

High Density Wi-Fi Design, Deployment, and Optimization

Matt Swartz - Cisco Customer Experience, Distinguished Engineer, CCIE #13232 Josh Suhr - Cisco Customer Experience, Principal Architect, CCIE #39980 BRKEWN-2087

Cisco Webex App

Questions?

Use Cisco Webex App to chat with the speaker after the session

How

- Find this session in the Cisco Live Mobile App
- 2 Click "Join the Discussion"
- 3 Install the Webex App or go directly to the Webex space
- 4 Enter messages/questions in the Webex space

Webex spaces will be moderated by the speaker until June 7, 2024.

cisco / ille

https://ciscolive.ciscoevents.com/ ciscolivebot/#BRKEWN-2087

Tracks Networking (220)

> Session Type Breakout (453)

SHOW 2 MORE V

Join the Discussion

Enter your personal notes here

Notes

- Designing RF for High Client Densities
- HD Wi-Fi Configuration Tips
- HD Wi-Fi Engineering Toolkit

Josh Suhr

Principal Architect, Cisco CX CCIE #39980 (Wireless)

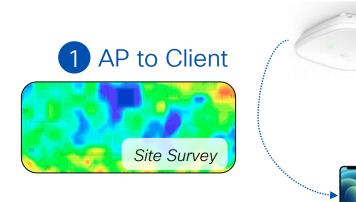
First HD WiFi Project: Sporting Kansas City, 2011 Husband, recent dad, soccer fan, beer & pizza connoisseur

cisco live!

Matt Swartz

Distinguished Engineer, Cisco CX CCIE #13232 (R/S, Wireless)

First HD WiFi Project: New York Yankees, 2008 Husband, dad, mountain biker, beer connoisseur


cisco ive

Key Trends in High Density Wi-Fi

- Software-defined antenna (C9104)
- 6GHz / Wi-Fi 6E: More Spectrum / AFC is here! Including Standard Power (SP) vs Low Power Indoor (LPI) modes & caveats
- More usage & more devices per user
- Auto authentication & OpenRoaming

Designing for the 3 Key RF Relationships

Designing for the 3 Key RF Relationships

cisco live!

Designing for the 3 Key RF Relationships

Name	Slot	Channel	Power Level	Power dBm	Neigh. Name	Neigh. Slot	Neigh. Channel	Neigh. Power	Compensated Power
AP12	1	112	6	4	AP1	1	52	-42	-57
AP12	1	112	6	4	AP2	1	144	-51	-66
AP12	1	112	6	4	AP3	1	120	-53	-65
AP12	1	112	6	4	AP4	1	100	-53	-65
AP12	1	112	6	4	AP5	1	124	-57	-66
AP12	1	112	6	4	AP6	1	60	-61	-73
AP12	1	112	6				136	-62	-74
AP12	1	112		- 4	AP8	1	44	-69	-69
AP12	1	112		M	CA	F	104	-79	-85
AP12	1	112		V	\mathcal{Q}_{\Box}	<u> </u>	60	-80	-89
P12	1	112	6				153	-81	-84

*Bonus points: Client <-> Client - harder to influence

It All Starts with Layer 1: RF Design

Antenna Selection:

Decide which antenna is right for the job.

Consider:

- Density of clients to be served
- Available mounting assets
 - Within 65'/20m of furthest client (or 200'/60m with C-ANT9104)

Antenna Placement:

Where will this antenna provide the best throughput and <u>most</u> <u>reliable</u> service?

Consider:

- Line of sight
- Isolation from ambient RF
- Angle of incidence to client devices

Catalyst Directional Antenna Selection

	Beamwidth	Use Case	
Dual-Band "Narrow" 8x8 Patch Antenna AP: 9130AXE Antenna: C-ANT9103	2.4/5GHz 75/70° Az 70/70° Elev	Augmentation and short-distance HD coverage (15'/5m - 30'/10m to clients)	
Dual-Band "Wide" Patch Antenna AP: 9120AXE/P, 9130AXE Antenna: AIR-ANT2566P4W-R	2.4/5GHz 105/125°Az 70/60°Elev	Augmentation and short-distance HD coverage (< 30' / 10m to clients)	IW9167E 6E (SP) – Se
Dual-Band "Narrow" Patch Antenna AP: 9120AXE/P, 9130AXE Antenna: AIR-ANT2566D4M-N	2.4/5GHz 65/65° Az 65/65° Elev	Augmentation and short-distance HD coverage (15'/5m - 30'/10m to clients)	eteb 70w x 30h
Dual-Band High Density Antenna C-ANT9104 (Antenna + Integrated AP)	70/70°2.4GHz 80/25°5GHz (Wide) 25/25°5GHz (Narrow)	Primary overhead coverage (i.e. seating areas; <u>> 30'/10m,</u> <200'/60m to clients)	

cisco live!

or

9166D1 Wi-Fi 6 Access Point

Cisco® Catalyst® 9166D1-x Directional, Tri-Radio with 12 Spatial Streams!

Note: for LPI (Indoor) Use Only

Penta-Radio Architecture

- 1. 2.4 GHz Client Radio: 4x4:4SS
- 2. 5 GHz Client Radio: 4x4:4SS
- 3. 6 GHz Client Radio 4x4:4SS (XOR to 5GHz)
- 4. Dedicated tri-band auxiliary radio
- 5. 2.4 GHz loT Radio

Directional antenna architecture

- 2.4+5 GHz: 6 dBi gain (70x70 deg), 6 GHz: 8 dBi (60x60)
- Same X,Y as CW9166I and only 0.1cm taller!

17

• Wide support for pan/tilt combinations

Internet of Things Capabilities

- Built-In Environmental Sensors
- Application Hosting Technology
- USB port with 4.5 W power output

5 Multigigabit (mGig) PoE Port

Optional DC Power

Meraki AP & Antenna Selection: Directional

Wi-Fi 6E CW9166D1 6E (LPI) 6E (LPI) CW-ANT-D1-NS-00

$$MR86$$

$$+$$

$$MA-ANT-27$$

$$AIR-ANT2513P4M-N$$

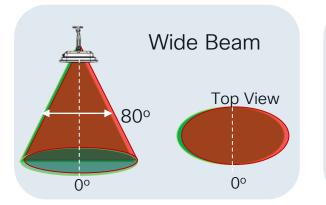
Part No.	Туре	Beam (Az)	Beam (Elev.)
MA-ANT-25	Patch	75 deg	84 deg
MA-ANT-27	Sector	65 deg	18 deg
AIR-ANT2513P4M-N	Array	31 deg	27 deg
CW9166D1	Integrated Directional	70 deg (5ghz) 60 deg (6ghz)	70 deg (5ghz) 60 deg (6ghz)
CW-ANT-D1-NS-00 & CW9163E (6E)	Patch	70 deg	30 deg

Wi-Fi 6

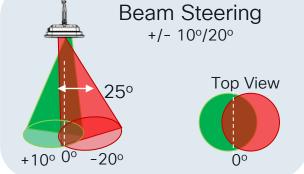
cisco ile

Cisco Catalyst C-ANT9104 – Stadium Antenna + Integrated AP

- The C-ANT9104 antenna is designed specifically to solve challenges encountered in stadium/Large Public Venue/High Client Density environments.
- Dual 5 GHz on two individual 5 GHz 4x4 Arrays
- Configurable electronic beam steering as well
 as Narrow and Wide modes of the antenna
- Catalyst C9800 release 17.6.1 adds configuration support for these new controls


cisco /

C-ANT9104: Key Things to Know


Antenna Design Improvements	Cover Clients from Longer Distances (up to 200' / 60m line- of-sight)
Integrated Unit, Outdoor-Rated	AP + Antenna all-in-one, no enclosures required, outdoor-rated
Deployment Flexibility	Beam Switching & Beam Steering; switch between narrow/wide, meet needs of multiple different coverage types
Important Notes	Band-Locked Slots & Tx Power Implications Tight RF patterns, minimal sidelobes, RF Isolation = no RRM

cisco ive!

C-ANT9104: Software-Configurable Beams

Wide sector beamwidth Dual 4x4 5GHz (80°x25°) 2.4 GHz (75°x85°) 8 dBi gain Narrow sector beamwidth Dual 4x4, 5 GHz (25°x25°) 10 dBi gain Software defined beam steering Each 5GHz 4x4 can steer +/- 10°,20° off center

5GHz Software Defined Beamwidth and Direction

C-ANT9104: Deployment Checklist

Physical Install:

- All-In-One no enclosures needed
- Portrait vs landscape
- Physical orientation of higherpower slot
- Channel & power planning

Determine initial beam configuration (surveys / prediction)

- Define Radio Profiles & RF Tags
- Less (or no) RX-SOP optimization needed

C-ANT9104 Power Table Summary						
[Slot 1]	[Slot 2]					
UNII-2e / 12 channels: 17dBm	UNII-1 / 4 channels: 21dBm					
UNII-3 / 5 channels: 23dBm	UNII-2 / 4 channels : 17dBm					

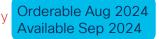
Introducing the Catalyst IW9167E with Wi-Fi 6E stadium antenna

Catalyst IW9167E with Wi-Fi 6E stadium antenna Wide beam | 30° V /70° н | 8-10 dBi gain High performance in high-density environments High performance directional panel antenna delivers high-quality experience in high-density environments.

Simplified deployment and improved aesthetics

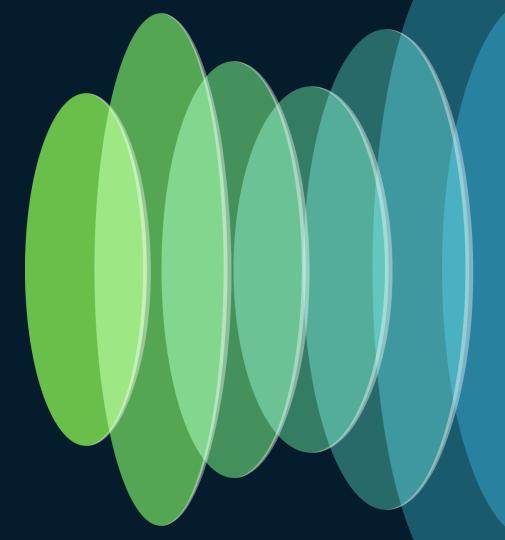
Pre-assembled antenna and access point simplifies and shortens deployment time, and improves aesthetics

Protected against the elements

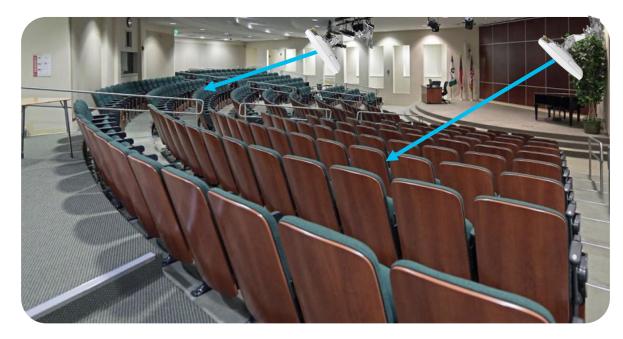

IP67 design and extreme temperature support makes it ideal for deployment outdoors.

Supports wide-range of use cases

Large public venues, sports & entertainment, parks, city centers, lawn areas, theme parks and more


Available in two options:

• Assembled unit (antenna + IW9167E) - US only


• Standalone antenna for custom deployments

Antenna Placement

cisco live!

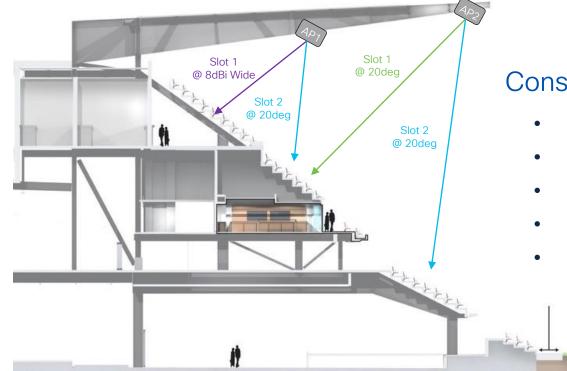
Classrooms & Auditoriums

Directional antennas: more coverage cells in the same physical area, better control of the RF environment

Directional antennas (e.g., 9166D1) strongly preferred over omnis

cisco ile

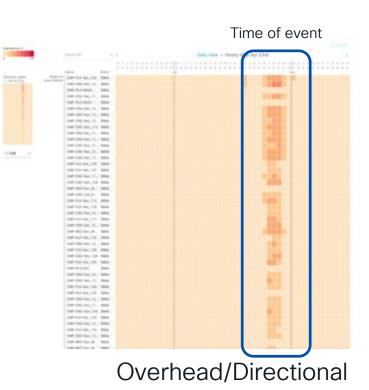
Conference Halls, Airports, Open Atriums


High Density Open Areas – Conference Halls, Classrooms

- <u>Omnis not preferred</u> for open areas where high capacity is needed
- Create smaller cells with directional antennas mounted above, aimed directly downward
- Understand RRM implications of this type of design it may not work as you expect

cisco / ile

Stadiums, Theaters, & Other Large Public Venues



Consider:

- 9104: Dual-Slot Orientation
- Overhead / Line-of-Sight
- Distance to Clients
- Cell Size & Overlap
- Handrail or Under-seat as alternative options

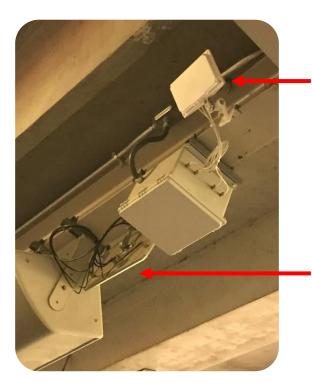
Performance Comparison: Overhead / Under Seat

Red = High CCI / Poor Performance

cisco / ile

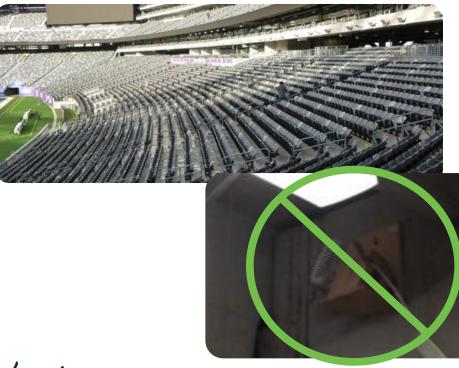
#CiscoLive BRKEWN-2087

Creative AP/Antenna Mount Examples



cisco live!

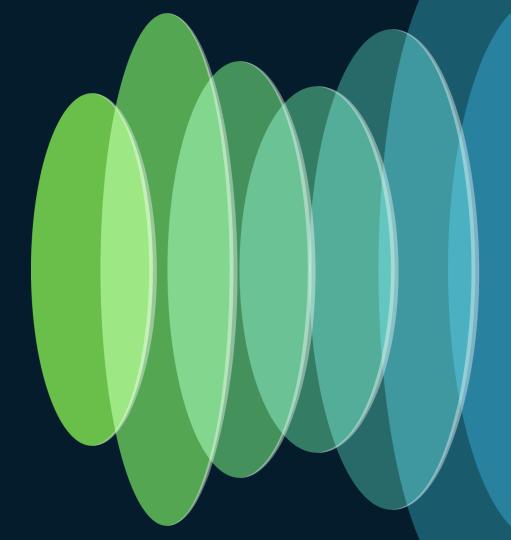
Multiple Coverage Areas with 1 AP


"Wide" Patch Antenna

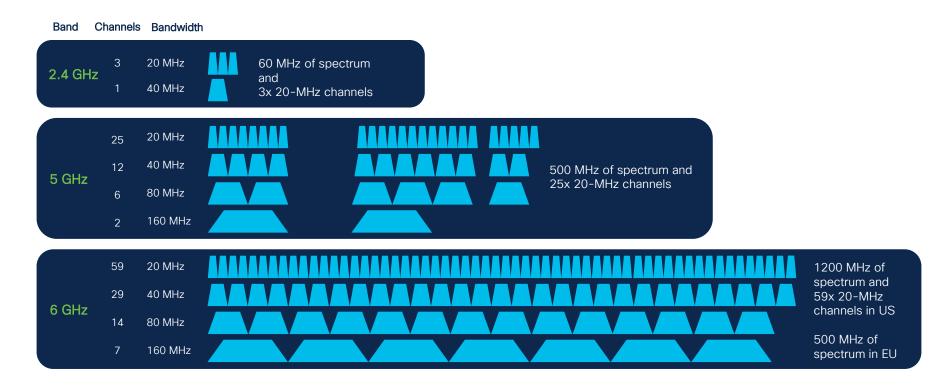
"Narrow" High-Gain Antenna

Antenna Placement: What Not To Do

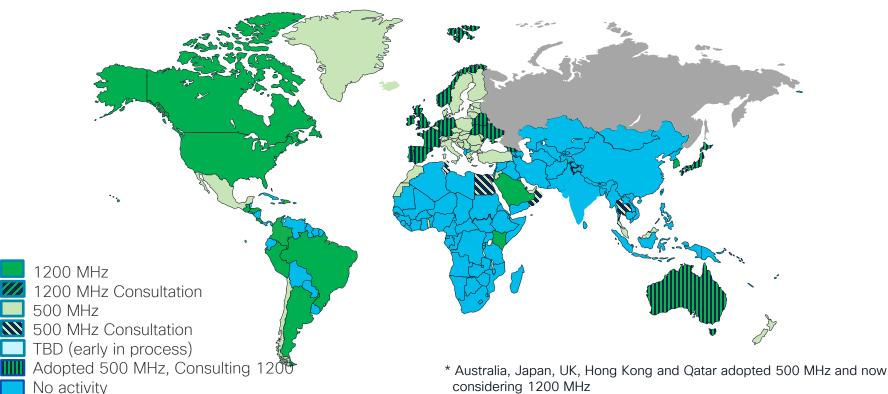
Challenging Areas


Avoid long-distance shots with poor angle of incidence / line of sight to each client

Avoid obstructions in front of your antennas


cisco/

Wi-Fi 6E Deployment Considerations



6 GHz is the biggest Wi-Fi spectrum expansion ever

cisco / ilal

Global availability of 6 GHz band for Wi-Fi (https://www.wi-fi.org/countries-enabling-wi-fi-6e)

cisco i

Deploying and migrating to Wi-Fi 6E Key Considerations

6GHz SSID Discovery

Active Scanning is less practical – too many channels Reduced Neighbor Report (RNR) offers "passive" detection Device behavior varies – testing is important!

AFC – Standard Power & LPI

Indoor / LPI AP's **cannot be used outdoors** or within enclosures Outdoor AP's must be Standard-Power Certified and have some special requirements (re: antenna aim, channel limitations)

Avoid "Salt & Pepper" Scenarios

Deploying small pockets of 6E amongst existing 5GHz deployments will cause client disruption

Understand Client & Security Requirements

E.g., WLAN configurations - WPA3 is required for Wi-Fi 6E networks

AFC & Standard Power in 6GHz

1 Comment

Ready for Outdoor Use

April 8, 2024

Networking Cisco Access Points among the First to Be Standard-Power Certified by the FCC

Brett Shore

It's an exciting time in the world of Wi-Fi. The Federal Communication Commission (FCC) recently approved Automated Frequency Coordination (AFC) for service providers. Adding to this momentum, the FCC granted standard-power certification to a range of Cisco Wireless Wi-Fi 6E access points. This means you'll be able to take full advantage of the 6 GHz band to support your wireless-first strategy. But what exactly is AFC and standard power, who requires it, and how can it benefit you and your organization?

https://blogs.cisco.com/networking/cisco-accesspoints-among-the-first-to-be-standard-powercertified-by-the-fcc

⊙ 04-19-2024 03:32 PM

By now everyone should have heard the news on 6 GHz and Wi-Fi 6E that was announced initially back in April of 2020. Customers have been deploying and turning up these networks on Wi-Fi 6E AP's operating under LPI (Low Power Indoor) rules for many months now. LPI operating rules limit operations to Indoor only, and no external antenna's, no weatherproof enclosures, and a limit on the power of 5 dBm /MHz PSD (Power Spectral Density). Like any new technology, there were many concerns about the new technology and its frequencies. Would it even be useful with the restricted power limits, or how will the propagation differ from 5 GHz (how far the signal goes). Would the power mismatch produce un-even 5 and 6 GHz cell sizes? In spite of all the initial concerns it turns out it is all quite useful- in an indoor carpeted office space it is very easy to deploy co-located 5/6 GHz cells and maintain even coverage for both. Indoor densification (capacity increases) of Wi-Fi requires relatively small (lower power) cells and for this – LPI has been perfect.

https://community.cisco.com/t5/wireless-mobilityblogs/why-we-need-6ghz-standard-power-andafc/ba-p/5074158

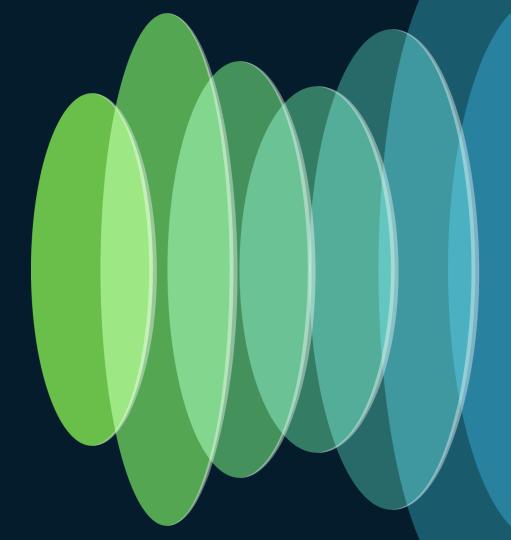
Deploying and migrating to Wi-Fi 6E

FULL CONFERENCE	IT LEADERSHIP	FULL CONFERENCE PLUS
-----------------	---------------	----------------------

Wi-Fi 6E Adoption and a Sneak Peek into the Future with Wi-Fi 7 - BRKEWN-2024

ANAND Gurumurthy, Sr. Technical Leader, Technical Marketing, Cisco

Schedule Wednesday, Jun 5 | 2:30 pm - 4:00 pm PDT | L3, South Seas E


Wi-Fi standards continuously evolve to cater to the needs of the latest applications and use cases. 6 GHz in Wi-Fi, termed Wi-Fi 6E, was a paradigm shift, almost like Wi-Fi reborn. While the adoption of Wi-Fi 6E has picked up momentum, the Wi-Fi alliance has introduced the next generation of Wi-Fi -i.e., Wi-Fi 7, which has created a lot of buzz. Many end users are in a dilemma if they've to deploy Wi-Fi 6E or wait for Wi-Fi 7. This session begins with an overview of Wi-Fi 6E and walks through the design, deployment, and migration considerations the Wi-Fi administrators need to know regarding Network Infrastructure, RF Design, Security, and WLAN Design. The session will then deep-dive into the technical aspects of Wi-Fi 7, walk through the features and benefits, and conclude with the readiness of Wi-Fi 7 for enterprise deployment today..

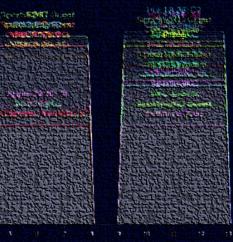
cisco / ila.

☆

Maximizing the Spectrum

Maximize your Spectrum

Limit SSIDs (reduce management traffic)


- Integrate existing networks
- Optimize PHY Rates

Renthing MC - States 2000 (Durant The Observation Renthing MC (Durant

- Monitor Noise Floor & use power adjustments
- Remove barriers to entry

Sport Real Guest

Sec Gues

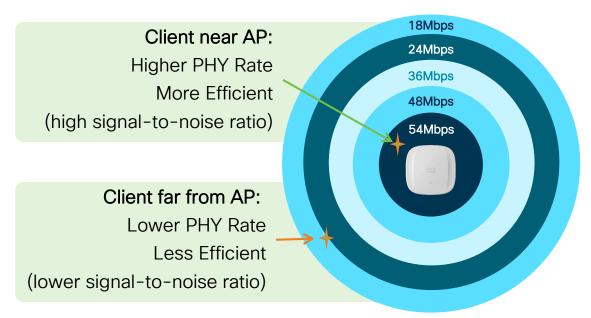
Maximizing the Spectrum

Avoiding Excessive Management Traffic

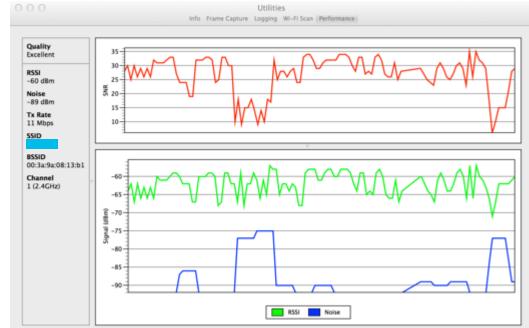
Protocols							
🗉 🤇		📮 🗋 Toj	Top Protocols: 44				
			Top Protocols				✓ Others
Probe Rsp							
Probe Req							_
HTTPS							
Beacon							
Ack		-					
HTTP							
BA	ĩ.						
Null Data	1						
DNS	Ē.,						
RTS	ñ -						
Others	D.						. <u> </u>
	o	1,000,00	2,000,000	3,000,000	4,000,000	5,000,000	6,000,000

- Always aim for 1 SSID
 - Especially in high density areas
- More SSID's = Worse Performance
- Why?
 - Each SSID requires a separate beacon
 - Each SSID will beacon at the minimum mandatory data rate
 - Radios will respond to null probe requests for each broadcast SSID
 - Exponential amounts of airtime wasted!

Maximizing the Spectrum Integrate Existing WLANs


- Common to see various existing WiFi deployments in venues
- Efficient HD WLANs are deployed holistically – one infrastructure
- Benefits?
 - Configuration consistency
 - Airtime efficiency
 - Legacy management traffic that once chewed up 30-40% of airtime typically drops to < 1% of airtime

cisco / ille


Maximizing the Spectrum PHY Rate Tuning: Why PHY Rates Matter

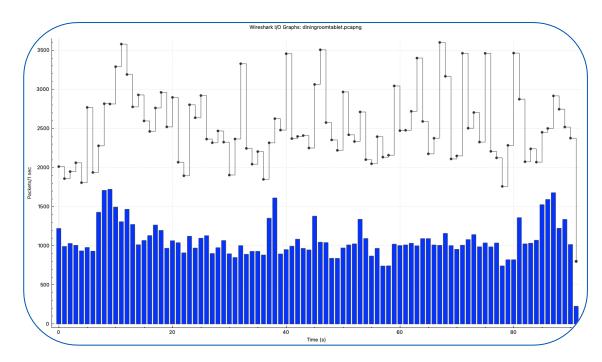
- Tune your Minimum Mandatory and Supported data rates to optimize airtime
- Higher rates require higher SNR don't be too aggressive
- Leave 1 or 2 rates below your Minimum Mandatory rate as "supported" to provide a "soft landing" and allow some SNR flexibility
- Generally, no need to adjust MCS rates (client compatibility)
- Common starting points (5ghz): 18mbps Minimum Mandatory, 12mbps Supported, <12 disabled, >18 Supported

Maximizing the Spectrum RSSI vs. SNR

- Check your noise floor in each band during peak usage
 - Packet captures with a NIC that you trust (MacBook Pro, etc.)
 - Fluke AirCheck
 - Spectrum Expert
 - Metageek Chanalyzer for Clean Air

Maximizing the Spectrum

Ease-of-Use & Client Induced Interference



- Ask yourself how difficult is it to get on your WiFi network?
- Ease-of-use directly impacts airtime efficiency
- Low take rate = lots of probe request noise (1mb, max power, all channels)
 - Results in Client Induced Interference
- A device on the network is <u>far</u> less damaging than a device off the network!
- Make captive portals easy, implement OpenRoaming, etc.

Maximizing the Spectrum

Eliminating unnecessary traffic over the air

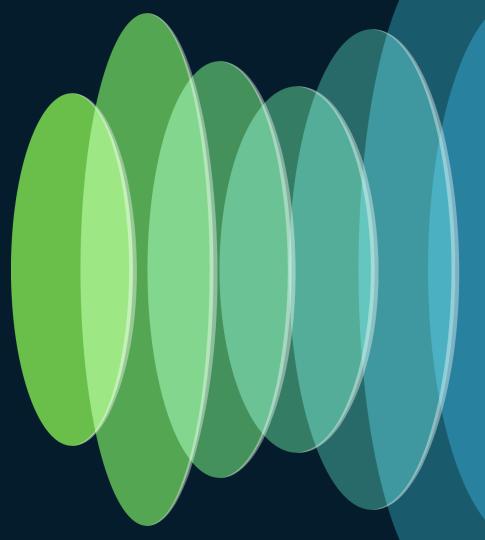
Propagation of mDNS & IPv6 traffic consuming >40% of airtime across all channels

CISCO

Maximizing the Spectrum

Eliminating unnecessary traffic over the air

	Before Optimization	After Optimization
	Slot 1 (5 GHz)	Slot 1 (5 GHz)
Radio Type	802.11ax - 5 GHz	802.11ax - 5 GHz
Radio Role (Radio Mode)	Automatic (Local)	Automatic (Local)
Admin Status	Enabled	Enabled
Number of Clients	1	1
Current Channel	153	153
Power Level 1	*6/8 (8 dBm)	*6/8 (8 dBm)
Channel Utilization	34%	17%
Transmit Utilization	29%	17%
Receive Utilization	0%	0%



- Designing RF for High Client Densities
- HD Wi-Fi Configuration Tips
- HD Wi-Fi Engineering Toolkit

The Basics: RF Profiles, TPC, DCA

cisco ive!

First - a handy (free!) tool: WCAE

- Wireless Config Analyzer Express (WCAE) is an extremely valuable tool when validating and optimizing a Cisco Wi-Fi deployment
- Feed your WLC config output to WCAE and it will help you:
 - Find and troubleshoot problems quickly
 - Identify top areas for RF optimization
 - Check configs against best practices
 - RRM overview with the RF Summary

Generated:2023-01-30 11:06			
WCAE Version:0.12			
Total Message Counts			
Errors:		9	
Warnings:		30	
Informational:		21	
Program Execution			
Parsing Errors:		0	
Processing Errors:		17	
Configuration Checks:			
	Controller Checks Results APs Checks Results		
Controller:		Client Audit	AP Information
	Data Summary	Apple IOS	APs Configuration
	Log Summary	Cisco 8821	APs Slot Configuration
	Upgrade Advisor	Drager	APs Interface Status
	Best Practices	Spectralink	APs RF Summary 2.4GHz
	WLAN Summary	Vocera	APs RF Summary 5GHz
	Interface Summary		APs RF Summary 6GHz
	RF Profiles 2.4 GHz		APs RF Health Details
	RF Profiles 5 GHz		APs NDP Summarization 2.4G
	RF Profiles 6 GHz		APs NDP Summarization 5GHz
	Site Tags		APs RF Neighbors 2.4GHz
	Hardware State		APs RF Neighbors 5GHz
	Resources		
	Client Types		6GHz Predictive Planning
	AAA Server Details		AP Channel Config Export
	WNCD Load Distribution		
	Tag/Policy Usage RF Stats 2.4GHz		
	RF Stats 2.4GHz		
	RF Stats 6GHz		
	RF Health 2.4GHz		
	RF Health 5GHz		
	RF Health 6GHz		
	Channel Stats 2.4GHz		
	Channel Stats 5GHz		

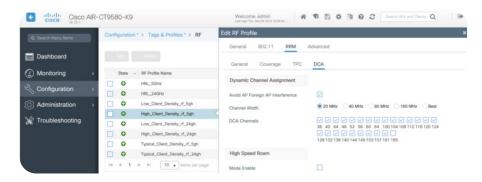
Download: https://developer.cisco.com/docs/wireless-troubleshooting-tools/

More info: Cisco Live US 2022 - BRKEWN-3006

High Density WLAN Features & Configurations

	Con	hguration	* > Tags & Profiles * > RF			
📰 Dashboard	+	Add				
Monitoring 3		State ~	RF Profile Name ~	Band	< Description	~
Configuration		0	HRL_5GHz	5 GHz		
		0	HRL_24GHz	2.4 GHz		
👌 Administration 💿		0	Low_Client_Density_rf_5gh	5 GHz	pre configured Low Client Density rf	
<i>n</i> . –		0	High_Client_Density_rf_5gh	5 GHz	pre configured High Client Density r	
Troubleshooting		0	Low_Client_Density_rf_24gh	2.4 GHz	pre configured Low Client Density rf	
		0	High_Client_Density_rf_24gh	2.4 GHz	pre configured High Client Density r	
		0	Typical_Client_Density_rf_5gh	5 GHz	pre configured Typical Density rfpro	
		0	Typical_Client_Density_rf_24gh	2.4 GHz	pre configured Typical Client Densit	

Network Home ~	Radio settings Overview RF profiles			
Network-wide				
P Wireless		Basic Indoor Profile	ſ	DEFAULT INDOOR
- Constanting		Applied to 6 APs. Overrides applied	ed to 6/6 of these AP	s.
Organization			2.4 GHZ	5 GHZ
		Channel assignment	Auto	Auto
	New Profile	AutoPower max	30	30
		AutoPower min	5	23
		Min. bitrate	Per SSID	Per SSID
		Channel width		40
		CHANGE DEFAULT PROFILE	COPY	/ EDIT


cisco Live!

- WiFi deployments are not "one-size-fitsall"
- Use RF Profiles on both Catalyst and Meraki deployments for granular RF control
 - Configure network-wide channel
 parameters: remove channels as needed,
 set channel widths
 - Configure transmit power min/max: ensure balance, avoid "client magnets"
 - Configure RX-SOP thresholds to selectively reduce radio sensitivity where needed
- On C9800, plan Site Tags to balance APs across processes

#CiscoLive BRKEWN-2087

Channel Planning with RF Profiles

- Plan channels with Dynamic Channel Allocation (Catalyst) or AutoChannel (Meraki) via RF Profile
- If needed eliminate unusable channels for business-critical areas (DFS, etc)
- Reserve channels for use by other systems

Catalyst Tip: Identifying Potentially Unhealthy Channels

WCAE - 'APs RF Summary' tab - "High Channel Changes" column

С	D	G	н	1	J	К	L	М	N	0	V
Model 🔻	Mode 🔻	Chann 🔻	TX Pow 🔻	TX Power dBi 🔻	Total Clients 🔻	RX SOP 🔍	CH Util	CH TX Util% 🔻	CH RX Util%	Channel Changes 💌	High Channel Chang
C9130AXI-B	Client Serving	108	3	9	18	medium(-78)	50	3		18	Yes
C9130AXI-B	Client Serving	140	2	12	8	medium(-78)	73	50		20	Yes
C9130AXI-B	Client Serving	52	2	11	17	medium(-78)	46	5		20	Yes
C9130AXI-B	Client Serving	64	2	11	4	medium(-78)	11	0		25	Yes
C9130AXI-B	Client Serving	100	3	9	12	medium(-78)	49	2		30	Yes
C9130AXI-B	Client Serving	44	5	9	7	medium(-78)	47	8		23	Yes
C9130AXI-B	Client Serving	100	3	9	13	medium(-78)	38	7) 19	Yes
C9130AXI-B	Client Serving	56	2	11	22	medium(-78)	46	17		. 28	Yes
C9130AXI-B	Client Serving	132	3	9	14	medium(-78)	37	8		32	Yes
C9130AXI-B	Client Serving	52	2	11	15	medium(-78)	45	1		18	Yes
C9130AXI-B	Client Serving	56	2	11	23	medium(-78)	42	7	1	25	Yes
C9130AXI-B	Client Serving	116	3	9	9	medium(-78)	24	3		22	Yes
C9130AXE-B	Client Serving	52	2	15	0	medium(-78)	2	0) 19	Yes
C9130AXE-B	Client Serving	36	2	19	0	medium(-78)	1	0		20	Yes
C9130AXE-B	Client Serving	56	2	15	0	medium(-78)	1	0		30	Yes
C9130AXE-B	Client Serving	149	2	20	0	medium(-78)	2	0		22	Yes
C9130AXE-B	Client Serving	124	2	15	88	medium(-78)	78	19	1	70	Yes
C9130AXE-B	Client Serving	48	2	20	0	medium(-78)	2	0		66	Yes
C9130AXE-B	Client Serving	36	2	19	0	medium(-78)	2	0) 19	Yes
C9130AXE-B	Client Serving	44	2	20	0	medium(-78)	2	0		21	Yes
C9130AXE-B	Client Serving	108	2	15	0	medium(-78)	1	0		25	Yes
C9130AXE-B	Client Serving	149	2	20	0	medium(-78)	1	0		21	Yes

"<u>High Channel</u> <u>Change: Yes</u>" triggered for radios with more than 4 channel changes per day

Balancing Transmit Power with RF Profiles

- TPC (Catalyst) and AutoPower (Meraki)
- Ensures AP-to-AP consistency (no "client magnets") and 2.4GHz to 5GHz balance (5GHz hotter, 2.4GHz cooler)
- TPC/AutoPower Min lower power limit specified for a given radio. TPC/AutoPower will never adjust power below this level.
- TPC/AutoPower Max upper power limit specified for a given radio. TPC/AutoPower will never adjust power above this level.

Identifying Possible Power Imbalance

WCAE - 'APs RF Summary' tab - "TX Power dBm" and "Total Clients" columns

Name 🖵	Slot 🚽	Band 🗸	Channel 🖵	TX Power 🖃	TX Power dBm	🖵 Total Clients	-
AP1	1	5	100	1		17	21
AP1	2	5	48	1		23	70

6dB power difference = client imbalance

Refer to AP power tables to determine max TX power per UNII band

Use "show controller" on a sample AP for all details

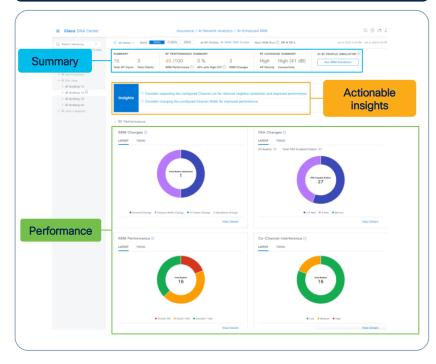
Selecting Channel Width with RF Profiles

	Welcome Last login Thu, 3	e <i>admin</i> Sep 26 2019 16:56:5	a_ 1		٥	0	C	Search APs and Clients Q	•
Ec	lit RF Profile	е							×
	General	802.11	RRM	Advanced					
	General	Coverage	TPC	DCA					
	Dynamic Ch	nannel Assig	nment						
	Avoid AP For	reign AP Interl	erence						
	Channel Wid	th		🔘 20 N	IHZ C	40 MHz	080	MHz 0160 MHz Best	
	DCA Channe	ls		✓ ✓ 36 40 ✓ ✓ 128 132	44 48 44 48 2 136 14	52 56 √ √ 0 144 149			

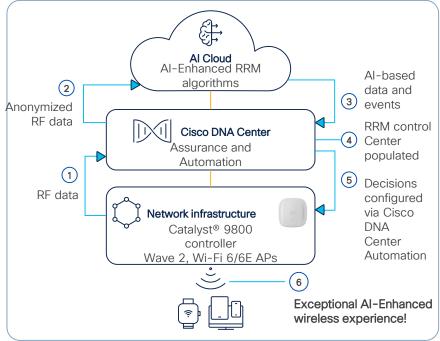
Network	General 2.4 GHz 5 GHz	
Home ~	5 GHz radio settings	
> Network-wide	Turn off 5 GHz radio	See band selection above.
Wireless	Channel width	Auto Manual
Organization		
iii, organization		
		Manual 5 GHz channel width
		Disable auto channel width by manually selecting a channel width for the APs in this profile
		20 MHz (channels)
		Recommended for High Density deployments and environments expected to encounter DFS events. More unique channels available, reducing chance of interference.
		O 40 MHz (0 channels)
		For low to medium density deployments.
		O 80 MHz (0 channels)
		For low density areas with few or zero neighboring networks. Higher bandwidth and data rates for modern devices. Increases risk of interference oroblems.

5GHz

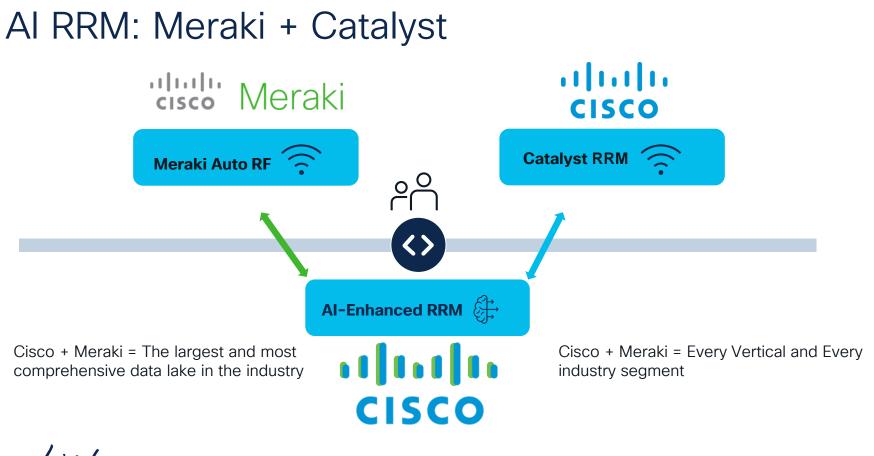
- In general, 20MHz channels provide the most channel reuse (capacity) for high density environments
- Wider channels may be used selectively in more isolated areas – smaller classrooms, lobbies, conference rooms, etc.


6GHz

- Heavily dependent on regulatory domain
- Note! Higher channel width results in higher max Tx power for data frames (but not beacons – remember when surveying!)



What is AI-Enhanced RRM? AI-Driven RRM solution


Deep RF visibility & advanced control

Proactive optimizations for all deployment sizes

cisco/

cisco / ille

#CiscoLive BRKEWN-2087

AI-RRM: Hear from an expert!

FULL CONFERENCE | IT LEADERSHIP | FULL CONFERENCE PLUS

Advanced RF Tuning for Wi-Fi 6E with Catalyst Wireless: Become an Expert While Getting a Little Help from AI - BRKEWN-3413

Jim Florwick, Technical Marketing Engineer, Cisco - Distinguished Speaker, Hall of Fame Elite Speaker, Hall of Fame Speaker

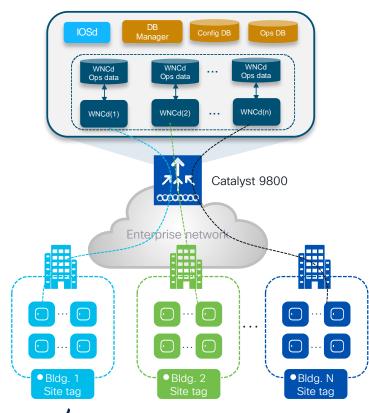
Schedule Wednesday, Jun 5 | 10:30 am - 12:00 pm PDT | L2, Mandalay Bay G

Participants will learn the RF design and implementation guidelines necessary to plan, configure, and implement Wi-Fi networks that meet the evolving regulatory (6 GHz) and customer RF demands. Wi-Fi is changing, and there has never been a more exciting time to be in RF technologies. In this session, you will learn about Cisco's newest Catalyst wireless access points and antennas, including the latest Wi-Fi 6E access point and the new Wi-Fi 6 stadium antenna. Participants will learn and understand the current coverage and design best practices as well as what this means to the evolving RF landscape around the world. Everything we know is evolving. This session will provide a deep dive on how to think about and manage Wi-Fi 6E, RRM, spectrum intelligence, and the evolution of multi-band operations within the infrastructure. The evolution to Wi-Fi 6E brings amazing RF capacity gains. Wi-Fi 6E also means new pressures on the wired infrastructure capacity and power that supports it. Attendees will learn what to expect and how to manage and plan for future needs now. Session attendees will be able to successfully use the information to navigate and understand today's fluid RF and mobility landscapes and articulate the benefits to their customers, enabling the best wireless and mobility experiences yet.

Site Tags & Balancing AP Load on 9800

Key Considerations

In High Density Deployments – **balance your APs across Site Tags.** Do not use the default site tag.


Site Tag does not necessarily equate to a physical "Site"

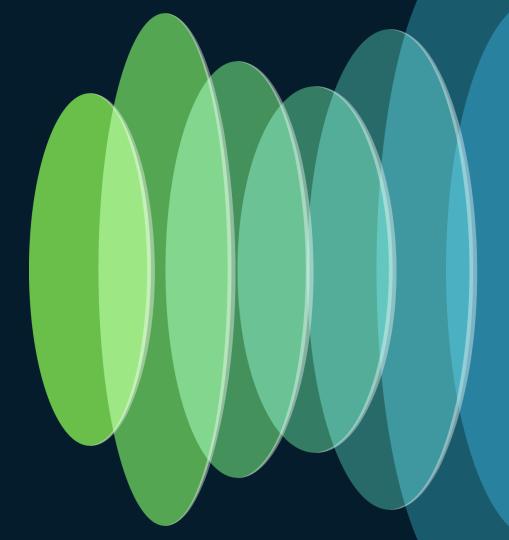
Site Tag assigns an AP to a WNCd (9800 process) (# of available WNCd's differs per HW platform)

Organize Site Tags into approximate roaming domains

Refer to the C9800 Best Practices guide for the latest guidance

Site Tags – Design considerations

A few more important suggestions:


- Distributing APs (and clients) across custom Site Tags (and thus WNCd's) gives better scale and performance
- In large public venues, avoid having more Site Tags than # of WNCd's
- The number of WNCd varies from platform to platform:

Platform	# of WNCD instances
EWC (on AP or C9k switch)	1
C9800-L	1
C9800-CL (small)	1
C9800-CL (medium)	3
C9800-40	5
C9800-CL (large)	7
C9800-80	8

The following command shows the # of WNCDs processes: 9800#sh processes platform | inc wncd

The (Not So) Secret High Density Weapon: RX-SOP

cisco ive!

What if...

I put AP's wherever I needed them... I used all the right antennas...

I surveyed and optimized and surveyed and optimized again...

...but my Channel Utilization is still really high, with almost no "real" traffic?

Vendor		Signal	Noise	SNR	Channel	Channel Utilization	 Clients
😑 Cis	co Sys	-85 dBm	-96 dBm	11 dB	48	90%	
😑 Cis	co Sys	-70 dBm	-96 dBm	26 dB	153	89%	
😑 Cis	co Sys	-74 dBm	-96 dBm	22 dB	153	89%	
😑 Cis	co Sys	-74 dBm	-96 dBm	22 dB	153	89%	
😑 Cis	co Sys	-74 dBm	-96 dBm	22 dB	153	89%	
😑 Cis	co Sys	-90 dBm	-96 dBm	6 dB	144	87%	
😑 Cis	co Sys	-78 dBm	-96 dBm	18 dB	157	86%	
😑 Cis	co Sys	-64 dBm	-96 dBm	32 dB	1	84%	
😑 Cis	co Sys	-70 dBm	-96 dBm	26 dB	153	82%	
😑 Cis	co Sys	-76 dBm	-96 dBm	20 dB	153	80%	
😑 Cis	co Sys	-86 dBm	-96 dBm	10 dB	161	80%	
😑 Cis	co Sys	-80 dBm	-96 dBm	16 dB	153	80%	
😑 Cis	co Sys	-64 dBm	-96 dBm	32 dB	44	79%	
😑 Cis	co Sys	-62 dBm	-96 dBm	34 dB	44	79%	
😑 Cis	co Sys	-64 dBm	-96 dBm	32 dB	44	79%	
😑 Cis	co Sys	-80 dBm	-96 dBm	16 dB	153	78%	
😑 Cis	co Sys	-74 dBm	-96 dBm	22 dB	153	77%	
😑 Cis	co Sys	-70 dBm	-96 dBm	26 dB	153	76%	
😑 Cis	co Sys	-80 dBm	-96 dBm	16 dB	153	76%	
😑 Cis	co Sys	-80 dBm	-96 dBm	16 dB	153	76%	
😑 Cis	co Sys	-80 dBm	-96 dBm	16 dB	153	76%	
😑 Cis	co Sys	-70 dBm	-96 dBm	26 dB	153	76%	
😑 Cis	co Sys	-80 dBm	-96 dBm	16 dB	153	75%	
😑 Cis	co Sys	-78 dBm	-96 dBm	18 dB	153	75%	
😑 Cis	co Sys	-78 dBm	-96 dBm	18 dB	153	74%	

What does it do?

Reduces "receive" sensitivity of the AP to a pre-determined power level

Example: ignore everything coming into the radio at lower than -80dBm, because those devices are unlikely to be in our cell

Why is it helpful?

Allows us to transmit more often to clients in our intended cell

802.11 is a "polite" protocol

- 802.11 is a "polite" protocol
- I must <u>listen</u> before I start to <u>talk</u> I will not talk <u>until it's "quiet" on my channel</u>

- 802.11 is a "polite" protocol
- I must listen before I start to talk I will not talk until it's "quiet" on my channel
- In dense deployments, you <u>will</u> have co-channel AP's in range of each other

- 802.11 is a "polite" protocol
- I must listen before I start to talk I will not talk until it's "quiet" on my channel
- In dense deployments, you <u>will</u> have co-channel AP's in range of each other
- RX-SOP optimization helps us tune out the most distant co-channel transmissions

- Be careful and make small adjustments
 - Generally, start in the -80's

cisco il

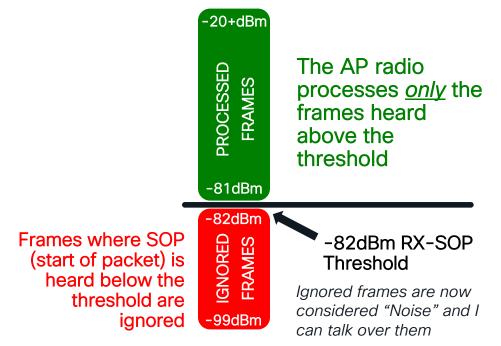
- Be careful and make small adjustments
 - Generally, start in the -80's
- Remember adjusting the RX-SOP threshold doesn't impact the actual RF energy on the channel, but it does impact APs' sensitivity to it
 - High Channel Utilization still affects all clients

- Be careful and make small adjustments
 - Generally, start in the -80's
- Remember adjusting the RX-SOP threshold doesn't impact the actual RF energy on the channel, but it does impact APs' sensitivity to it
 - High Channel Utilization still affects all clients
- WiFi6, WiFi6E, and/or use of C9104 may reduce the need for RX-SOP in some environments; continue to monitor your Channel Utilization and adjust as needed

Without Custom RX-SOP Threshold

(Default / "Auto" Radio Sensitivity) -20+dBm

Radio processes everything that it can hear – any frame with enough SNR PROCESSED FRAMES


-99dBm

cisco /

Without Custom RX-SOP Threshold (Default / "Auto" Radio Sensitivity)

Radio processes everything that it can hear – any frame with enough SNR PROCESSED FRAMES

With Custom RX-SOP Threshold

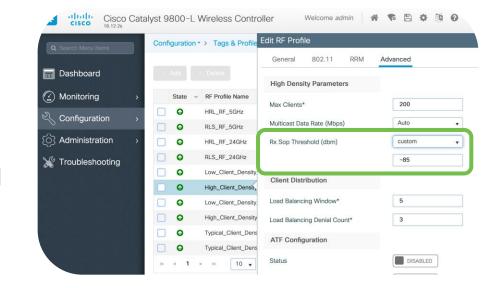
HOW TO: Optimize RX-SOP Thresholds

Choose client devices and representative areas to test

Create a temporary SSID on <u>one AP</u> in the test area so your client

doesn't roam

(see hidden slides for tips on AireOS / 9800)

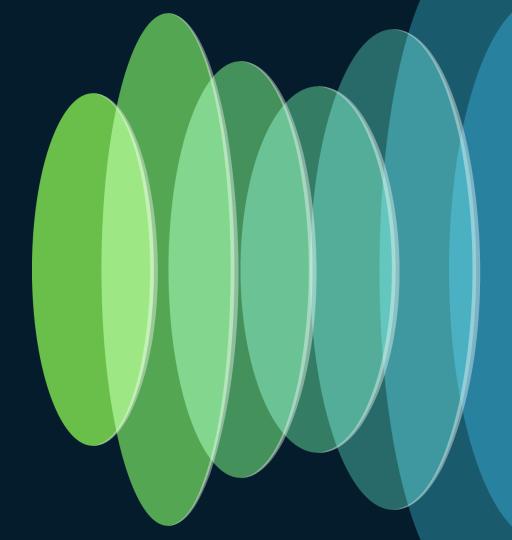

2

Monitor the AP's view of test clients throughout the cell (from WLC UI, WLC CLI, or AP CLI)

Pad the worst reading by another 15dB or more = initial RX-SOP threshold

Example: Worst AP-observed RSSI value is -72; initial RXSOP threshold with 15dB cushion = -87(or higher)

HOW TO: Optimize RX-SOP Thresholds


A key takeaway:

Be conservative and make small adjustments!

cisco / ile

Cloud-Managed High Density

Cloud-Managed High Density

distle Meraki	Q Search Dashboard
Network Home V	Independent firmware versions have been published for Meraki and Catalyst-based switches, including MS390s & Migrated C9300 switches. Learn more or Upgrade Nov
Network-wide Wireless Organization	Health WIRLESS 4/4 healthy
	Clients al • for the last day • 54.82 GB (+ 29.72 GB, + 25.09 GB) • Applications
	□ Status Description Last seen Usage OS IPv4 address Policy MAC address SDA ►
	□ ⇒ ae:1c:ae:dc:d6:a1 Jun 2 07:28 104.6 MB Other 192.168.1.209 normal ae:1c:ae:dc:d6:a1 5g
	□ ♥ JOSUHR-M-4ZPD Jun 2 10:41 4.20 GB Apple IPhone 192.168.1.61 normal a0:78:17:77:95:6a 5g

Can be ideal for:

Classrooms Theaters & Auditoriums Hotspots

Be aware of:

Switched Network Capacity (L2 / L3) Roaming Domains & Expected Roaming Experience

cisco /

Cloud-Managed High Density

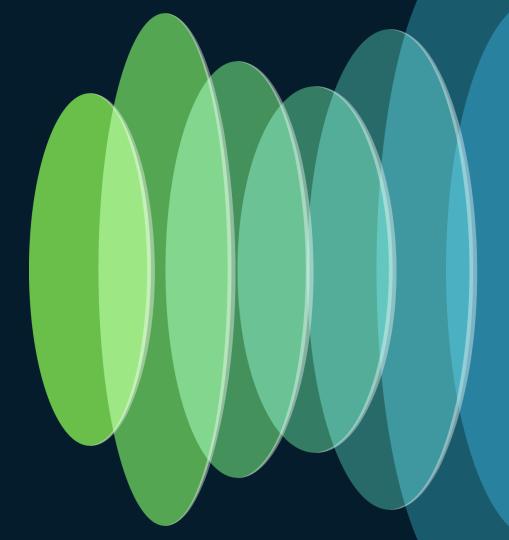
Network	Configuration overview	
Home ~	SSIDs Showing 6 of 15 S	SSIDs. <u>Show all my</u>
Network-wide		5g
	Enabled	enabled 【
Wireless	Name	rename
	Access control	edit setting
Organization	Encryption	PSK (WPA2
-	Sign-on method	None
	Bandwidth limit	unlimited
	Client IP assignment	Local LAN
	Clients blocked from using LAN	no
	Wired clients are part of Wi-Fi network	no
	VLAN tag 🚯	n/a
	VPN	Disabled
	Splash page	
	Splash page enabled	no
	Splash theme	n/a

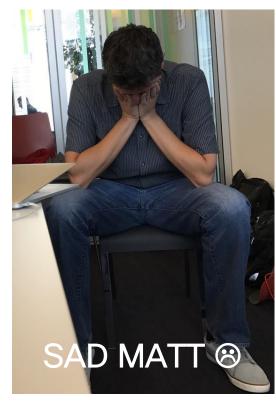
Similarly to "traditional" Catalyst networks:

- Manage AP Tx power appropriately
- Tune PHY rates _
- Limit SSID count per AP as much as possible
- Optimize channels —

ę

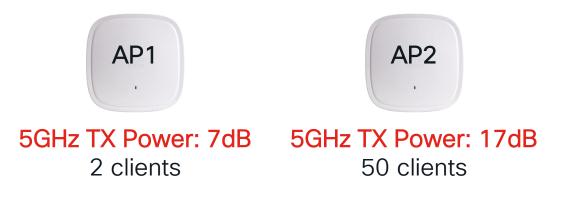
(Please z


Leverage RX-SOP (carefully, when needed)



* *

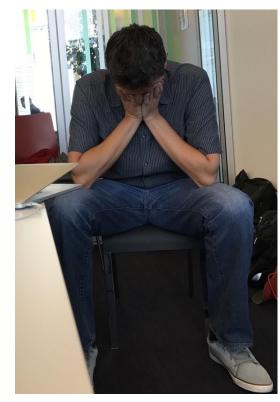

Common High Density Mistakes



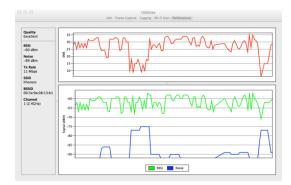
cisco live!

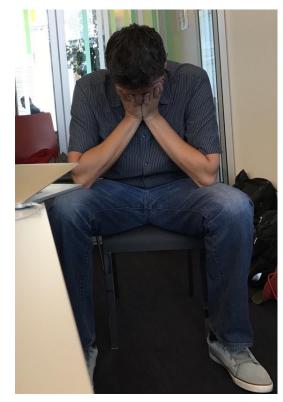
AP-to-AP transmit power imbalance (causes "Magnet" / overloaded AP's)

Note: This also applies to the dual-5GHz C9104!

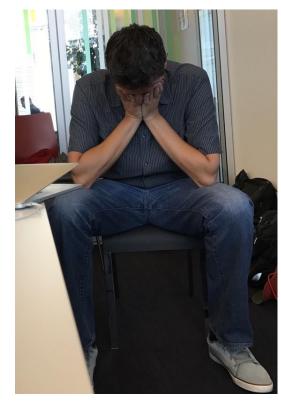


 AP-to-AP transmit power imbalance (causes "Magnet" / overloaded AP's)

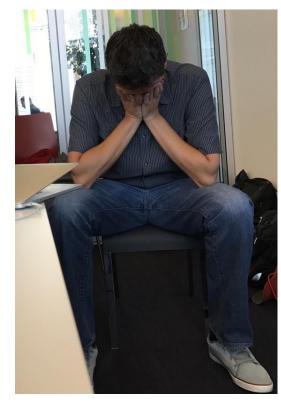

 2.4GHz to 5GHz transmit power imbalance (draws dual-band clients to 2.4GHz)



2.4GHz: 13dB 20 dual-band clients 5GHz: 7dB 0 dual-band clients



- AP-to-AP transmit power imbalance (causes "Magnet" / overloaded AP's)
- 2.4GHz to 5GHz transmit power imbalance (draws dual-band clients to 2.4GHz)
- □ Transmit power too low to overcome noise floor



- AP-to-AP transmit power imbalance (causes "Magnet" / overloaded AP's)
- 2.4GHz to 5GHz transmit power imbalance (draws dual-band clients to 2.4GHz)
- □ Transmit power too low to overcome noise floor
- □ Channel Utilization high without real traffic

- AP-to-AP transmit power imbalance (causes "Magnet" / overloaded AP's)
- 2.4GHz to 5GHz transmit power imbalance (draws dual-band clients to 2.4GHz)
- □ Transmit power too low to overcome noise floor
- □ Channel Utilization high without real traffic
- Minimum mandatory PHY rate improperly tuned (too high or too low)

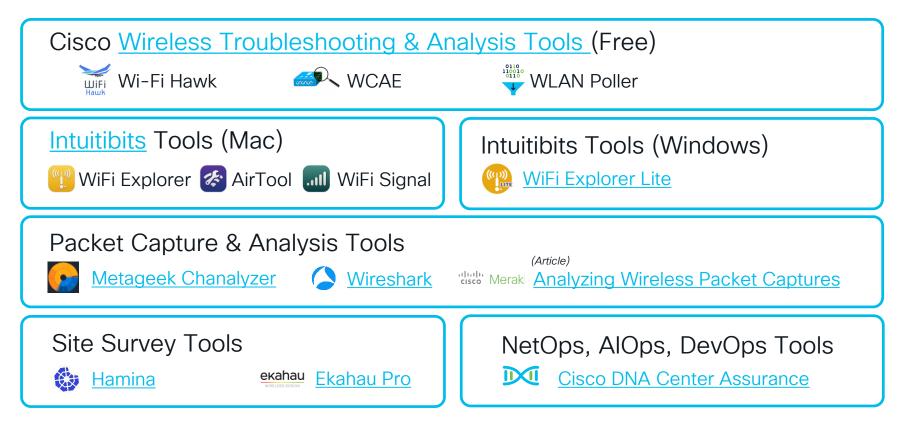
- AP-to-AP transmit power imbalance (causes "Magnet" / overloaded AP's)
- 2.4GHz to 5GHz transmit power imbalance (draws dual-band clients to 2.4GHz)
- □ Transmit power too low to overcome noise floor
- □ Channel Utilization high without real traffic
- Minimum mandatory PHY rate improperly tuned (too high or too low)
- Too many SSID's enabled (not using AP Groups to control where SSID's are enabled)
- □ Unusable channels (especially 5GHz)

- AP-to-AP transmit power imbalance (causes "Magnet" / overloaded AP's) TPC
- 2.4GHz to 5GHz transmit power imbalance (draws dual-band clients to 2.4GHz) TPC
- □ Transmit power too low to overcome noise floor **TPC**
- □ Channel Utilization too high Env. Cleanup / RXSOP
- Minimum mandatory PHY rate improperly tuned (too high or too low) PHY Rate tuning
- Too many SSID's enabled (not using AP Groups to control where SSID's are enabled) Policy Tags

□ Unusable channels (especially 5GHz) DCA

What can we do?

- Develop and Enforce an RF Policy
- Employ an effective RF policy
- Identify:
 - what's permitted in your environment
 - what is not permitted in your environment
 - whom to contact for further information



cisco live!

- Designing RF for High Client Densities
- HD Wi-Fi Configuration Tips
- HD Wi-Fi Engineering Toolkit

Our Favorite Tools

iOS Wi-Fi Diagnostics with iOS

10:42 1 Search			
Cancel	Install Profile	Install	
	/iFi Performance Diagnostics ople Inc.		
Signed by	AppleCare Profile Signing Certificate		
	Enable WiFi daemon and driver diagno Internal Settings Logging Settings Unknown Payload	ostic mode	
More De	ails	>	
	Remove Downloaded Profile		

g Diagn	ostics
BSSID	aa:17:d8:ff:e8:3f
Channel	149 (40MHz)
Signal Strength	-46 (Strong)
Channel utilization is low.	
Security	WPA2 Personal
Captive	No
Deployment	Multi AP
Motion	Moving
CONNECTIVITY	
Gateway	9ms
internet	47ms
Responsiveness	Test
COEXISTENCE	
AWDL Mode	Inactive
Bluetooth	Idle
Scan	Inactive

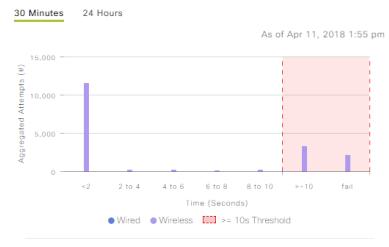
Diagnostics Profile for installation on iOS devices extends on-device WiFi diagnostics capabilities

More Info:

https://tidbits.com/2022/04/22/use-applesnetworkquality-tool-to-test-internetresponsiveness/

Profile Download:

https://developer.apple.com/servicesaccount/download?path=/iOS/iOS_Logs/MegaWifiP rofile.mobileconfig


Note: Profile auto-expires after 7 days and must be re-installed when needed

Catalyst Center Assurance

Broad applicability to High Density deployments

Client Attempts by Onboarding Times

- iOS Analytics
- Detailed client onboarding analysis
- Aironet Active Sensor support
- Intelligent Capture
- Network Time Travel

...and much more!

View Details

https://www.ciscolive.com/c/dam/r/ciscolive/emea/docs/2024/pdf/BRKEWN-2029.pdf

Key Takeaways

- Design the RF environment with appropriate antennas and sensible physical placements
- Employ HD-focused WLC feature configurations such as RF Profiles for more flexible and robust designs
- Understand the key outside factors that may impact a live HD WLAN, including enemies of performance
- Get comfortable with Wi-Fi analysis and optimization tools to make informed, data-driven decisions

Complete Your Session Evaluations

Complete a minimum of 4 session surveys and the Overall Event Survey to be entered in a drawing to **win 1 of 5 full conference passes** to Cisco Live 2025.

Earn 100 points per survey completed and compete on the Cisco Live Challenge leaderboard.

Level up and earn exclusive prizes!

Complete your surveys in the Cisco Live mobile app.

Continue your education

cisco live

- Visit the Cisco Showcase for related demos
- Book your one-on-one Meet the Engineer meeting
- Attend the interactive education with DevNet, Capture the Flag, and Walk-in Labs
- Visit the On-Demand Library for more sessions at <u>www.CiscoLive.com/on-demand</u>

Contact us at: josuhr@cisco.com and mswartz9@cisco.com

Thank you

#CiscoLive