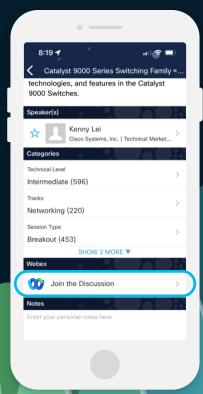
Optical Networking Fundamentals

Kent Dailey and Brad Riapolov BRKOPT-1007

Cisco Webex App

Questions?

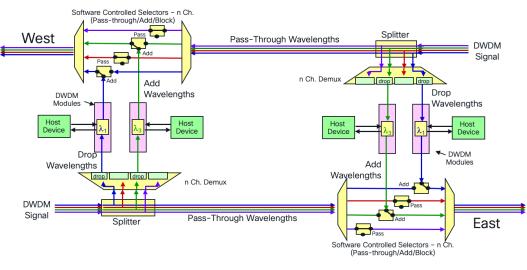

Use Cisco Webex App to chat with the speaker after the session

How

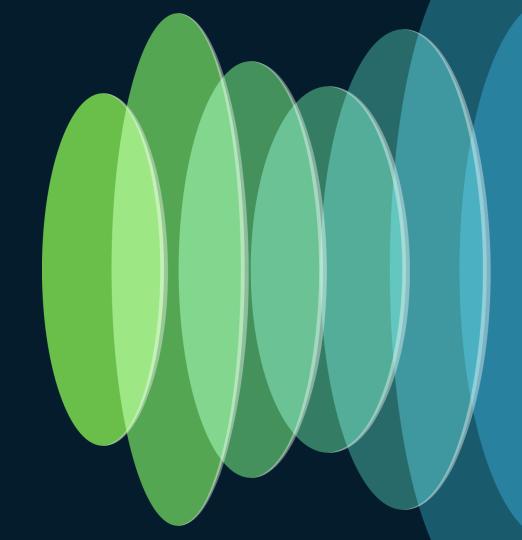

- 1 Find this session in the Cisco Live Mobile App
- 2 Click "Join the Discussion"
- 3 Install the Webex App or go directly to the Webex space
- 4 Enter messages/questions in the Webex space

Webex spaces will be moderated by the speaker until June 7, 2024.

https://ciscolive.ciscoevents.com/ciscolivebot/#BRKOPT-1007

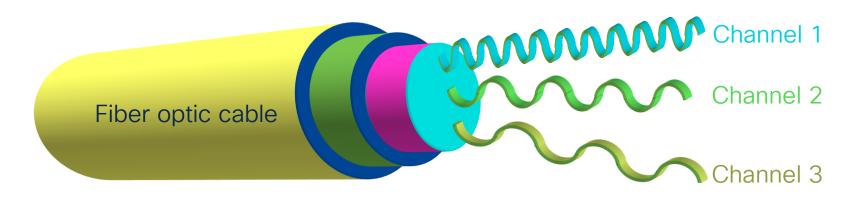


- Introduction
- What is DWDM?
- Optical Fiber Crash Program
- DWDM Components
- DWDM in Routers
- Conclusion


BRKOPT-1007

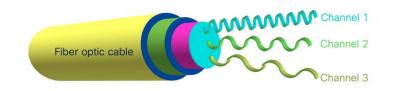
Traditional IP Engineer's view of Optical Networking

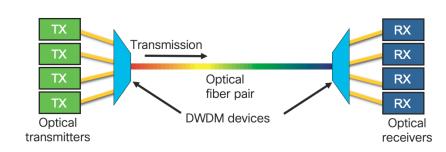
- Grey optics connect buildings/floors together, a mystery beyond
- Layer 1 demands a different skillset from Ethernet
- Fiber optic technology has a steep learning curve
- Traditional Engineers understand IP, not Transport, hard to find both skillsets
- Fiber optic networks are costly


What is DWDM

What is WDM - Wavelength Division Multiplexing

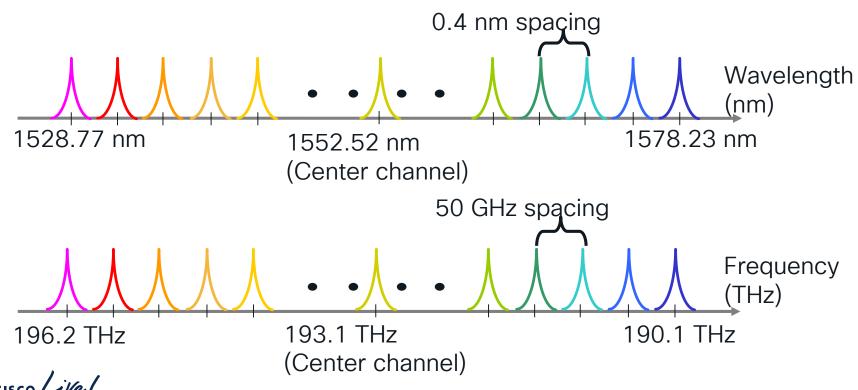
Optical (light) signals of different wavelengths do not interfere with each other on a fiber


Each wavelength represents an independent optical channel

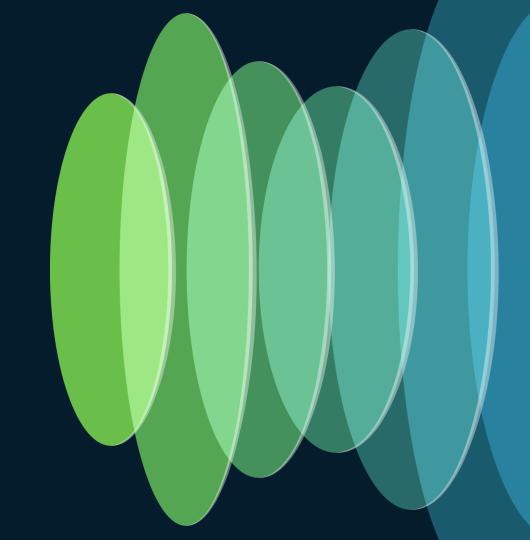


WDM is Agnostic

- Protocol Agnostic—Any-Rate
 Ethernet, TDM, Fiber Channel, etc.
- Bit-Rate Agnostic—Each
 Wavelength can be different bit-rates
- Allows Infrastructure Evolution to meet your needs – i.e. Future Rates

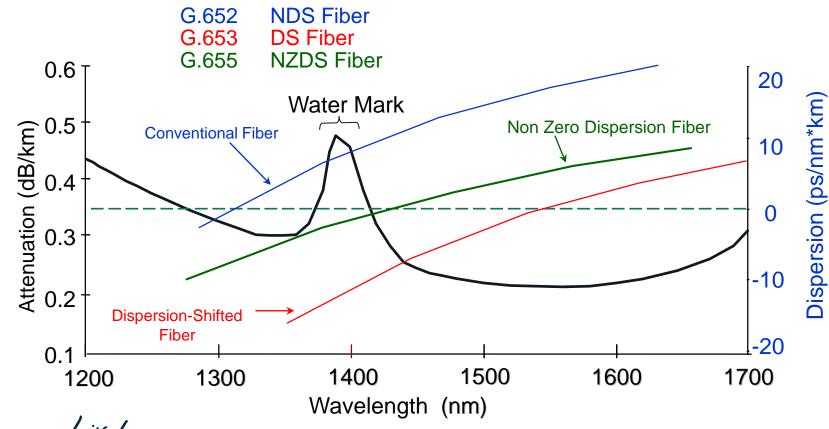

xWDM Channel Overview

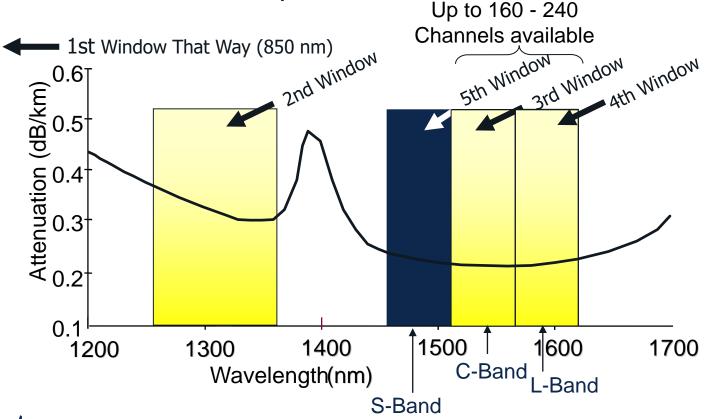
	WDM	CWDM	DWDM (C-Band)
# of Wavelengths	Typically 2	Typically 8	Typically 40/80/96- channels and beyond with Flex
Typical Wavelengths	1310nm and 1550nm	1471nm, 1491nm 1591nm, 1611nm	1528.77nm 1566.72nm
Channel Spacing	N/A	20nm	100GHz/50GHz 0.8nm/0.4nm and lower Flex Options as well
Applicable Standards	N/A	ITU-T G.694.2 18 Wavelengths are incl. in Standard	ITU-T G.692


ITU-T Grid

ITU wavelengths = lambdas = channels centered around 1550 nm (193 THz)

BRKOPT-1007


Optical Fiber Crash Program

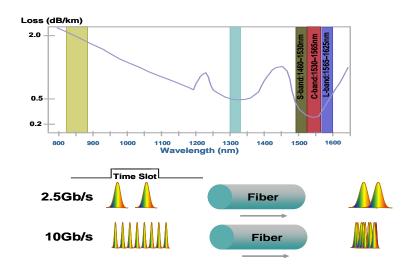

Applications for Different Fiber Types

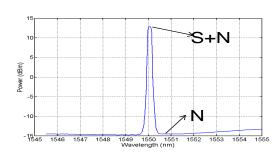
		- 1			
	Fiber Type	Application Notes			
	SMF (G.652) NDSF	 Good for Single-Channel at 1310 nm OK for Single-Channel at 1550 Good for DWDM (w/Dispersion Mgmt when needed) 			
	DSF (G.653)	 OK for Single-Channel at 1310 nm Good for Single-Channel at 1550 nm Bad for DWDM (C-Band) (causes non-linear effects) 			
	NZDSF +/- (G.655)	 OK for Single-Channel at 1310 nm Good for Single-Channel at 1550 nm OK for DWDM (C + L Bands) 			
	Extended Band (G.652.C) reduced water peak	 Good for Single-Channel at 1310 nm OK for Single-Channel at 1550 nm OK for DWDM (With Dispersion Mgmt.) Good for CWDM (>8 wavelengths) 			

Fiber Evolution

Channel Allocation/Fiber

Transmission Impairments


Attenuation—Loss of Signal Strength


Chromatic Dispersion (CD)—Distortion of pulses

Optical Signal to Noise Ratio (OSNR)—Effect of Noise in Transmission

#CiscoLive

BRKOPT-1007

Attenuation: Optical Budget

Basic Optical Budget = Tx Output Power - Rx Input Sensitivity

MIN TX = -10 dBm

MIN RX = -20 dRm

Max Budget = 10 dB

Engineered links usually assume 0.25dB/km or worse for 1550nm transmission Simply...10dB Budget = 40km

Real Fiber Loss Measurements are preferred (i.e., OTDR, Laser Source/Meter)

Optical Budget is affected by:

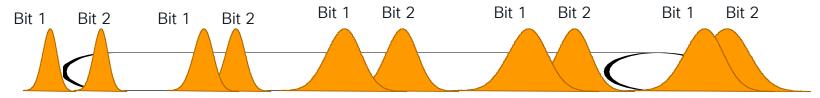
- Fiber attenuation
- Splices
- Patch Panels/Connectors
- Optical components (filters, amplifiers, etc.)
- Micro and Macro Bends in fiber
- Contamination (dirt/oil on connectors)

Laser Output Power and Receiver Sensitivity and dBm

- Fiber loss expressed in dB but transmitter/receiver power is expressed in dBm
- This is why both the transmitter output power and the receiver sensitivity is expressed in dBm:

```
Power_{dBm} = 10log(P_{mW}/1mW)
```

dB and dBm are additive, hence the simplification

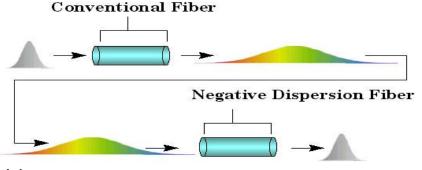

Examples:

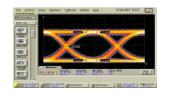
- 2mW is Power_{dbm} = 10log(2mW/1mW)=3dBm
- 1mW is Power_{dbm} = 10log(1mW/1mW)=0dBm

dB is decibels and dBm is decibels-milliwatt

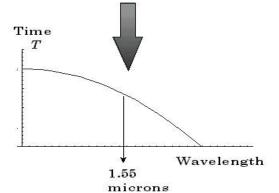
Chromatic Dispersion (CD)

The Optical Pulse tends to Spread as it propagates down the fiber generating Inter-Symbol-Interference (ISI)


- Total dispersion is a function of the length of fiber and its dispersion factor linear value
- Can limit transmission distance for 10G and above wavelengths
- Can be compensated by:
 - Using negative dispersion fiber modules (DCM/DCF) adds losses
 - Electronically with Coherent Optics generally at 100G and higher



Solution for Lower Speed Signals: Dispersion Compensating Unit


Negative Dispersion Fibers

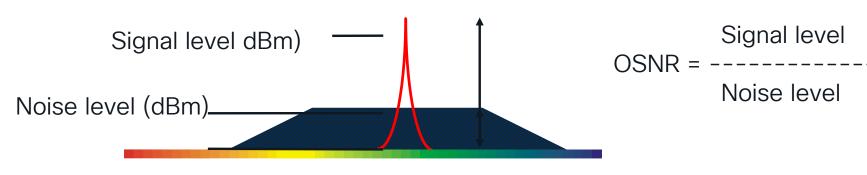
DCUs use fiber with chromatic dispersion of opposite sign/slope and of suitable length to bring the average dispersion of the link close to zero.

Solution for Higher Speed Signals: Coherent Detection

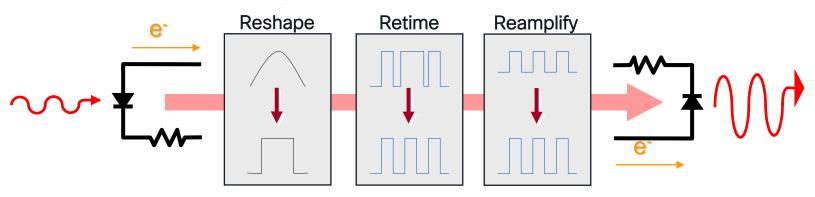
Direct Detection

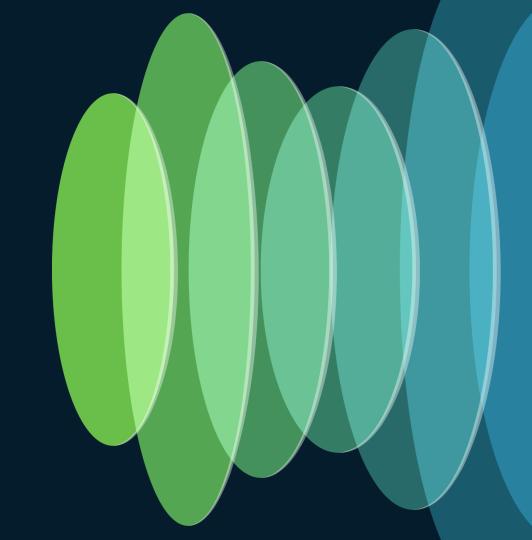
- Must correct for impairments in the physical domain (insert DCU's)
- Forced to live with non-correctable impairments via network design (limit distance, regenerate, adjust channel spacing)
- Dumb detection (OOK), no Digital Signal Processing, only FEC

Coherent Detection


- Moves impairment correction from the optical domain into the digital domain
- Allows for digital correction of impairments (powerful DSP) vs. physical correction of impairments (DCU's). Adds advanced FEC
- Massive performance improvements over Direct Detection

Optical Signal-to-Noise Ratio (OSNR)

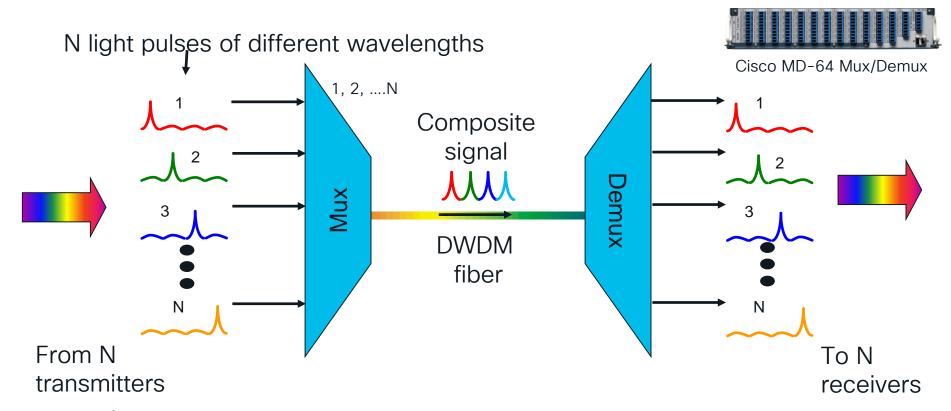

- OSNR is a measure of the ratio of signal level to the level of system noise
- As OSNR decreases, possible errors increase
- OSNR is measured in decibels (dB)
- EDFAs are the source of noise


Final Solution: Regeneration

Regeneration involves the 3'R's:

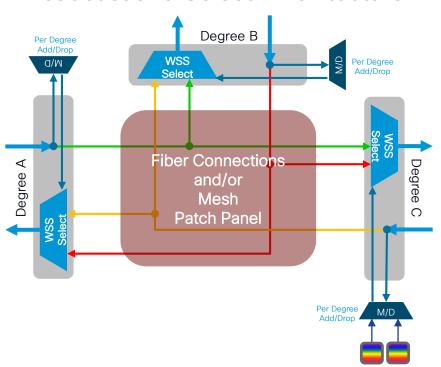
- Bit-Rate and Protocol Specific
- Most Costly Solution for multi-channel WDM Networks 2x Interfaces required for every Channel

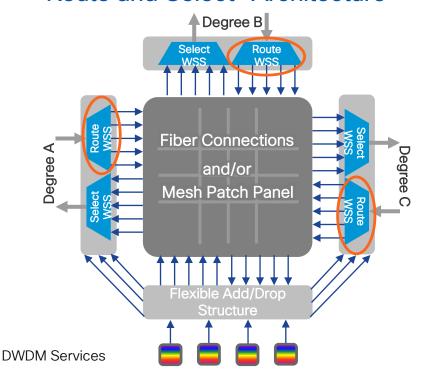
DWDM Components



Typical Components of DWDM Systems

- DWDM Mux/Demux filters
- Optical Add/Drop Multiplexers (OADMs)
- Reconfigurable OADM (ROADM)
- Optical amplifiers (EDFA or RAMAN)
- Transponders/Muxponders


DWDM Mux and Demux Filters Block Diagram


cisco Live!

ROADM Types

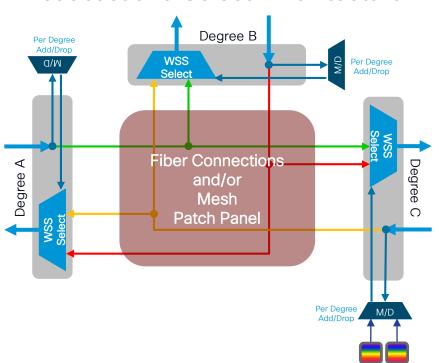
"Broadcast and Select" Architecture

"Route and Select" Architecture

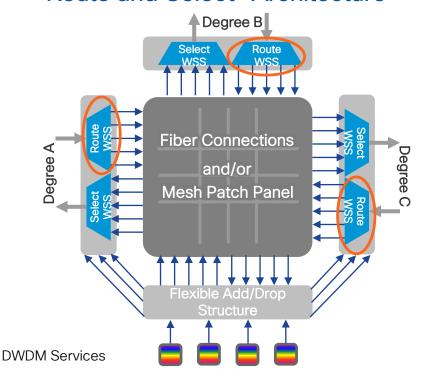
ROADM Types

"Broadcast and Select" Architecture

- WSS on Mux (TX) side of each degree
- Ingress channels from each degree are passively split (broadcast) to all other degrees (plus the perdegree add/drop)
 - Mux WSS blocks all channels not intended for that degree (selects those that are)
- Splitter loss also increases with the number of degrees


"Route and Select" Architecture

- Second WSS added at ingress of each degree
- Demux WSS 'routes' any combination of waves to any output port (drop and other degrees)
- Mux WSS 'selects' any combination of waves from its input ports (add and other degrees)
- By eliminating the splitter, insertion loss is reduced, preserving channel OSNR
- **Enables Omni-Directional and Colorless at large** scale



ROADM Types

"Broadcast and Select" Architecture

"Route and Select" Architecture

Simple ROADM Architecture Software Controlled Selectors - n Ch. (Pass-through/Add/Block) Pass Splitter West Pass-Through Wavelengths **DWDM** Add Signal n Ch. Demux Add Drop Wavelengths DWDM Wavelengths Modules Host Host Host Host Device Device Device Device **▼** DWDM Drop Modules Wavelengths Add Wavelengths drop n Ch. Demux Add DWDM: Pass Signal Pass-Through Wavelengths Add Splitter East Software Controlled Selectors - n Ch. (Pass-through/Add/Block)

cisco Live!

Host

Device

▼ DWDM Modules

DWDM Signal

Simple ROADM Architecture Software Controlled Selectors - n Ch. (Pass-through/Add/Block) Pass-Through Wavelengths n Ch. Demux Host Host Host Host Host

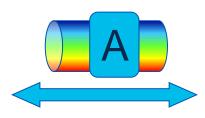
Device

Device

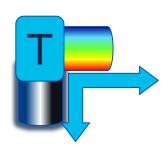
Device

(Pass-through/Add/Block)

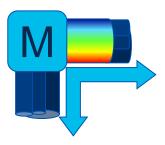
cisco live!

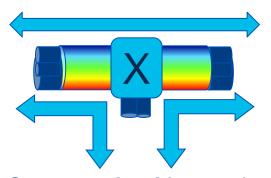

(Pass-through/Add/Block)

Simple ROADM Architecture Software Controlled Selectors - n Ch. (Pass-through/Add/Block) Pass Splitter West Pass-Through Wavelengths **DWDM** Add Signal n Ch. Demux Add Drop Wavelengths DWDM Wavelengths Modules Host Host Host Host Device Device Device Device **▼** DWDM Drop Modules Wavelengths Add Wavelengths drop n Ch. Demux Add DWDM: Pass Signal Pass-Through Wavelengths Add Splitter East Software Controlled Selectors - n Ch. (Pass-through/Add/Block)


cisco Life!

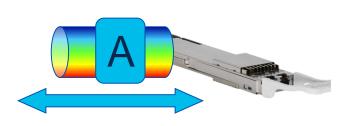
DWDM Services Types


these terms are often interchanged, and many cards can support multiple

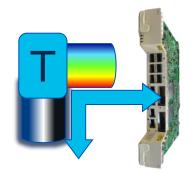

Alien: Foreign DWDM→Wavelength

Transponder: One→Wavelength

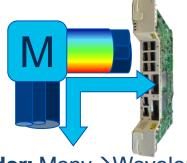
Muxponder: Many→Wavelength

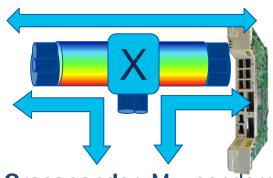


Crossponder: Muxponder+



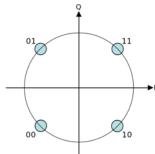
DWDM Services Types

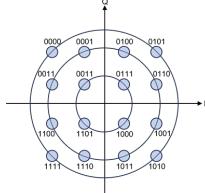

these terms are often interchanged, and many cards can support multiple


Alien: Foreign DWDM→Wavelength

Transponder: One→Wavelength

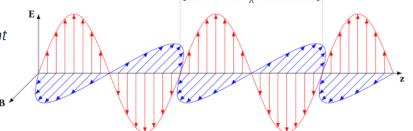
Muxponder: Many→Wavelength


Crossponder: Muxponder+


Optical Modulation Brief

Modulation	n Description		Polarization Multiple	Total BW Multiple
OOK	On-off Keying	1	1	1
BPSK	Binary Phase Shift Keying	1	2	2
(D)QPSK	(Differential) Quadrature Phase Shift Keying	2	2	4
8-QAM	8-state Quadrature Amplitude Modulation	3	2	6
16-QAM	16-state Quadrature Amplitude Modulation	4	2	8
32-QAM	32-state Quadrature Amplitude Modulation	5	2	10
64-QAM	64-state Quadrature Amplitude Modulation	6	2	12

Constellation diagram of QSPK modulation



Constellation diagram of 16-QAM modulation

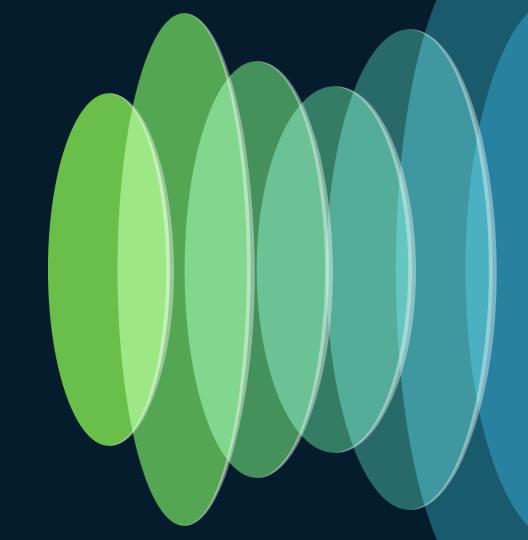
All of these can be and generally are polarization-multiplexed to double the symbol rate

Transverse polarization of light

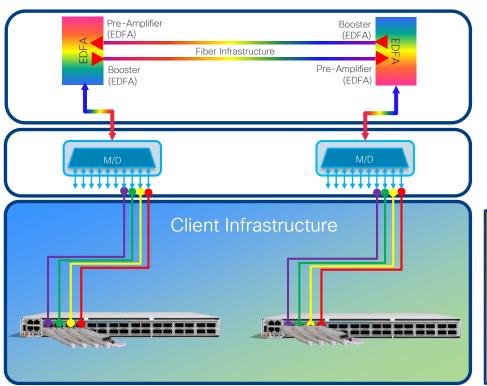
https://www.cisco.com/c/en/us/support/docs/optical-networking/routed-optical-networking/221071-understand-coherent-optical-modulation.html

cisco like!

DWDM Service Card Shelves vs. Native Routers


Cisco NCS 2015
14-RU
_15x Service Slots
Up to 8.5Tbps
Up to 5,250W

Cisco 8201-32FH 1-RU 32x 400Gbps Up to 12.8Tbps Up to 2,000W fulfill


Cisco NCS 1014 2-RU 4x Service Slots Up to 12.8Tbps Up to 2,500W Add Pluggables as needed Use 400G Coherent or Gray Optics

DWDM in Routers

cisco Live!

DWDM Directly in Routers with simple Optical Line Systems

Optical Line System (as needed)

NCS 1001
Line Terminal/ILA

EDFA

OTDR (optional)

EDFA

4, 48, 64-ch Optical Mux/Demux

- H2H (Hop-to-Hop) only (no Optimal Bypass)
- ZR @ 400G & ZR+ @ 100/200/300/400G
- Compact 1RU NCS1001 with EDFA and OTDR options

400G DCO's: Native DWDM Interfaces in Routers

Access to Metro Networks

400GE Client

400G Trunk

Up to 120km

TX Power -10dBm

C-FEC

400G-ZR+

Bright

Access to Long Haul Networks

100GE, 200GE, 400GE, n x100GE MXP Mode

100G, 200G, 300G, 400G Trunk Rates

Up to 1,400km at 400G Longer distances at lower trunk rates

TX Power -10dBm

C-FEC and O-FEC

TX Power +0dBm

What's the Reach - ZR and ZR+

Single channel

~10dB Span Budget (approx. 40km distance)

Unamplified, Dark Fiber

Single or Multi-Channel

400G-ZR and 400G-ZR+ max distance is ~120km

Amplified, Point-to-point DWDM

Multi-Channel

Inline EDFA/RAMAN Amplifiers

400G-ZR+ max distance is 1,400km and can be downshifted to 300G, 200G, and 100G to support further distances and worse OSNR

Full featured DWDM (ROADMs, ILAs)

cisco Live!

What's the Reach - including Bright ZR+

Single channel

~20dB Span Budget (approx. 80km distance)

Unamplified, Dark Fiber

400G-BrZR+ supports up to 2x the loss and distance

Single or Multi-Channel

400G-ZR, 400G-ZR+, 400G-BrZR+ max distance is ~120km

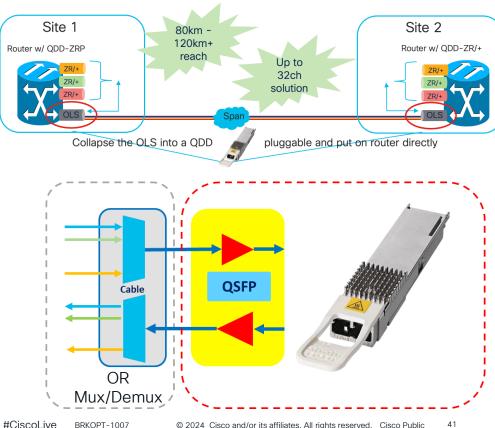
Amplified, Point-to-point DWDM

400G-BrZR+ could require less amplification due to the increased TX Power

Multi-Channel

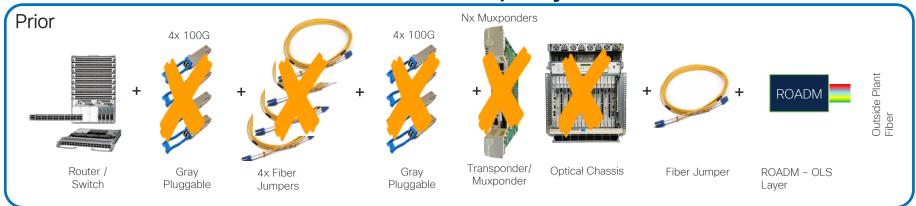
Inline EDFA/RAMAN Amplifiers

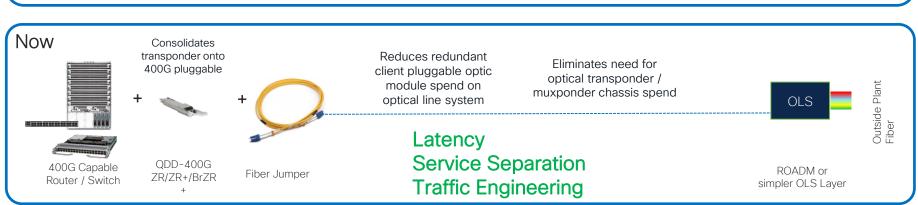
400G-ZR+ and 400G-BrZR+ max distance is 1,400km and can be downshifted to 300G, 200G, and 100G to support further distances and worse OSNR


Full featured DWDM (ROADMs, ILAs)

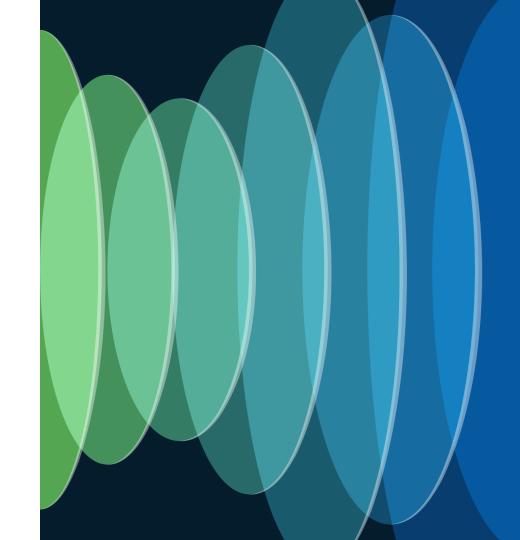
400G-BrZR+ has 0.6dB of OSNR Improvement

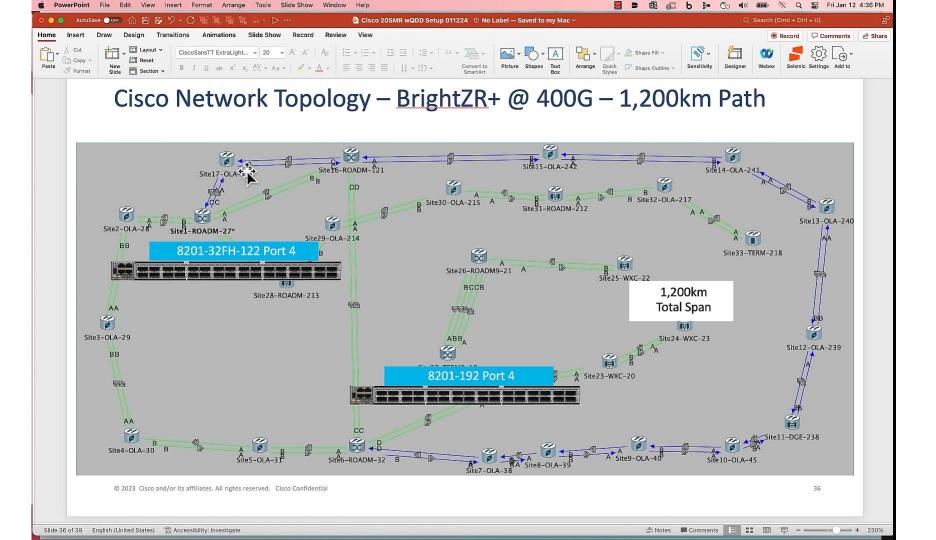
cisco live!


QSFP-DD OLS: EDFA's Native to Routers

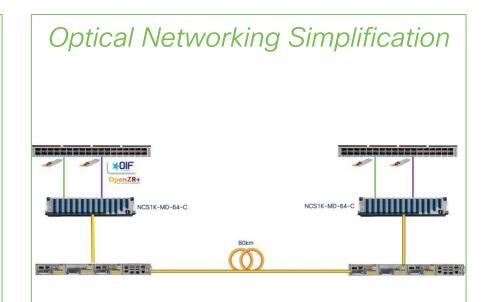

- Transforms separate EDFA system into a QDD Pluggable - continuing platform reduction options
- Extends the distance capabilities of ZR Pluggables further
 - Supports 4/8/16/32 channel systems
 - Colored or Colorless Add-Drop
 - Combines Booster and Preamplifiers each with 17dBm output and up to 25 dB gain

Traditional vs. Coherent Deployments


BRKOPT-1007


Comparison of Network Protection Mechanisms

Optical Protection Schemes				IP Protection
None - 1:1	1+1	1+1+R	PSM	ir riotection
"Easily" done	< 50ms Electrical Switching (OTN)	N-x Optical Paths available for restoration	Fast Optical Switching	IP Protection is as fast as Optical Switching
Diverse Hardware and Paths	Diverse Paths could have diverse HW	No additional Optical Trunk (2)	Minimal Additional Hardware	All Paths are useable
<50% Link Utilization	+1 Optical Trunk/Card/HW	Requires Omni- directional, CDC HW	Loss of Light Switching prone to problems	Less Hardware
No or little IP Layer Interaction	Failback is not coordinated with IP Layer	Failback is not coordinated with IP Layer	Failback is not coordinated with IP Layer	New Skillset within IP
	Only 2-paths for redundancy	Multi-path support if available	Only 2-paths for redundancy	
	Additional Power, real estate, and costs			


Demo Time!

Summary

- DWDM is not any harder than IP Networks
- DWDM is not going away
- Industry advances DWDM Interfaces in Routers
- Like-for-Like and additional functionalities are available
- Don't be afraid to get started

- Lower CapEx and OpEx
- Quicker time-to-market
- Improved Troubleshooting

Good links

https://www.cisco.com/c/en/us/td/docs/optical/15000r5_0/planning/guide/r50engp l/r50appc.html

https://www.cisco.com/c/en/us/products/collateral/routed-optical-networking/routed-optical-networking-wp.html

https://www.ciscolive.com/on-demand/on-demandlibrary.html?search=dailey#/session/1707505548618001pxaU

https://www.ciscolive.com/c/dam/r/ciscolive/us/docs/2020/pdf/DGTL-BRKOPT-2007.pdf

Complete Your Session Evaluations

Complete a minimum of 4 session surveys and the Overall Event Survey to be entered in a drawing to **win 1 of 5 full conference passes** to Cisco Live 2025.

Earn 100 points per survey completed and compete on the Cisco Live Challenge leaderboard.

Level up and earn exclusive prizes!

Complete your surveys in the Cisco Live mobile app.

Continue your education

- Visit the Cisco Showcase for related demos
- Book your one-on-one Meet the Engineer meeting
- Attend the interactive education with DevNet, Capture the Flag, and Walk-in Labs
- Visit the On-Demand Library for more sessions at www.CiscoLive.com/on-demand

Contact us at: Brad Riapoloy, <u>brriapol@cisco.com</u> Kent Dailey, <u>kedailey@cisco.com</u>

Thank you

