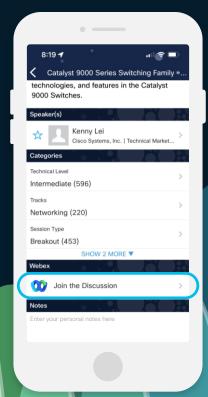
Diagnose Network Issues from Telemetry Data with AI-ML Methods

Frank Brockners, Distinguished Engineer, Outshift by Cisco
BRKNWT-2404

Cisco Webex App

Questions?


Use Cisco Webex App to chat with the speaker after the session

How

- 1 Find this session in the Cisco Live Mobile App
- Click "Join the Discussion"
- 3 Install the Webex App or go directly to the Webex space
- 4 Enter messages/questions in the Webex space

Webex spaces will be moderated by the speaker until June 7, 2024.

https://ciscolive.ciscoevents.com/ciscolivebot/#BRKNWT-2404

Outshift by Cisco is the **incubation** engine delivering what's next and new for Cisco: **Emerging** technologies that target new markets and **personas** to build **meaningful** businesses and achieve innovative results.

We turn ideas into awesome products – with solutions for modern cloud native applications, edge, quantum, and Al.

Innovation, full speed ahead

Products

Cloud Application Security | Generative Al Infra

Cisco

DevNet

Research

Cisco

Cisco

BRKNWT-2404

Open Source Program Office

Cisco

Responsible Al Committee

I mentioned about the ability to interact in a humanlike capability.

One of the big opportunities for **Al is** to replace services with software and if that's the TAM that we're going after, the starting point is not hundreds of billions the starting point is possibly tens of trillions.3

2025: 40% of services engagements will include GenAl-enabled delivery, triggering a shift in human-delivered services for strategy, change, and training organizations¹

#CiscoLive

2028: GenAl technology will be used for 35% of network configuration and troubleshooting activities, up from near zero in 2023²

[.] Gartner: WW IT Spending

^{2.} Gartner: Forecast Al Services 2023-27

Pat Grady, Sequoia, https://youtu.be/TDPqt7ONUCY?si=ikudM8J4hl42nTHH&t=160

Understanding the state of an IT system

- IT "entities" applications, runtime-systems (like K8s), servers, network devices offer a lot of operational data,
 - Example: In addition to logs, contemporary routers offer more than 1,000,000 counters via model driven telemetry

- Change detection methods alert operators about changes on one or multiple devices
- Can we leverage the wealth of information available in a device to have it tell us in natural language what its state is?
- Can we treat logs and even feature-names in timeseries as natural language and leverage associated methods to interpret them?

Agenda

Diagnosing cross-domain, multi-layer, multi-source telemetry with the help of Al

Diagnose streaming network telemetry with the help of Al

Diagnose logs with the help of Al

Diagnosing Logs with the help of Al

Imagine...

You are an IT Ops engineer and someone provided you with a log file "kube-flannel-ds-xd5wp.log" and asked:

"What is the issue?"

kube-flannel-ds-xd5wp.log

```
frank@CSCO-W-PF2XAQ7F: /r ×
                            1 main.go:209] CLI flags config: {etcdEndpoints:http://127.0.0.1:4001.http://127.0.0.1:2379
I0315 19:05:00.332435
etcdPrefix:/coreos.com/network etcdKevfile: etcdCertfile: etcdCAFile: etcdUsername: etcdPassword: version:false kubeSubn
etMgr:true kubeApiUrl: kubeAnnotationPrefix:flannel.alpha.coreos.com kubeConfigFile: iface:[] ifaceRegex:[] ipMasq:true
ifaceCanReach: subnetFile:/run/flannel/subnet.env publicIP: publicIPv6: subnetLeaseRenewMargin:60 healthzIP:0.0.0.0 heal
thzPort:0 iptablesResyncSeconds:5 iptablesForwardRules:true netConfPath:/etc/kube-flannel/net-conf.json setNodeNetworkUn
available:true}
W0315 19:05:00.332497
                            1 client_config.go:618] Neither --kubeconfig nor --master was specified. Using the inCluste
rConfig. This might not work.
                            1 kube.go:139] Waiting 10m0s for node controller to sync
I0315 19:05:00.361865
I0315 19:05:00.361980
                            1 kube.go:4611 Starting kube subnet manager
                            1 kube.go:482] Creating the node lease for IPv4. This is the n.Spec.PodCIDRs: [10.244.0.0/24
I0315 19:05:00.370473
                            1 kube.go:482] Creating the node lease for IPv4. This is the n.Spec.PodCIDRs: [10.244.1.0/24
I0315 19:05:00.370490
I0315 19:05:00.370510
                            1 kube.go:482] Creating the node lease for IPv4. This is the n.Spec.PodCIDRs: [10.244.2.0/24
I0315 19:05:01.362771
                            1 kube.go:146] Node controller sync successful
                            1 main.go:229] Created subnet manager: Kubernetes Subnet Manager - xp02-vm21
I0315 19:05:01.362790
                            1 main.go:232] Installing signal handlers
I0315 19:05:01.362794
                            1 main.go:452] Found network config - Backend type: vxlan
I0315 19:05:01.362951
                            1 match.go:210] Determining IP address of default interface
I0315 19:05:01.363354
I0315 19:05:01.363666
                            1 match.go:263] Using interface with name ens33 and address 172.16.0.90
I0315 19:05:01.363689
                            1 match.go:285] Defaulting external address to interface address (172.16.0.90)
I0315 19:05:01.363818
                            1 vxlan.go:141] VXLAN config: VNI=1 Port=0 GBP=false Learning=false DirectRouting=false
                            1 kube.go:627] List of node(xp02-vm21) annotations: map[string]string{"flannel.alpha.coreos.
I0315 19:05:01.367882
com/backend-data":"{\"VNI\":1,\"VtepMAC\":\"22:da:29:ff:7c:09\"}", "flannel.alpha.coreos.com/backend-type":"vxlan", "fla
nnel.alpha.coreos.com/kube-subnet-manager":"true", "flannel.alpha.coreos.com/public-ip":"172.16.0.90", "kubeadm.alpha.ku
bernetes.io/cri-socket": "unix:///var/run/containerd/containerd.sock", "node.alpha.kubernetes.io/ttl": "0", "volumes.kuber
netes.io/controller-managed-attach-detach":"true"}
--More--(0%)
```


You might...

- Browse through the file with your favorite editor
- Run a couple of grep commands using terms that you know are commonly hinting at issues

Could we delegate this task to Al?

Log files are often large...

The example file has 4490 lines, 89657 words and 687954 characters

```
$ wc kube-flannel-ds-xd5wp.log
4490 89657 687954 kube-flannel-ds-xd5wp.log
```

... too large to fit into the context window of an LLM like e.g., GPT-4

cisco live!

Tokenizer

Learn about language model tokenization

OpenAl's large language models (sometimes referred to as GPT's) process text using **tokens**, which are common sequences of characters found in a set of text. The models learn to understand the statistical relationships between these tokens, and excel at producing the next token in a sequence of tokens.

You can use the tool below to understand how a piece of text might be tokenized by a language model, and the total count of tokens in that piece of text.

It's important to note that the exact tokenization process varies between models. Newer models like GPT-3.5 and GPT-4 use a different tokenizer than previous models, and will produce different tokens for the same input text.

Tokens Characters 203.095 687954

Show example

```
In main.go:209] CLI flags config: {etcd Endpoints:http://127.0.0.1:4001,http://127.0.0.1:2379 etcdPrefix:/core os.com/network etcdKeyfile: etcdCertfile: etcdCAFile: etcdUsername: etcdPassword; version:false kubeSubnetMgr:true kubeApiUrl: kubeAnnotation Prefix:flannel.alpha.coreos.com kubeConfigFile: iface:[] ifaceRegex:[] ipMasg:true ifaceCanReach: subnetFile:/run/flannel/subnet.env publicIP: publicIPv6: subnetLeaseRenewMargin:60 healthzIP:0.0.0.0 healthzPort:0 iptablesResyncSeconds:5 iptablesForwardRules:true netConfPath:/etc/kube-flannel/net-conf.json setNodeNetworkUnavailable:true}
W0315 19:05:00.332497    1 client_config.go:618] Neither --kube config nor --master was specified. Using the inClusterConfig. 11This
```

We need to filter our input file...

- Different from "log anomaly detection", our objective is only to "shrink" the dataset to a level, where we can fit things into a context window of an LLM – without losing the key information.
- Methods for "log anomaly detection" can be leveraged, e.g.,
 - Statistical approaches, using token frequencies (<u>Detecting Anomalies in Logs by Combining NLP features with Embedding or TF-IDF</u>, <u>Log File reduction with TFIDF ranking</u>, <u>Group similar log-lines together using TF-IDF</u>, ...)
 - Embedding-based approaches (e.g., <u>LogBERT</u>, <u>LogBD</u>, <u>LSADNET</u>, ...)

... Let's explore a simple statistical method using TF-IDF to score.

Idea: "Watch out for an influx of rare things"

- Intuition: A term which is rare across all the document but frequent in a specific document/selection is more important
- TF-IDF (Term-Frequency, Inverse Document Frequency) allows us to score the importance of words in a "document", based on how frequently they appear on multiple "documents". TF-IDF is the product of two main statistics – term frequency and inverse document frequency
 - If the word appears frequently in a document assign a high score to that word (term frequency – TF)
 - If the word appears in a lot of documents assign a low score to that word (inverse document frequency – IDF)

TF-IDF applied to our case

- Approach:
 - A line in the log-file represents a "document"
 - The entire log-file represents all documents (a.k.a. the corpus)
- Sort the lines based on highest per-word weight, i.e., sort the log file in decreasing order of rarity.
 - "Rarely occurring informative lines at the top. Repetitive 'everythingworks' at the bottom."
- Stemming (make words of the same stem count as one), or different tokenization approaches can improve the results

TF-IDF applied to kube-flannel-ds-xd5wp.log

Original log file:

```
10315 19:05:00.332435
                           1 main.go:209 CLI flags config: {etcdEndpoints:http://127.0.0.1:4001.http://127.0.0.1:2379
etcdPrefix:/coreos.com/network etcdKevfile: etcdCertfile: etcdCAFile: etcdUsername: etcdPassword: version:false
kubeSubnetMgr:true kubeApjUrl: kubeAnnotationPrefix:flannel.alpha.coreos.com kubeConfigFile: iface:[] ifaceRegex:[] ipMasg:true
ifaceCanReach: subnetFile:/run/flannel/subnet.env publicIP: publicIPv6: subnetLeaseRenewMargin:60 healthzIP:0.0.0.0
healthzPort:0 iptablesResyncSeconds:5 iptablesForwardRules:true netConfPath:/etc/kube-flannel/net-conf.ison
setNodeNetworkUnavailable:true}
W0315 19:05:00.332497
                           1 client config.go:618] Neither --kubeconfig nor --master was specified. Using the
inClusterConfig. This might not work.
T0315 19:05:00 361865
                           1 kube.go:1391 Waiting 10m0s for node controller to sync
10315 19:05:00.361980
                           1 kube.go:461] Starting kube subnet manager
                           1 kube.go:482 Creating the node lease for IPv4. This is the n.Spec.PodCIDRs: [10.244.0.0/24]
T0315 19:05:00 370473
10315 19:05:00.370490
                           1 kube.go:482] Creating the node lease for IPv4. This is the n.Spec.PodCIDRs: [10.244.1.0/24]
T0315 19:05:00 370510
                           1 kube.go:4821 Creating the node lease for IPv4. This is the n.Spec.PodCIDRs: [10.244.2.0/24]
10315 19:05:01.362771
                           1 kube.go:146] Node controller sync successful
10315 19:05:01.362790
                           1 main.go:2291 Created subnet manager: Kubernetes Subnet Manager - xp02-ym21
10315 19:05:01.362794
                           1 main.go:232] Installing signal handlers
10315 19:05:01.362951
                           1 main.go:452] Found network config - Backend type: vxlan
10315 19:05:01.363354
                           1 match.go:210] Determining IP address of default interface
10315 19:05:01.363666
                           1 match.go: 2631 Using interface with name ens33 and address 172.16.0.90
10315 19:05:01.363689
                           1 match.go:285] Defaulting external address to interface address (172.16.0.90)
10315 19:05:01.363818
                           1 vxlan.go:1411 VXLAN config: VNI=1 Port=0 GBP=false Learning=false DirectRouting=false
10315 19:05:01.367882
                           1 kube.go:627] List of node(xp02-vm21) annotations: map[string]
string{"flannel.alpha.coreos.com/backend-data":"{\"VNI\":1.\"VtepMAC\":\"22:da:29:ff:7c:09\"}".
"flannel.alpha.coreos.com/backend-type":"vxlan", "flannel.alpha.coreos.com/kube-subnet-manager":"true",
"flannel.alpha.coreos.com/public-ip":"172.16.0.90", "kubeadm.alpha.kubernetes.io/cri-
socket": "unix:///var/run/containerd/containerd.sock". "node.alpha.kubernetes.io/ttl": "0". "volumes.kubernetes.io/controller-
managed-attach-detach": "true"}
10315 19:05:01.367988
                           1 vxlan.go:155] Setup flannel.1 mac address to 22:da:29:ff:7c:09 when flannel restarts
W0315 19:05:01.378785
                           1 main.go:505] no subnet found for key: FLANNEL SUBNET in file: /run/flannel/subnet.env
                           1 main.go:540] no subnet found for key: FLANNEL IPV6 SUBNET in file: /run/flannel/subnet.env
W0315 19:05:01.378801
10315 19:05:01.378813
                           1 iptables.go:64] Current network or subnet (10.244.0.0/16, 10.244.1.0/24) ic not
one (0.0.0.0/0, 0.0.0.0/0), trying to recycle old intables rules
10315 19:05:01.405058
                           1 iptables.go:74] Setting up masking rules
                           1 iptables.go:103] Setting up masking rules for
10315 19:05:01.407044
                           1 iptables.go:372] generated 7 rules
10315 19:05:01.408320
                           1 iptables.go:213] Changing def-
 19:05:01.409231
                           1 intables.go:2211 TD-C
```

Line-sorted doc with TF-IDF metric:

```
033 T0315 19:05:01.434308
                               1 iptables.go:365] bootstrap done
1 iptables.go:365] bootstrap done
035 10315 19:05:01.446828
                               1 iptables.go:365] bootstrap done
1 vxlan.go:1411 VXLAN config: VNI=1 Port=0 GBP=false Learning=false DirectRouting=false
028 T0315 19:05:01 414661
                               1 main.go:4001 Running backend.
010 10315 19:05:01.362794
                               1 main.go:2321 Installing signal handlers
    I0315 19:05:01.363666
                               1 match.go:2631 Using interface with name ens33 and address 172.16.0.90
019 W0315 19:05:01.378801
                               1 main.go:540] no subnet found for key: FLANNEL IPV6 SUBNET in file: /run/flannel/subnet.env
018 W0315 19:05:01.378785
                               1 main.go:505] no subnet found for key: FLANNEL SUBNET in file: /run/flannel/subnet.env
027 10315 19:05:01.414648
                               1 main.go:396] Wrote subnet file to /run/flannel/subnet.env
023 T0315 19:05:01.408320
                               1 iptables.go:372] generated 7 rules
1 iptables.go:372] generated 3 rules
032 T0315 19:05:01.425153
                               1 main.go:421] Waiting for all goroutines to exit
    10315 19:05:00.370510
                               1 kube.go:482] Creating the node lease for IPv4. This is the n.Spec.PodCIDRs: [10.244.2.0/24]
    T0315 19:05:00 370490
                               1 kube.go:482] Creating the node lease for IPv4. This is the n.Spec.PodCIDRs: [10.244.1.0/24]
005 10315 19:05:00.370473
                               1 kube.go:482] Creating the node lease for IPv4. This is the n.Spec.PodCIDRs: [10.244.0.0/24]
    10315 19:05:00.361865
                               1 kube.go:1391 Waiting 10m0s for node controller to sync
    10315 19:05:01.362771
                               1 kube.go:146] Node controller sync successful
    10315 19:05:00.361980
                               1 kube.go:461] Starting kube subnet manager
029 10315 19:05:01.415768
                               1 vxlan network.go:65] watching for new subnet leases
    T0315 19:05:01.362790
                               1 main.go:229] Created subnet manager: Kubernetes Subnet Manager - xp02-vm21
    10315 19:05:01.363689
                               1 match.go:285] Defaulting external address to interface address (172.16.0.90)
012 T0315 19:05:01.363354
                               1 match.go:210] Determining IP address of default interface
017 10315 19:05:01.367988
                               1 vxlan.go:155] Setup flannel.1 mac address to 22:da:29:ff:7c:09 when flannel restarts
011 T0315 19:05:01 362951
                               1 main.go:4521 Found network config - Backend type: vxlan
2511 10315 21:19:00.766758
                                1 iptables.go:503] Some iptables rules are missing; deleting and recreating rules
     I0315 21:18:55.725654
                                1 iptables.go:503] Some iptables rules are missing; deleting and recreating rules
1 iptables.go:503] Some iptables rules are missing; deleting and recreating rules
2507 10315 21:18:50.692843
                                1 iptables.go:503] Some iptables rules are missing; deleting and recreating rules
1 iptables.go:503] Some iptables rules are missing; deleting and recreating rules
2503 T0315 21:18:40.625697
                                1 iptables.go:503] Some iptables rules are missing; deleting and recreating rules
1 iptables.go:503] Some iptables rules are missing; deleting and ro-
2499 I0315 21:18:30.545976
                                1 iptables.go:503] Some iptables rules are missing; del
2515 I0315 21:19:10.843118
                                1 iptables.go:503] Some iptables rules are mic-
2497 T0315 21:18:25.514795
                                1 iptables.go:5031 Some iptables rules
2513 I0315 21:19:05.802291
                                1 iptables.go:5031 Some iptable
     T0315 21:19:36.018942
                                1 iptables.go:503] Some
               10-15 881928
                                1 iptables or "
```


We're almost ready to ask an LLM for help

```
1 iptables.go:365] bootstrap done
   10315 19:05:01.438309
                           1 iptables.go:365] bootstrap done
1 iptables.go:365] bootstrap done
1 vxlan.go:141 VXLAN config: VNI=1 Port=0 GBP=false Learning=false DirectRouting=false
1 main.go:400] Running backend.
010 10315 19:05:01.362794
                           1 main.go:232] Installing signal handlers
                           1 match.go:263] Using interface with name ens33 and address 172.16.0.90
013 T0315 19:05:01.363666
   W0315 19:05:01.378801
                           1 main.go:540] no subnet found for key: FLANNEL IPV6 SUBNET in file: /run/flannel/subnet.env
                           1 main.go:505] no subnet found for key: FLANNEL SUBNET in file: /run/flannel/subnet.env
   W0315 19:05:01.378785
1 main.go:396] Wrote subnet file to /run/flannel/subnet.env
```

- We used a TF-IDF metric to sort our log-file
- To create a diagnosis of the log file, leverage an LLM
 - Choose the top-n lines of the log-file (here: n=10)
 - Use those as part of a prompt, asking an LLM to describe the issue and propose a resolution

The Prompt (for GPT-4)

You are an IT operations engineer. Your task is to diagnose the issue described by an excerpt from a log file included between three backticks (```) and the file name below. The excerpt from the log file shows the most relevant log lines. Perform the following tasks one after the other:

- 1. Create a technical description of what this issue is in no more than 100 words. Be sure to keep technical details in the description (such as host names, IP addresses, interfaces, ...). Also consider the "syslog file name" to determine the host name.
- 2. Propose a resolution for the issue, composed of a single paragraph detailing your suggested next steps to fix the provided issue description. Be technical and specific.

```
File-name: kube-flannel-ds-xd5wp.log
```

```
1 iptables.go:365] bootstrap done
033 10315 19:05:01.434308
034 10315 19:05:01.438309
                               1 iptables.go:365] bootstrap done
035 10315 19:05:01.446828
                               1 iptables.go:365] bootstrap done
015 10315 19:05:01.363818
                               1 vxlan.go:141] VXLAN config: VNI=1 Port=0 GBP=false Learning=false DirectRouting=false
                               1 main.go:400] Running backend.
028 10315 19:05:01.414661
010 10315 19:05:01.362794
                               1 main.go:232] Installing signal handlers
                               1 match.go:263] Using interface with name ens33 and address 172.16.0.90
013 10315 19:05:01.363666
019 W0315 19:05:01.378801
                                 1 main.go:540] no subnet found for key: FLANNEL IPV6 SUBNET in file: /run/flannel/subnet.env
                                 1 main.go:505] no subnet found for key: FLANNEL_SUBNET in file: /run/flannel/subnet.env
018 W0315 19:05:01.378785
027 10315 19:05:01.414648
                               1 main.go:396] Wrote subnet file to /run/flannel/subnet.env
```

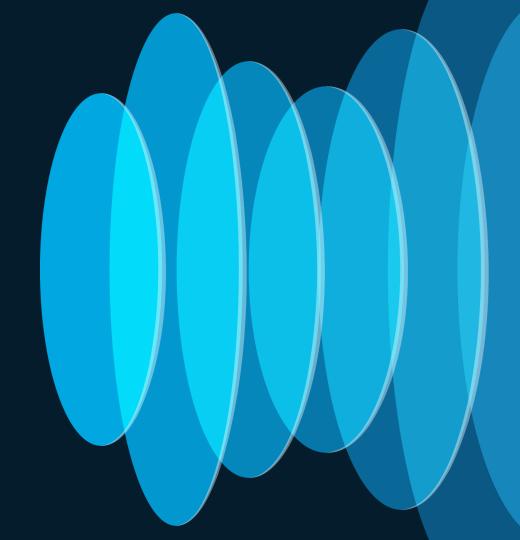

BRKNWT-2404

17

The Response

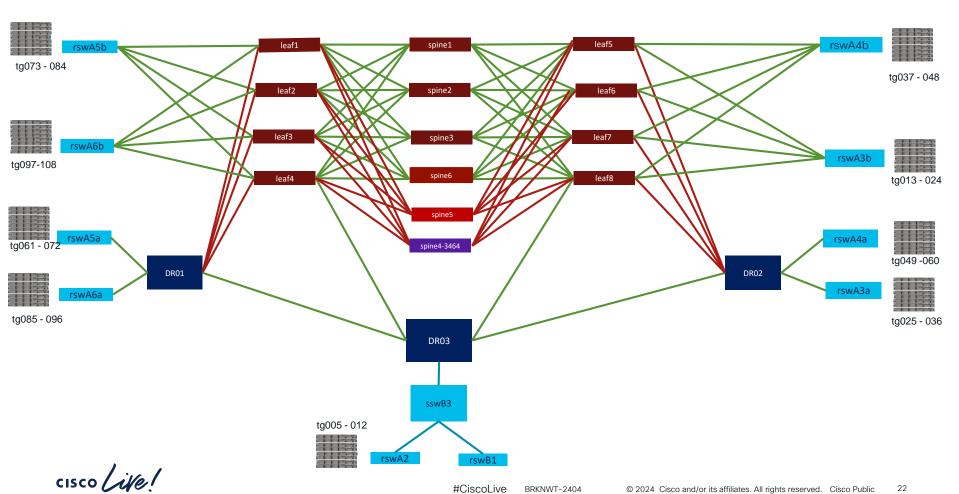
1. The issue presented in the log file `kube-flannel-ds-xd5wp.log` from a Kubernetes node pertains to the Flannel CNI (Container Network Interface) plugin, which is used for providing networking for pods. Specifically, the log entries indicate that Flannel has completed its initialization (`bootstrap done`) and is running the backend. It is using the network interface `ens33` with IP address `172.16.0.90`. However, it reports warnings that it could not find the required subnet configuration for both IPv4 (`FLANNEL_SUBNET`) and IPv6 (`FLANNEL_IPV6_SUBNET`) in the file `/run/flannel/subnet.env`, which is a critical part of the network setup for pods.

2. To resolve the issue, first ensure that Flannel is properly configured with the necessary subnet information. This typically involves setting the `FLANNEL_SUBNET` and `FLANNEL_IPV6_SUBNET` environment variables. You can do this by checking the Kubernetes ConfigMap for Flannel and ensuring it contains the correct subnet definitions. If the ConfigMap is correct, you may need to investigate why the Flannel daemon set is not able to write or read these keys to/from `/run/flannel/subnet.env`. Ensure the Flannel daemon has the proper permissions to access and modify this file. If the problem persists, consider restarting the Flannel pod (`kubectl delete pod kube-flannel-ds-xd5wp --namespace=kube-system`) to trigger a reconfiguration, and then check the logs again to see if the error is resolved.



The LLM "understands" logs of IT systems and can help us diagnose issues.

What about Model Driven Telemetry, i.e., timeseries from network devices?


Imagine...

You are an IT Ops engineer tasked with troubleshooting a network issue.

You have gathered streaming telemetry information and are now trying to draw insights from the data.

Example Data-Set: Model-Drive Telemetry Sensor Paths Collected

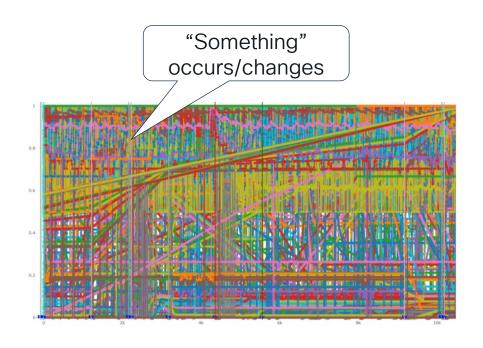
```
Cisco-IOS-XR-nto-misc-oper:memory-summary/nodes/node/summary * 1
Cisco-IOS-XR-wdsysmon-fd-oper:system-monitoring/cpu-utilization * 1
Cisco-IOS-XR-ipv6-io-oper:ipv6-io * 1
Cisco-IOS-XR-ipv4-io-oper:ipv4-network/nodes/node/statistics/traffic * 1
Cisco-IOS-XR-ip-tcp-oper:tcp * 1
Cisco-IOS-XR-fib-common-oper:fib-statistics * 1
Cisco-IOS-XR-ip-tcp-oper:tcp-connection * 1
Cisco-IOS-XR-ip-tcp-oper:tcp-nsr * 1
Cisco-IOS-XR-clns-isis-oper:isis/instances/instance/neighbors/neighbor * 1
Cisco-IOS-XR-clns-isis-oper:isis/instances/instance/interfaces/interface * 1
Cisco-IOS-XR-ip-bfd-oper:bfd/session-briefs * 1
Cisco-IOS-XR-ipv4-bgp-oper:bgp/instances/instance-instance-active/default-vrf/afs/af/af-process-info/global * 1
Cisco-IOS-XR-ip-bfd-oper:bfd/counters * 1
Cisco-IOS-XR-pfi-im-cmd-oper:interfaces/interface-briefs/interface-brief * 1
Cisco-IOS-XR-ip-bfd-oper:bfd/client-details/client-detail/brief * 1
Cisco-IOS-XR-ip-bfd-oper:bfd/summary * 1
Cisco-IOS-XR-pfi-im-cmd-oper:interfaces/interface-summary/interface-type * 1
Cisco-IOS-XR-clns-isis-oper:isis/instances/instance/topologies/topology/ipv4-routes/ipv4-route * 1
Cisco-IOS-XR-ipv4-bgp-oper:bgp/instances/instance-active/default-vrf/process-info * 1
Cisco-IOS-XR-infra-statsd-oper:infra-statistics/interfaces/interface[interface-name=Hu*] * 1
Cisco-IOS-XR-ip-iarm-v6-oper:ipv6arm/addresses/vrfs/vrf/interfaces * 1
Cisco-IOS-XR-ip-iarm-v4-oper:ipv4arm/addresses/vrfs/vrf/interfaces * 1
Cisco-IOS-XR-drivers-media-eth-oper:ethernet-interface/statistics/statistic * 1
Cisco-IOS-XR-pfi-im-cmd-oper:interfaces/interface-xr/interface * 1
```

Example Data-Set: Synthetic Events

Absolute Timestamp	Relative Timestamp	Synthetic Event	Device	Detail
1.558.249.381.658.610	0.000s	ixchariot_traffic		
1.558.249.387.826.110	6.168s	break_bfd	spine4-3464	eth1/25
1.558.250.581.677.300	1200.019s	shutdown_interface	leaf7	HundredGigE0/0/0/10
1.558.251.787.725.630	2406.067s	enable_bfd	spine4-3464	eth1/25
1.558.252.981.645.430	3599.987s	enable_interface	leaf7	HundredGigE0/0/0/10
1.558.254.187.737.670	4806.079s	break_bfd	spine4-3464	eth1/25
1.558.255.381.645.900	5999.987s	shutdown_interface	leaf7	HundredGigE0/0/0/10
1.558.256.587.759.050	7206.100s	enable_bfd	spine4-3464	eth1/25
1.558.257.781.742.200	8400.084s	enable_interface	leaf7	HundredGigE0/0/0/10
1.558.258.987.739.670	9606.081s	break_bfd	spine4-3464	eth1/25
1.558.260.181.642.780	10799.984s	shutdown_interface	leaf7	HundredGigE0/0/0/10
1.558.260.189.485.350	10807.827s	ixchariot_traffic_stopped		
1558260295	10913.341s	collect_telemetry		

Diagnosing the telemetry data

- Can we discover and diagnose the synthetic events solely by analyzing the data using an unsupervised method?
- Approach like what we did for diagnosing logs
 - Pre-processing: Clean the data
 - Detect change points
 - Diagnose a change point using an LLM
 - Too much data to fit into a context window: Choose relevant data for the change point
 - Leverage an LLM to diagnose the change point


Resulting Data For "Leaf7"

```
: import pandas as pd
   import traiage.utils.utils as utils
   # TODO ensure the selected dataset dir contains a merged.csv file.
   merged_data_fn, _ = datasets.get_input_data_file("merged.csv")
                                                                                                                          dataset dimensions: rows=1079, columns=7334
   df = pd.read csv(open(merged data fn, 'rb'))
   # show number of rows and columns - dimensionality
   shape = df.shape
   print("dataset dimensions: rows={}, columns={}".format(shape[0], shape[1]))
  # display a sample of the dataset, first 10 rows with first 10 columns for each row.
  utils.displayDataFrame(df.iloc[0:9,0:9])
  dataset dimensions: rows=1079, columns=7334
                    n0:Cisco-IOS-XR-drivers-media-eth-oper:ethernet-
                                                                           n0:Cisco-IOS-XR-drivers-media-eth-oper:ethernet-
                                                                                                                                   n0:Cisco-IOS-XR-drivers-media-eth-oper:ethernet-
                                                                                                                                                                                           n0:Cisco-IOS-XR-drivers-media-eth-oper:ethernet-
                                                                                                                                                                                                                                                  n0:Cisco-IOS-
  ts.V1
                    interface statistics statistic.csv:HundredGigE0/0/0/0:received-
                                                                           interface statistics statistic.csv:HundredGigE0/0/0/0:received-
                                                                                                                                  interface statistics statistic.csv:HundredGigE0/0/0/0:received-
                                                                                                                                                                                          interface statistics statistic.csv:HundredGigE0/0/0/0:received-
                                                                                                                                                                                                                                                  interface stati
                                                                           good-frames
                                                                                                                                   multicast-frames
                                                                                                                                                                                                                                                  total-frames
                    good-bytes
                                                                                                                                                                                           total-bytes
  1558249381.658611 513408648445952
                                                                           121428366854.500000
                                                                                                                                   70062.976587
                                                                                                                                                                                           513408648445952
                                                                                                                                                                                                                                                  121428366854
  1558249391.658611 513493882415104
                                                                           121439268000.000000
                                                                                                                                   70063.975488
                                                                                                                                                                                           513493882415104
                                                                                                                                                                                                                                                  121439268000
  1558249401.658611 513570679283712
                                                                           121449025040.250000
                                                                                                                                   70064.000000
                                                                                                                                                                                           513570679283712
                                                                                                                                                                                                                                                  121449025040
  1558249411.658611 513647466450944
                                                                           121458776629.500000
                                                                                                                                   70064.000000
                                                                                                                                                                                           513647466450944
                                                                                                                                                                                                                                                  121458776629
                                                                                                                                   70064.911685
                                                                                                                                                                                          513724222164992
  1558249421.658611 513724222164992
                                                                           121468531715.750000
                                                                                                                                                                                                                                                  121468531715.
  1558249431.658611 513800108363776
                                                                           121478179924.000000
                                                                                                                                   70065.000000
                                                                                                                                                                                           513800108363776
                                                                                                                                                                                                                                                  121478179924
  1558249441.658611 513876775303168
                                                                           121487920800.750000
                                                                                                                                   70065.909252
                                                                                                                                                                                          513876775303168
                                                                                                                                                                                                                                                  121487920800
  1558249451.658611 513952962519040
                                                                           121497604673,250000
                                                                                                                                   70066.908253
                                                                                                                                                                                           513952962519040
                                                                                                                                                                                                                                                  121497604673
  1558249461.658611 514032355700736
                                                                                                                                                                                          514032355700736
                                                                           121507688129.500000
                                                                                                                                   70067.000000
                                                                                                                                                                                                                                                  121507688129.
```


The "nature" of our data-set

- Time-series data
- High dimensional
 - High number of features
 - Variable number of available features
 - Over time
 - Over different devices
- Different in nature
 - Units
 - Behavior
 - Interpretation

Data Pre-Processing: Consolidate various data sources

Cisco-IOS-XR-infra-statsd-oper:infra-statistics interfaces interface latest interfaces-mib-counters.csv

Cisco-IOS-XR-infra-statsd-oper:infra-statistics_interfaces_interface_latest_protocols_protocol.csv

Cisco-IOS-XR-ip-tcp-oper:tcp-connection_nodes_node_brief-informations_brief-information.csv

Cisco-IOS-XR-ip-tcp-oper:tcp-connection_nodes_node_detail-informations_detail-information.csv

Cisco-IOS-XR-ip-tcp-oper:tcp-connection_nodes_node_extended-information_display-types_display-type_connection-id.csv

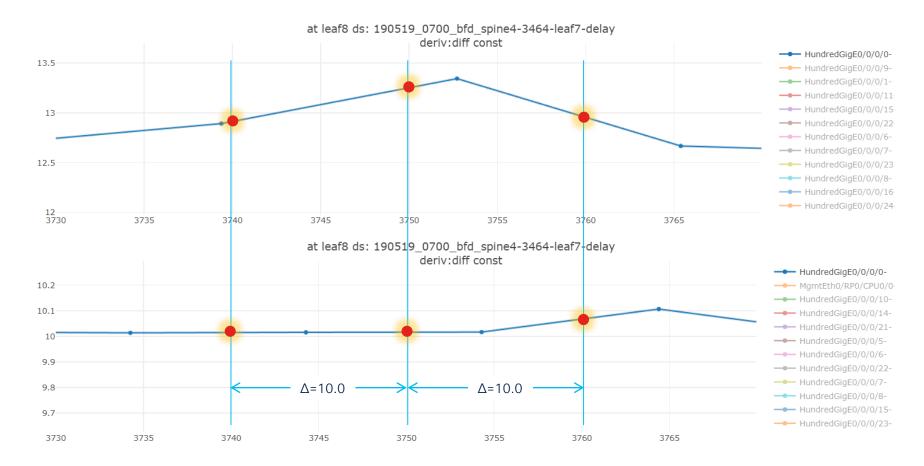
Cisco-IOS-XR-ip-tcp-oper:tcp-connection_nodes_node_statistics_clients_client.csv

Cisco-IOS-XR-ip-tcp-oper:tcp-connection_nodes_node_statistics_pcbs_pcb.csv

Cisco-IOS-XR-ip-tcp-oper:tcp-connection nodes node statistics summary.csv

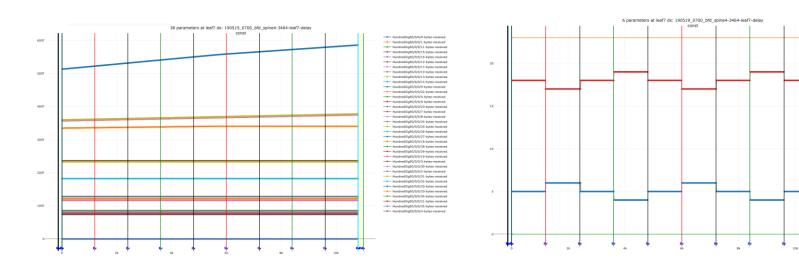
Cisco-IOS-XR-ip-tcp-oper:tcp-nsr nodes node client brief-clients brief-client.csv

Cisco-IOS-XR-ip-tcp-oper:tcp-nsr nodes node client detail-clients detail-client.csv


Cisco-IOS-XR-ip-tcp-oper:tcp-nsr_nodes_node_session-set_brief-sets_brief-set.csv

Cisco-IOS-XR-ip-tcp-oper:tcp-nsr_nodes_node_session-set_detail-sets_detail-sets_

Cisco-IOS-XR-ip-tcp-oper:tcp-nsr_nodes_node_statistics_

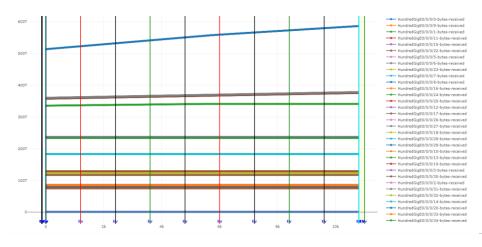


Data Pre-Processing: Make heterogenous timeseries comparable

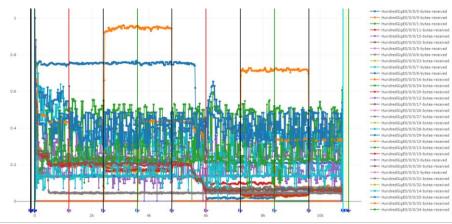
Interface bytes received

-- :-session-state up-count

Data Pre-Processing


$$x' = rac{x - \min(x)}{\max(x) - \min(x)}$$

$$x'=rac{x-ar{x}}{\sigma}$$


- Scaling methods include Min-Max and Z-Normalizing. By scaling the data, it allows every univariate time-series to evolve within comparable ranges, which can be necessary for processing method later on.
- Smoothing like the exponential moving average, in order to focus on the baseline of the data only and remove background variance, which processing methods aren't interested in.
- **Differentiating** the incremental time-series is a solution to compare the incremental and non incremental data. This goes hand in hand with the scaling to be able to compare data of different types and ranges.

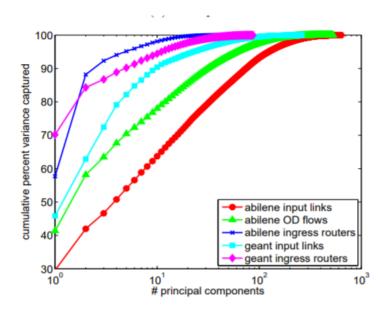
Pre-Processing: Example

Raw Data

After Scaling and Differentiating

Pre-Processed Data for "Leaf 7"

```
# TODO ensure the selected dataset dir contains a preprocessed_offline.csv file.
 preprocessed_data_fn, _ = datasets.get_input_data_file("preprocessed_offline.csv")
 df = pd.read csv(open(preprocessed data fn, 'rb'))
 # show number of rows and columns - dimensionality
 print("dataset dimensions: rows={}, columns={}".format(shape[0], shape[1]))
 # display a sample of the dataset, first 10 rows with first 10 columns for each row.
 utils.displayDataFrame(df.iloc[0:9,0:9])
dataset dimensions: rows=1079, columns=7334
                   n0:Cisco-IOS-XR-drivers-media-eth-oper:ethernet-
                                                                             n0:Cisco-IOS-XR-drivers-media-eth-oper:ethernet-
                                                                                                                                        n0:Cisco-IOS-XR-drivers-media-eth-oper:ethernet-
                                                                                                                                                                                                   n0:Cisco-IOS-XR-drivers-media-eth-oper:ethernet-
                                                                                                                                                                                                                                                             n0:Cisco-IOS-
                   interface_statistics_statistic.csv:HundredGigE0/0/0/0:received-
                                                                             interface_statistics_statistic.csv:HundredGigE0/0/0/0:received-
                                                                                                                                       interface_statistics_statistic.csv:HundredGigE0/0/0/0:received- interface_statistics_statistic.csv:HundredGigE0/0/0/0:received-
                                                                                                                                                                                                                                                             interface stati
ts
                   good-bytes
                                                                             good-frames
                                                                                                                                        multicast-frames
                                                                                                                                                                                                   total-bytes
                                                                                                                                                                                                                                                             total-frames
1558249381.658611 0.681327
                                                                             0.687531
                                                                                                                                       0.504115
                                                                                                                                                                                                   0.681327
                                                                                                                                                                                                                                                             0.687531
1558249391.658611 0.681327
                                                                             0.687531
                                                                                                                                       0.504115
                                                                                                                                                                                                   0.681327
                                                                                                                                                                                                                                                             0.687531
                                                                             0.648323
1558249401.658611 0.644663
                                                                                                                                       0.258243
                                                                                                                                                                                                   0.644663
                                                                                                                                                                                                                                                             0.648323
                                                                                                                                       0.129121
                                                                                                                                                                                                                                                             0.628532
1558249411.658611 0.626289
                                                                             0.628532
                                                                                                                                                                                                   0.626289
                                                                             0.618757
                                                                                                                                       0.294610
                                                                                                                                                                                                   0.616965
                                                                                                                                                                                                                                                             0.618757
1558249421.658611 0.616965
1558249431.658611 0.608525
                                                                             0.610206
                                                                                                                                       0.169590
                                                                                                                                                                                                   0.608525
                                                                                                                                                                                                                                                             0.610206
                                                                             0.609107
                                                                                                                                       0.314231
                                                                                                                                                                                                   0.607697
                                                                                                                                                                                                                                                             0.609107
1558249441.658611 0.607697
1558249451.658611 0.605199
                                                                             0.606604
                                                                                                                                       0.409198
                                                                                                                                                                                                   0.605199
                                                                                                                                                                                                                                                             0.606604
1558249461.658611 0.617882
                                                                             0.619045
                                                                                                                                        0.227750
                                                                                                                                                                                                   0.617882
                                                                                                                                                                                                                                                             0.619045
```



Dealing With High Dimensionality

#CiscoLive

BRKNWT-2404

- We are given a collection of N high dimensional objects x₁, x₂, ... x_n
- How can we get a feel for how these objects are arranged in the data space? How can we visualize very high-dimensional data?
- Example methods:
 - PCA
 - t-SNE
 - UMAP

"Sensitivity of PCA for Traffic Anomaly Detection"

Haakon Ringberg, Augustin Soule, Jennifer Rexford, Christophe Diot

https://ics.forth.gr/netlab/mobile/Bibliography/LoadBalancing/LB/PCA

_Anomaly_Deytection.pdf

t-Stochastic Neighbor Embedding (t-SNE)

t-SNF Idea

Build a map in which distances between points reflect similarities in the data:

Model each high-dimensional object by a 2- or 3-dimensional point in such a way, that similar objects are modeled by nearby points and dissimilar objects are modeled by distant points with high probability Journal of Machine Learning Research 9 (2008) 2579-2605

Submitted 5/08: Revised 9/08: Published 11/08

Visualizing Data using t-SNE

Laurens van der Maaten

LVDMAATEN@GMAIL.COM

TiCC

Tilburg University

P.O. Box 90153, 5000 LE Tilburg, The Netherlands

Geoffrey Hinton

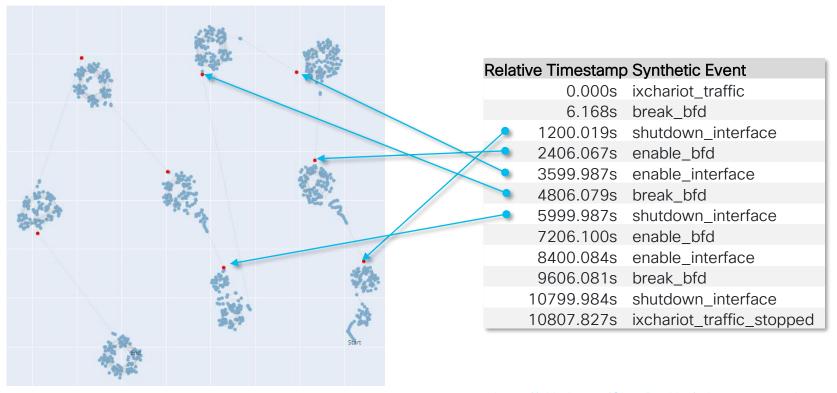
HINTON@CS.TORONTO.EDU

Department of Computer Science University of Toronto

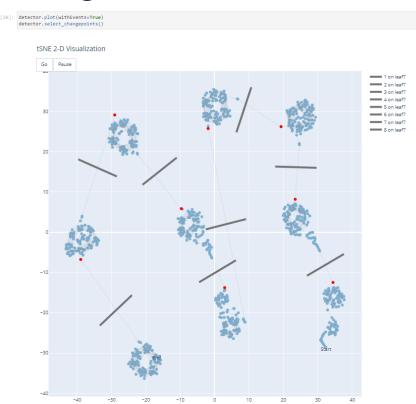
6 King's College Road, M5S 3G4 Toronto, ON, Canada

Editor: Yoshua Bengio

Abstract

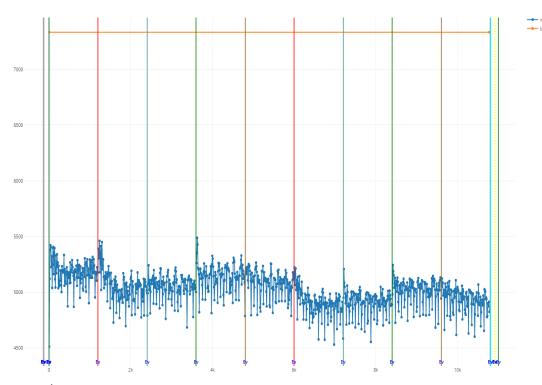

We present a new technique called "t-SNE" that visualizes high-dimensional data by giving each datapoint a location in a two or three-dimensional map. The technique is a variation of Stochastic Neighbor Embedding (Hinton and Roweis, 2002) that is much easier to optimize, and produces significantly better visualizations by reducing the tendency to crowd points together in the center of the map. t-SNE is better than existing techniques at creating a single map that reveals structure at many different scales. This is particularly important for high-dimensional data that lie on several different, but related, low-dimensional manifolds, such as images of objects from multiple classes seen from multiple viewpoints. For visualizing the structure of very large data sets, we show how t-SNE can use random walks on neighborhood graphs to allow the implicit structure of all of the data to influence the way in which a subset of the data is displayed. We illustrate the performance of t-SNE on a wide variety of data sets and compare it with many other non-parametric visualization techniques, including Sammon mapping, Isomap, and Locally Linear Embedding. The visualizations produced by t-SNE are significantly better than those produced by the other techniques on almost all of the data sets.

Keywords: visualization, dimensionality reduction, manifold learning, embedding algorithms, multidimensional scaling


http://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf

t-SNE Visualization of our Data Set

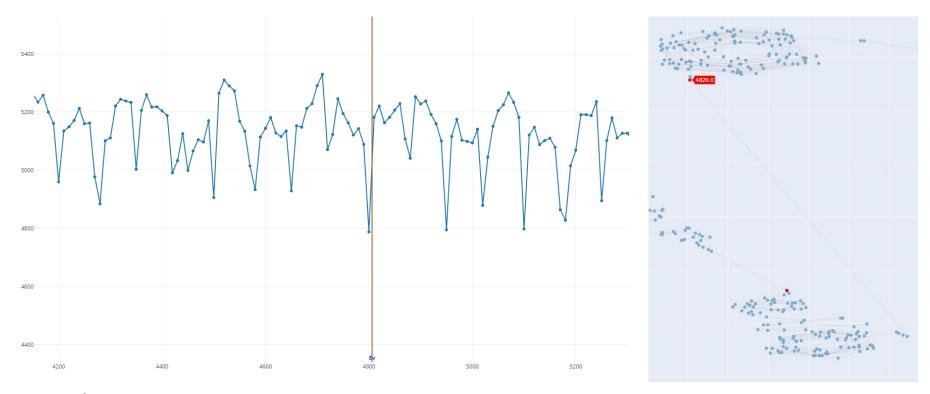
Transitions between clusters describe state changes: DBSCAN to detect clusters



DBSCAN original paper:

Ester, Martin; Kriegel, Hans-Peter; Sander, Jörg; Xu, Xiaowei (1996). Simoudis, Evangelos; Han, Jiawei; Fayyad, Usama M. (eds.). A density-based algorithm for discovering clusters in large spatial databases with noise. Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD-96). AAAI Press. pp. 226–231. CiteSeerX 10.1.1.121.9220. ISBN 1-57735-004-9.

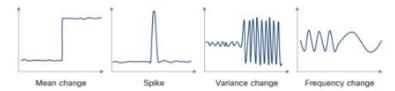
Which features are the most descriptive for a changepoint?



Many features change all the time.

"Change" isn't sufficient as a filtering criteria.

cisco Life!


Change-Point t=4820: Number of Changed features between timestamps

Which features are the most descriptive for a changepoint?

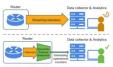
Combine

• Change metric (looking for steps, spikes, changes in variance)

- Estimation of importance of features based on approximation of domain knowledge
 - "TF-IDF style" ranking of features based on the importance of tokens/substrings of their name (i.e., the sensor path)

Understanding Semantics in Feature Selection for Fault Diagnosis in Network Telemetry Data

École polytechnique Paris, France thomas.feltin@polytechnique.edu


> Cisco Systems Cologne, Germany

Juan Antonio Cordero Fuertes École polytechnique Paris, France iuan-antonio coredro-fuertes@polytechnique.edu

> Thomas Heide Clauser École polstechnique Paris, France thomas.clausen@polytechnique.edu

Abstract—Expert systems for fault diagnosis are computation ally expensive to build and maintain, and lack scalability an nherent adaptability to unknown events or modifications in th of the monitored system. While data-driven feature se ction mechanisms can facilitate diagnosis without the hardship emantic information contained in the feature names to produc his study extends a cross entropy based optimization method t chitecture is introduced to evaluate the benefits of semanti nalysis, and demonstrate the performance and robustness of guage. The results illustrate the interest of such a complemer meta-data analysis for data-driven fault diagnosis, and high

Fault diagnosis, i.e., identifying the root cause of an event, has been studied in communication networks, manufacturing, and domain-dependent, expert systems also lack the ability to maintenance of mechanical systems, transportation, and soft- adapt to new, unseen data [1]. ware engineering. By mimicking processes of human reasoning, expert or rule-based systems have proven to be useful avoid the cost of expert systems conception and main for fault diagnosis rely on the definition of a state graph, diagnose events with limited domain knowledge. Insight about representing the known and unknown states of the system, with the inner structure of the feature set (semantics, relations defined transitions, depending on the available features [2]. relative importance) may overcome the absence or scarcenes Typical methods include probabilistic automata and Petri nets of explicit domain knowledge. Extracting and integrating [3], [4]. However, such fault diagnosis systems present severe that insight about inner structure and relationships within scalability and adaptability issues. They require an extensive the feature set is thus a major challenge for improving the modeling stage, with full knowledge of the fault behavior, performance of fault diagnosis systems which does not scale in large, relatively complex systems. One way to provide a data-driven diagnosis is distilling

here the dimension of the data changes with the network topology, telemetry data is often heterogeneous and of varying and high dimension, making it difficult to design a system which covers the entire fault behavior. Graph based expert systems also imply high computational costs in the diagnosiprocess when the dimension increases [5]. Being hand-crafted

In this context, robust data-driven approaches allow to (i in-depth diagnosis [1]. Most efforts of expert systems and (ii) leverage high dimensional telemetry data to robustly

In applications such as IoT, where a variety of technologies set of features that are of operational importance. Selecting and sensors interact with each other, or in network telemetry, original features can be a simple way to assist fault diagnosis

T. Feltin, J. A. C. Fuertes, F. Brockners and T. H. Clausen, "Understanding Semantics in Feature Selection for Fault Diagnosis in Network Telemetry Data", NOMS 2023 - 2023 IEEE/IFIP Network Operations and Management Symposium

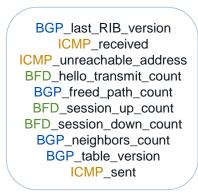
Leveraging the semantics of the sensor path

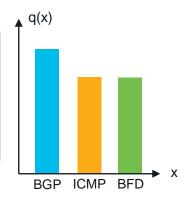
Importance metric based on TF-IDF leveraging token distributions

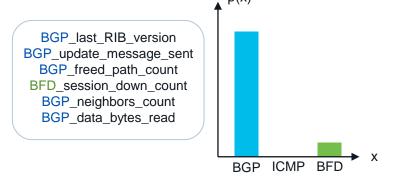
The **importance** of a feature is approximated by its **rareness** in the feature set Rare tokens often describe aggregated or summary information

tcp_connection_statistics:HundredGigE0/0/0/1:bytes-sent

Frequent tokens: many references to these tokens in the dataset, low importance


interfaces_interface-summary::interface-counts_admin-down-interface-count


Rare tokens: few references to these tokens in the dataset, high importance



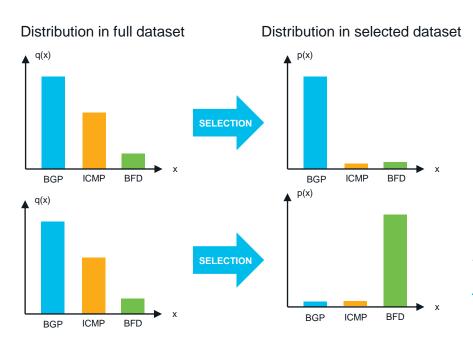
Quantifying importance in a token distribution

(1) First problem: Specificity

"anything could be impacted by the change"

Entropy:
$$H(q) = 0.47$$

"something has happened which concerns BGP"


Entropy:
$$H(p) = 0.22$$

Entropy describes a degree of focus of a selection

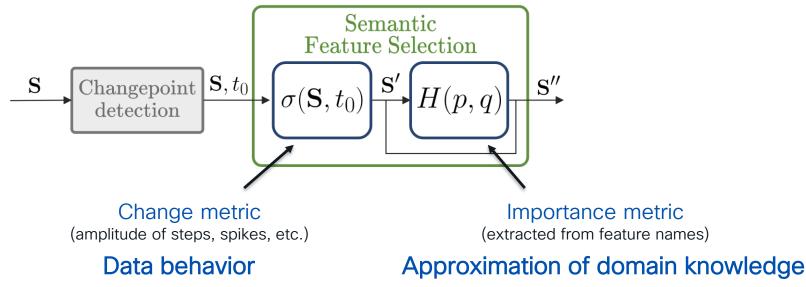
Quantifying importance in a token distribution

(2) Second Problem: Comparative importance of features

Cross-Entropy H(p,q)

(relative entropy compared to reference)

H(p,q) **high** because the selection is focused on **BGP** (which was **frequent** in the original set)

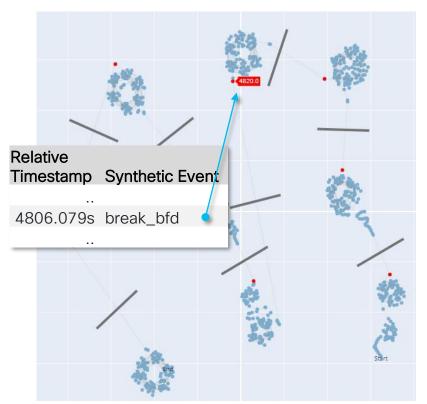

→ favors focused selections

H(p,q) even higher because the selection is focused on BFD (which was rare in the original set)

→ favors selections of rare/important sensor paths

Semantic feature selection for fault diagnosis

We present operators with the most meaningful counters among those that change


Semantic feature selection for fault diagnosis

Definition of an optimization score, two main components:

- 1. The change metric (looking for steps, spikes, changes in variance)
 Data-driven, based only on data behavior
- 2. The cross-entropy between original distribution and selected distribution Estimation of importance of features based on approximation of domain knowledge

$$\mathcal{L}(\mathcal{S},p,q) = \left(1 - e^{-\frac{|\mathcal{S}|}{\alpha}}\right) \sum_{k=1}^{K} H\left(p_k,q_k\right) \frac{1}{|\mathcal{S}|} \sum_{i=1}^{|\mathcal{S}|} \sigma_i \qquad \text{(α acts as verbosity parameter)}$$
 Regularization (2) Feature importance amplitude

Semantic Feature selection: Top 5 Features

- Cisco-IOS-XR-ip-bfd-oper:bfd_counters_packetcounters_packet-counter.csv:bfd-mgmt-pkt-display-typenone:HundredGigE0/0/0/16:0/0/CPU0:hello-receive-count CHANGE: 1.0
- Cisco-IOS-XR-ip-bfd-oper:bfd_session-briefs_session-brief.csv:172.31.14.48:HundredGigE0/0/0/16:0/0/CPU0:0/0/CPU0:ip-single-hop:status-brief-information__async-interval-multiplier__negotiated-local-transmit-interval CHANGE: 1667000.0
- Cisco-IOS-XR-ip-bfd-oper:bfd_session-briefs_session-brief.csv:172.31.14.48:HundredGigE0/0/0/16:0/0/CPU0:0/0/CPU
 0:ip-single-hop:status-brief-information__async-interval-multiplier__negotiated-remote-transmit-interval
 CHANGE: 1667000.0
- Cisco-IOS-XR-ip-bfd-oper:bfd_summary.csv:::session-state__down-count
 CHANGE: 1.0
- Cisco-IOS-XR-ip-bfd-oper:bfd_summary.csv:::session-state__up-count

CHANGE: -1.0

See also: https://github.com/CiscoDevNet/telemetry-experiments/blob/main/highlevel-pipelines/mdt_diagnosis_pipeline.ipynb

Ready to ask an LLM for a Diagnosis: Prompt for our example

You are a networking expert.

You are diagnosing a network issue based on telemetry information received from a Cisco router running IOS-XR 7.3.1.

Below, in the "List of sensor paths" section you find a list of YANG sensor path counters which have changed the most while the issue occurred.

Cisco-IOS-XR-ip-bfd-oper:bfd_summary.csv:::session-state_up-count CHANGE: -1.0

Each line shows the name of the sensor path counter and the absolute amount that the sensor path counter has changed separated by the word CHANGE.

The sensor path counters are descriptive of the issue.

Perform the following two steps one after the other:

- 1. First, create a 'description', explain what is the issue with this router in a single paragraph. Be technical and specific.
- 2. Second, create a 'resolution', detailing your suggested next steps to fix the issue in a single paragraph. Be technical and specific.

List of sensor paths:

Cisco-IOS-XR-ip-bfd-oper:bfd_counters_packet-counters_packet-counter.csv:bfd-mgmt-pkt-display-type-none:HundredGigE0/0/0/16:0/0/CPU0:hello-receive-count CHANGE: 1.0
Cisco-IOS-XR-ip-bfd-oper:bfd_session-briefs_session-brief.csv:172.31.14.48:HundredGigE0/0/0/16:0/0/CPU0:0/0/CPU0:ip-single-hop:status-brief-information__async-interval-multiplier__negotiated-local-transmit-interval CHANGE: 1667000.0
Cisco-IOS-XR-ip-bfd-oper:bfd_session-briefs_session-brief.csv:172.31.14.48:HundredGigE0/0/0/16:0/0/CPU0:0/0/CPU0:ip-single-hop:status-brief-information__async-interval-multiplier__negotiated-remote-transmit-interval CHANGE: 1667000.0
Cisco-IOS-XR-ip-bfd-oper:bfd_summary.csv:::session-state__down-count CHANGE: 1.0

Example: LLM Diagnosis (1/2): Issue Description

Description:

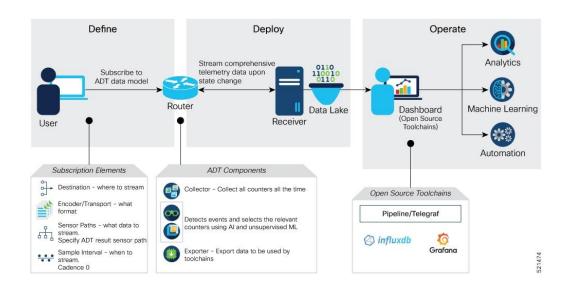
The telemetry data from the Cisco router indicates an issue with Bidirectional Forwarding Detection (BFD) on the interface HundredGigE0/0/0/16. BFD is a lowoverhead, short-duration method for detecting failures in the path between adjacent forwarding engines, including the interfaces, data links, and forwarding planes. The 'hello-receive-count' for BFD has incremented by 1, suggesting that a BFD control packet has been received, yet the 'session-state down-count' has increased by 1 while the `session-state_up-count` has decreased by 1, indicating a BFD session went down and did not come back up. Additionally, there has been a significant change in both the local and remote transmit interval settings, as indicated by the 'negotiated-local-transmit-interval' and 'negotiated-remotetransmit-interval` changing by 1,667,000 microseconds each. This drastic change suggests a renegotiation of BFD parameters which could be due to link flapping, misconfiguration, or an issue with the remote peer.

Example: LLM Diagnosis (2/2): Proposed Resolution

Resolution:

To resolve the issue, first, check the physical layer and ensure that the interface HundredGigE0/0/0/16 is stable without any flapping or physical errors. Review the BFD configuration on both ends of the session to ensure they are compatible and the intervals are not set too aggressively for the network's performance characteristics. Check the system logs and BFD event history for any indication of why the session went down. It is also advisable to check the CPU and memory usage of the device to ensure it is not being overloaded, as this could cause processing delays leading to BFD session drops. If the issue persists, perform a detailed packet capture on the interface to analyze BFD packet exchanges and identify if there are any irregularities or malformations in the packets. If necessary, contact Cisco support for further assistance, especially if there is suspicion of a bug in the IOS-XR version running on the router.

Interested in trying things yourself?


https://github.com/CiscoDevNet/telemetry-experiments

#CiscoLive

Side note: Al Driven Telemetry – for Streaming Telemetry

- Introduced with IOS-XR
 7.3.1
- Automatically select sensor paths, detect changepoints and on detecting a changepoint export the set of sensor paths that describe the change the best.

https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k-r7-3/telemetry/configuration/guide/b-telemetry-cg-asr9000-73x/Aldriven-telemetry.html

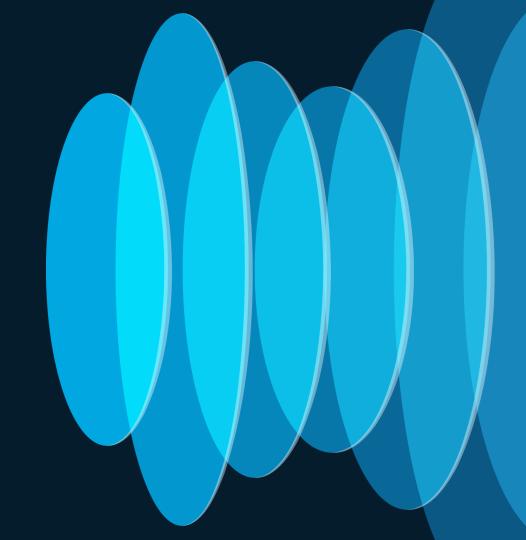
ADT example

Router#show adt events

Sample ADT Event Output

```
"node id str": "PE4",
  "subscription id str": "app 1887 75f00000001",
  "encoding path": "Cisco-IOS-XR-adt-oper:adt/adt-output",
  "collection id": "9569581",
  "collection start time": "1607525488535",
  "msg timestamp": "1607525488556",
  "data json": [
      "timestamp": "1607525488552",
     "keys": [],
     "content": {
        "adt-event": [
            "event-id": 123,
            "change-description": "Traffic",
            "timestamp": "1607431905419",
            "change": [
                "sensor-path": "Cisco-IOS-XR-infra-statsd-oper:infra-
statistics/interfaces/interface/latest/generic-counters/bytes-received",
                "sensor-path-tags": "interface-
name=GigabitEthernet0/3/0/19",
                "data": [
                    "value": {
                      "value-type": 8,
                      "val-counter64": "62808023132655"
                    "timestamp": "1607431545418"
```

```
"value": {
                    "value-type": 8,
                    "val-counter64": "62869633436614"
                  "timestamp": "1607432235421"
                  "value": {
                    "value-type": 8,
                    "val-counter64": "62872314602090"
                  "timestamp": "1607432265421"
"collection end time": "1607525488556"
```



An LLM like GPT-4 "knows" IT and networking and can interpret different types of telemetry information.

Al for "open world, cross-domain insights"

The "TRAIAGE" Experiment

"Why doesn't the Catalogue of my Webshop respond?"

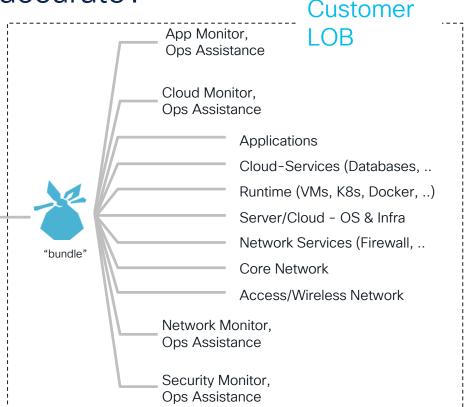
Traditional Scenario

Customer/Partner IT Assistance Center

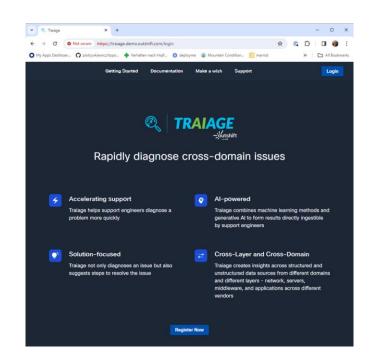
1st line Support Engineer

- Explore "bundle" that describes the issue and consult backend systems for more info
- · Form initial diagnosis and dig further
- Domain-specific monitoring and expert systems assist with initial diagnosis

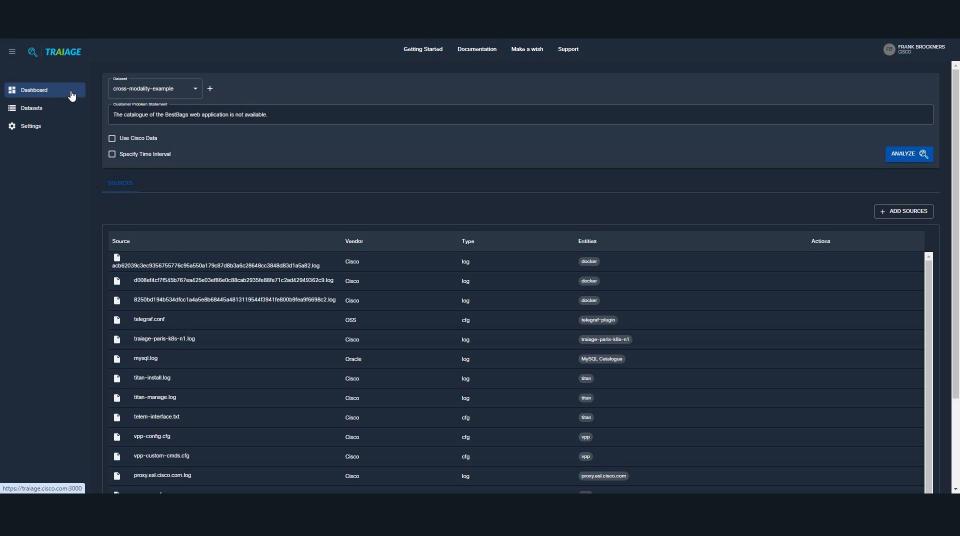
Can Al help the IT engineer with a rapid, triage-style diagnosis that is directionally accurate?


Customer/Partner IT Assistance Center

"Delegate" the task to create an initial diagnosis to a "virtual triage officer"



- Analyze information sources (schema-less, multi-vendor)
- Identify entities, create hypothesis
- Determine dependencies between entities, refine hypothesis
- · Hint at potential root cause



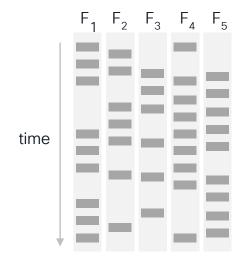
Al for Insights: Experimental Project TRAIAGE

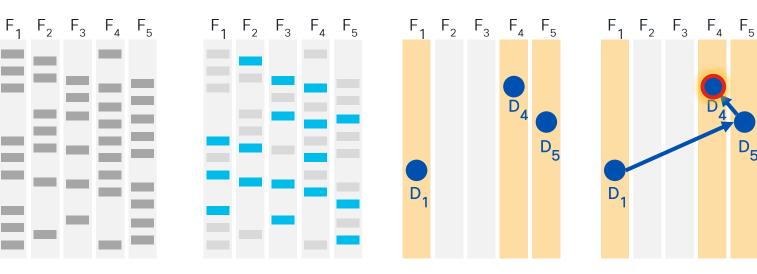
- Rapid Response and Decision Support System (DSS)
 have historically been built using expert systems, that
 are limited to "known cases and scenarios" of the
 builder and are expensive to maintain and expand.
- Artificial Intelligence can derive semantic dependencies dynamically and automatically.
- TRAIAGE infers relationships and dependencies from the data and arrives at insights, saving time and manual expert resources.
- Using Cisco data sources and purpose-trained models, TRAIAGE derives directionally accurate insights from structured and unstructured data.

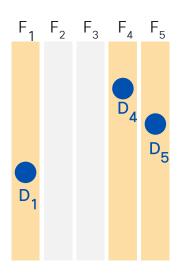
Processing Approach

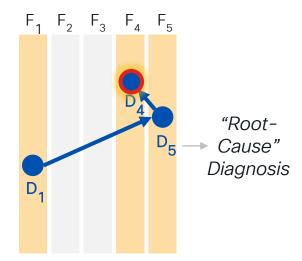
Files Bundle

RELEVANCY


Which data (per file) is most information?


IMPORTANCE


Does the file describe an issue?


DEPENDENCY

How do issues relate to each other?

TRAIAGE Approach

- Information retrieval from files in bundle
 - (for data w/o unknown schema): Combination of statistical and custom embeddings
 - (data w/ known schema): ELT platform loaders
- System of agents modeled as a series of small independent steps
 - Chain-of-Thought/ReAct-style reasoning
 - Task specific agents grouped into voting ensembles
 - Programmatically defined pipelines to achieve stable, repeatable pipelines
- Cisco data sources to refine vanilla LLM responses
- Optimized system model using integrated benchmarking and RLHF

A glimpse at the future?! LLMs can enable a paradigm shift in machine reasoning

Deductive

Fit the data to a human-defined schema Upfront definition of structure and semantics

Closed World; Limited domain Customized to use-case and deployment

Incremental extension of Ontologies

deterministic

Inductive

Derive the schema from data using GenAl Natural language query of unstructured data

Open world

Generically applicable

Exponential growth of corpus ("world data")

probabilistic

Do you want more?

BRKETI-2397 "Can we develop faster with CoPilot, ChatGPT & Co"?

Tuesday, June 4 - 2:30pm, L2, Room Mandalay Bay I

GenAl Solutions for the Enterprise

Explore the latest advancements in driving secure, private, and trustworthy GenAl adoption in the enterprise

Monday June 3 | 11:00 am

START BRKETI-1005

An Introduction to GenAl Technologies & Solutions

Monday June 3 | 1:00 pm

CENETI-1001

Is Your Organization Al-Ready? How to Deploy and Manage Al-Powered Technologies Rapidly and Safely

Monday June 3 | 3:15 pm

ITLBRK-1113

Strategies for Safer, Faster Deployment of GenAl Apps & Services at Scale

Tuesday June 4 | 2:30 pm

BRKETI-2397

Can We Develop Faster with ChatGPT, CoPilot, and Co?

Wednesday June 5 | 11:00 am

PSOETI-2000

Turbocharge the delivery of secure, compliant, and responsible Generative AI capabilities across your organization -

Wednesday June 5 | 3:00 pm

DEVWKS-3003

Motific: Accelerating Delivery of Trustworthy GenAl Capabilities Across Your Organization

Thursday June 6 | 9:30 am

BRKETI-2010

Beyond the Noise: Harnessing Generative Al for Telemetry Data

FINISH

Complete Your Session Evaluations

Complete a minimum of 4 session surveys and the Overall Event Survey to be entered in a drawing to win 1 of 5 full conference passes to Cisco Live 2025.

Earn 100 points per survey completed and compete on the Cisco Live Challenge leaderboard.

Level up and earn exclusive prizes!

Complete your surveys in the Cisco Live mobile app.

Continue your education

- Visit the Cisco Showcase for related demos
- Book your one-on-one Meet the Engineer meeting
- Attend the interactive education with DevNet, Capture the Flag, and Walk-in Labs
- Visit the On-Demand Library for more sessions at www.CiscoLive.com/on-demand

Contact me at fbrockne@cisco.com

Thank you

