             default-router <default gateway>
                                             option 108 hex 0000.0000
```


On an IPv6-mostly VLAN (Mac OS X)

Support for IPv4 Literals

```
$ ifconfig en0
en0: flags=88e3<UP, BROADCAST, SMART, RUNNING, NOARP, SIMPLEX, MULTICAST> mtu 1500
options=400<CHANNEL IO>
ether 88:66:5a:56:d4:df
inet6 fe80::ccd:72d8:8979:ab49%en0 prefixlen 64 secured scopeid 0x6
inet6 2001:db8:8000:150:ca:5788:879f:170b prefixlen 64 autoconf secured
inet6 2001:db8:8000:150:e934:6cd8:39be:6eaf prefixlen 64 autoconf temporary
inet 192.0.0.2 netmask 0xffffffff broadcast 192.0.0.2
inet6 2001:db8:8000:150:1061:3d95:4cc4:563b prefixlen 64 clat46
nat64 prefix 64:ff9b:: prefixlen 96
                                          Hosts require 8880 or 8781, and 8925 to function
nd6 options=201<PERFORMNUD,DAD>
                                       $ ping -c 1 208.67.220.220
media: autoselect
                                       PING 208.67.220.220 (208.67.220.220): 56 data bytes
status: active
                                       64 bytes from 208.67.220.220: icmp seq=0 ttl=53 time=21.625 ms
                                       --- 208.67.220.220 ping statistics ---
                                       1 packets transmitted, 1 packets received, 0.0% packet loss
```

Stop IPv4 at Layer 2

VLAN Map, example for limited address space

```
vlan access-map vlan-map-ipv4-link-local 10
match ip address ipv4-link-local-deny
action forward
vlan access-map vlan-map-ipv4-link-local 20
match ip address ipv4-link-local-permit
action drop
vlan filter vlan-map-ipv4-link-local vlan-list 150
ip access-list extended ipv4-link-local-deny
10 deny ip 169.254.0.0 0.0.255.255 any
20 permit ip any any
ip access-list extended ipv4-link-local-permit
 10 permit ip 169.254.0.0 0.0.255.255 any
```


Stop IPv4 at Layer 3

Unicast Reverse Path Forwarding

```
interface Vlan150
  no ip address
  ip verify unicast source reachable-via rx
```

Access List

```
interface Vlan150
  no ip address
  ip access-group no-ipv4 in
  ip access-group no-ipv4 out
ip access-list extended no-ipv4
  10 deny ip any any
```


How did my Web **Browser Connect?**

- IPvFoo
 - Extension for Firefox and Chrome
 - Can be added to Edge enabling "Allow extensions from other stores."
 - By using the Well-Known Prefix, we still know what is only IPv4

ta	ⅎ	test-ipv6.com	64:ff9b::d8da:e473	
7	ⅎ	ds.v6ns.vm3.test-ipv6.com	2001:470:1:18::115	
	ⅎ	ds.vm3.test-ipv6.com	2001:470:1:18::115	
	₽	ip4.8n1.org	64:ff9b::d59a:ecb5	
,	₽	ip6.8n1.org	2001:7b8:633:1:213:154:236:181	
_	₽	ipv4-test-ipv6.eurobilltracker.com	64:ff9b::5045:a32a	
nar	₽	ipv4.ams2.test-ipv6.com	64:ff9b::b03a:5d65	
	₿	ipv4.antradar.com	64:ff9b::68ed:9741	
re	₽	ipv4.duiadns.net	64:ff9b::253b:6929	
	₽	ipv4.excathedra.co	64:ff9b::b951:e832	
re	₽	ipv4.fra.test-ipv6.com	64:ff9b::b928:ea23	
	ⅎ	ipv4.ipv6-test.ch	64:ff9b::d433:9819	
Se	₽	ipv4.ipv6-test.pl	64:ff9b::5bbd:da91	
	₽	ipv4.jamieweb.net	64:ff9b::8ba2:de43	
/e	₿	ipv4.joram.it	64:ff9b::555e:d2ca	
	ⅎ	ipv4.lookup.test-ipv6.com	64:ff9b::d8da:dffa	
ve	ⅎ	1	64:ff9b::d8da:e473	
	₽	ipv4.mudgee.host	64:ff9b::1b32:40f4	
for	ⅎ	1	64:ff9b::5102:f12e	
	₽	ipv4.nsx.de	64:ff9b::5863:9505	
	₽	ipv4.sixte.st	64:ff9b::b496:5427	
rea	₽	ipv4.stdio.be	64:ff9b::b23f:32fa	
	₽	ipv4.test-ipv6.alpinedc.ch	64:ff9b::2523:68a3	
	₽	ipv4.test-ipv6.arauc.br	64:ff9b::c8ee:822d	
	₽	ipv4.test-ipv6.belwue.net	64:ff9b::818f:411	
	ⅎ	ipv4.test-ipv6.bvconline.com.ar	64:ff9b::be01:7	
	₽	ipv4.test-ipv6.carnet.hr	64:ff9b::a135:a045	
	ⅎ	ipv4.test-ipv6.cgates.lt	64:ff9b::514:29	

NetFlow v9 / IPFIX shows us what is being utilized

- Why do we still see IPv4?
 - Flow monitor on L2 interfaces happens before L3 processing.
 - 169.254.0.0/16 link-local IPv4
 - UPnP/SSDP 239.255.255.250:UDP/1900
 - Multicast DNS 224.0.0.251:UDP/5353
 - Static Configuration?
- IPv6 is all that is active!

Network Equipment

- Services converted to IPv6? All services support IPv6?
 - NTP ntp peer ipv6 time.example.com
 - NetFlow
 - flow exporter FLOWEXPORTER destination 2001:DB8::2055

 ✓

FQDN converted IPv6 Preferred

- Logging logging host fqdn ipv6 syslog.example.com
- DNS ip name-server 2001:DB8:53::111 2001:DB8:53::112

But do the services support IPv6?

Network Equipment

- Services converted to IPv6? All services support IPv6?
 - SNMP
 - snmp-server group <v3-group-name> v3 [auth|noauth|priv] access ipv6
 <ipv6-acl> <ipv4-std-acl>
 snmp-server community private RW ipv6 <ipv6-acl> <ipv4-std-acl>
 snmp-server community public RO ipv6 <ipv6-acl> <ipv4-std-acl>
 snmp-server host 192.0.2.162 <snip>
 - VTY Access-Lists
 - line vty 0 4
 ipv6 access-class <ipv6-acl> in
 access-class <ipv4-std-acl> in
 - Authentication
 - tacacs server TACACS address fqdn tacacs.example.com
 - radius server RADIUS address fqdn radius.example.com

Adding IPv6 requires restating IPv4

FQDN converted IPv4 Preferred

But do the services support IPv6?

Routing Protocols

- Router ID's are 32-bit values
- Commonly represented as 4 dotted octets
- Cisco Routers by default utilize an interface IPv4 address
- IPv6-only must manually configure router-id
 - Majority will not work without
- DO NOT be surprised with the first router reload

Routing Protocols

BGP

%BGP-4-NORTRID: BGP could not pick a router-id. Please configure manually.

• bgp router-id x.x.x.x

OSPFv3

%OSPFv3-4-NORTRID: Process OSPFv3-<area>-IPv6 could not pick a router-id, please configure manually

router-id x.x.x.x

EIGRP

- NOTHING
- eigrp router-id x.x.x.x
- RIPng and ISIS could care less

Remove IP Routing

- no ip routing
 - BGP goes down immediately
 - · Can't be configured, current configuration removed

```
%BGP-5-ADJCHANGE: neighbor 2001:DB8::2 Down Unknown path error %BGP_SESSION-5-ADJCHANGE: neighbor 2001:DB8::2 IPv6 Unicast topology base removed from session Unknown path error
```

- EIGRP goes down after hold time
 - Both Numbered and Named

```
%DUAL-5-NBRCHANGE: EIGRP-IPv6 1: Neighbor FE80::5054:FF:FE1B:C299 (GigabitEthernet1) is down: holding time expired
```

OSPFv3 goes down after dead time

```
%OSPFv3-5-ADJCHG: Process 1, Nbr 192.168.0.1 on GigabitEthernet1 from FULL to DOWN, Neighbor Down: Dead timer expired
```

- RIPng goes down after holddown time
- ISIS could care less

DO NOT DO THIS

Wireless Controller

IPv6 Control Plane

- DHCPv6 Option 52 to assign CAPWAP Access Controller
 - · IOS

```
ipv6 dhcp pool [name]
capwap-ac address [ipv6-address]
```

- Windows
 - Scope Options > Configure Options > 052 capwap-ac-v6

Wireless Controller

IPv6 Data Plane

- "IPv4 DHCP Required" can't be utilized for IPv6-only and IPv6mostly SSID's
 - Configuration > Tags & Profiles > Policy
 - Select Profile > Advanced > IPv4 DHCP Required
- "IP Theft or IP Reuse" with older MacOS leaking of 192.0.0.2 in IPv6-mostly deployment.
 - Configuration > Security > Wireless Protection Policy
 - Client Exclusion Policies > IP Theft or IP Reuse

Conclusion

Get to it, IPv6 is almost 30

- NetFlow v9 / IPFIX for visibility
- IPng Working Group proposed Oct 1994
 - https://datatracker.ietf.org/wg/ipngwg/history
- RFC 1883 December 1995
 - Updated RFC 8200 (STD 86) Jul 2017
- IOS 12.2(2)T 1st IPv6 Release Feb 2001
 - IPv6 Prototype 1996 / IPv6 Public EFT 1999
- IPv6-only is ready for deployment
 - If your applications are ready!
 - RFC 6586 Experiences from an IPv6-only Network
 Apr 2012
 - Cogent & Hurricane Electric both reachable directly

Additional Learning

Further Reading

- Validated Solution: IPv6 Integration with Cisco SD-Access, SD-WAN, and Firepower
 - http://cs.co/ipv6cvpsda
 - BRKIPV6-2015 new IPv6 Campus CVP
- An IPv6 Campus of the Future
 - https://blogs.cisco.com/networking/ an-ipv6-campus-of-the-future
- RFC 6586 Experiences from an IPv6-only Network
- RFC 7381 Enterprise IPv6 Deployment Guidelines

Cisco Live US IPv6 Learning Map

Sunday-2nd

Monday-3rd

8:30AM

Tuesday-4th

Wednesday-5th

Thursday-6th

TFCXAR-2000

Integrating IPv6 Services with SD-WAN

IPv6 in the Host and in

IPv6 Beyond the Local

SRv6 Tech Update: Use

Cases and Operations

the Local Network

TECIPV-2000

TECIPV-2001

TECMPL-2119

Network

BRKENT-2109 10:30AM

Let's Deploy IPv6 Now

BRKIPV-2191

IPv6:: It's Happening!

BRKMPL-2203 10:30AM

Introduction to SRv6 uSID Technology

BRKENS-2834 11:00AM

IPv6-Enabled Wireless (Wi-Fi) Access: Design and Deployment Strategies

BRKIPV-1616

IPv6 - What Do You Mean There Isn't a Broadcast?

IPv6 Security in the Local Area with First Hop Security

IBOENT-2811 2:30PM

Everything You Wanted to Know about IPv6 but Were Afraid to Ask

IBOIPV-1000 10:30AM

U.S. Government Mandate Driving to 50% IPv6-Only and beyond in 2024

BRKFNT-3340

1PM

3РМ

The Hitchhiker's Guide to Troubleshooting IPv6

2:30PM

Goodbye Legacy, the Move to an IPv6-Only Enterprise

BRKIPV-2418

Deploying IPv6 Routing Protocols: Specifics and Considerations

10:15AM

IPv6: The Internet's best kept secret!

IBOIPV-1428 2:30PM

IPv6 Unleashed: Cisco Meraki Cutting-Edge **Design Session**

BRKIPV-2015 8:00AM

Integrating Cisco Campus, SD-WAN and Firepower in IPv6 Enterprise Networks

Secure Operations for an IPv6 Network

IBOIPV-2000 1PM

Sharing Experience on **IPv6** Deployments

Walk in Labs

LABIPV-1639 IPv6 Foundations: A Dive into Basic Networking Concepts

LABIPV-2640 IPv6 Deep Dive: Beyond Basics to Brilliance

LABMPL-1201 SRv6 Basics

LABSP-2129 SRv6 Micro-Segment Basics

LABSP-3393 Implementing Segment Routing v6 (SRv6) Transport on NCS 55xx/5xx and Cisco 8000: Advanced

Instructor-led Labs

LTRENT-2016

Learning IPv6 in the Enterprise for Fun and (Fake) Profit: A Hands-On Lab

LTRSPG-2212

SRv6 and Cloud-Native: A Platform for Network Service Innovation

LTRSPG-2006

Explore the Power of SRv6: Unleashing the Potential of Next-Generation Networking

Complete Your Session Evaluations

Complete a minimum of 4 session surveys and the Overall Event Survey to be entered in a drawing to win 1 of 5 full conference passes to Cisco Live 2025.

Earn 100 points per survey completed and compete on the Cisco Live Challenge leaderboard.

Level up and earn exclusive prizes!

Complete your surveys in the Cisco Live mobile app.

Continue your education

- Visit the Cisco Showcase for related demos
- Book your one-on-one Meet the Engineer meeting
- Attend the interactive education with DevNet, Capture the Flag, and Walk-in Labs
- Visit the On-Demand Library for more sessions at www.CiscoLive.com/on-demand

Contact me at: dprall@cisco.com

Thank you

