

Cisco SD-WAN - Hidden Complexity Revealed How Cisco TAC Addresses Really Tricky Problems?

Denis Kodentsev, SD-WAN TAC Technical Leader, CCIE BRKTRS-3050

#CiscoLive

Who's your speaker?

Denis Kodentsev

- SP/EN networking since 2000
- with Cisco since 2007
- CCIE since 2013
- Designing Cisco SD-WAN networks since 2017
- Tech Lead for SD-WAN TAC in Krakow, Poland

Cisco Webex App

Questions?

Use Cisco Webex App to chat with the speaker after the session

How

- Find this session in the Cisco Live Mobile App
- 2 Click "Join the Discussion"
- 3 Install the Webex App or go directly to the Webex space
- 4 Enter messages/questions in the Webex space

Webex spaces will be moderated by the speaker until June 7, 2024.

ciscoliv	ebot/#BRk	(TRS-3050
	•	
8:19 -1	٠	al 😤 💷

8:19 🕇				
Catalys	t 9000 Series	Switching Fam	ily ≖	
technologie 9000 Switch	s, and features nes.	in the Catalyst		
Speaker(s)	•			
* 1	Kenny Lei Cisco Systems, Inc	. Technical Marke	>	
Categories	• •			
Technical Level	(596)		>	
Tracks Networking	(220)		>	
Session Type			>	
Breakout (45	53)			
Webex	SHOW 2 MOI	RE 🔻	TRA .	
Join t	the Discussion			
Notes	· • · •		X	
Enter your pers	sonal notes here			

BRKTRS-3050

- Best tools we use in TAC and their scope
- (Improve) your understanding of control-plane logs
- (Improve) your understanding of data-plane logs and outputs
- Personal know-how to share

Setting the stage

cisco live!

Let's define the scope for the session

Two major domains to consider

 Viptela primitives

Let's focus on WAN Edges

both control-plane and data-plane

8

It's all about knowing your tools...

and when to use what?

cisco ive!

You followed troubleshooting best-practices and ... still no luck?

<u>Cisco SD-WAN Troubleshooting TechNotes</u>

Cisco Live on-demand library:

- Advanced SD-WAN Routing Troubleshooting
- <u>SD-WAN Advanced Troubleshooting with the power of NWPI and other features</u>
- Advanced SD-WAN Policies Troubleshooting
- Automation and In-Depth Troubleshooting of Cat8k, ASR1k, ISR and SD-WAN Edge

cisco / ilo

Network Wide Path Insight (NWPI)

cisco ive!

Network Wide Path Insight (NWPI)

application performance issues

cisco live!

NWPI: Path Insight

cisco / ile

Insight Summary - Event Insight

cisco / ile

<

Packet-trace (aka fia-trace)

cisco ive!

Recap: The Packet Tracer and FIA Debugger

Enabling Packet-trace

cedge1#debug platform condition ipv4 <ip_address>/32 both
cedge1#debug platform condition start
cedge1#debug platform packet-trace packet <number of packets> fia-trace

Optionally

cedge1# debug platform packet-trace copy packet both size <...>

Show commands:

cedge1#show platform packet-trace summary

Pkt	Input	Output	State	Reason
0	Gi2	Gi3	FWD	
1	Tu3	Gi2	FWD	
2	INJ.3	Gi2	FWD	
3	internal0/0/recycle:0	Gi2	FWD	
4	Gi2.	Tu3	DROP	493 (NoStatsUpdate)
5	internal0/0/recycle:0	Gi2	FWD	

cedge1#debug platform condition stop cedge1# show platform packet-trace packet <packet number>

Can you understand the Packet-trace output?

```
cedge1#show platform packet-trace packet 0
Packet: 0
                 CBUG TD: 35949496
Summarv
          : GigabitEthernet2
 Input
          : GigabitEthernet3
 Output
 State
          : FWD
 Timestamp
          : 1214211941024994 ns (02/24/2020 11:03:14.435466 UTC)
   Start
          : 1214211941530105 ns (02/24/2020 11:03:14.435971 UTC)
   Stop
Path Trace
 Feature: IPV4(Input)
              : GigabitEthernet2
   Input
          : <unknown>
   Output
          : 192.168.11.254
   Source
   Destination : 192.168.17.254
   Protocol : 1 (ICMP)
<remove>
 Feature: SDWAN ACL IN
   Interface : GigabitEthernet2
   CG
       • 3
   Seq
               : 21
   Policy Flags : 0x100
   Action : SET FWD CLASS 3 Prec3
                                                           SD-WAN ACL matches flow
 Feature: SDWAN ACL IN
   Entry : Input - 0x81845740
                                                          and assign to QoS class
         : GigabitEthernet2
   Input
          : <unknown>
   Output
                                                           "Prec3"
   Lapsed time : 815733 ns
<removed>
```

Packet-trace - obvious parts

Feature: NBAR Packet number in flow: N/A Classification state: Final Classification name: ping <removed> Feature: SDWAN App Route Policy VRF : 1 : 1 CG : 65535 Sea SLA : all tunnels (0) Policy Flags : 0x2 SLA Strict : No Preferred Color : 0x0 none <removed> Feature: SDWAN OCE Hash Value : 0xaf6f0c4e Encap : ipsec SLA : 0 SDWAN VPN : 1 SDWAN Proto : TPV4 Out Label : 1001 Local Color : biz-internet Remote Color: biz-internet FTM Tunnel ID:15 SDWAN Session Info SRC IP : 172.16.11.254 SRC Port : 12346 DST IP : 172.16.17.254 : 12346 DST Port Remote System IP : 172.16.255.17

NBAR classification is complete Application is recognized

This flow does not match any app-route policies so it's loadbalanced to all tunnels

Forwarding decision

Packet-trace - not-so-obvious parts

Embedded Packet Capture (EPC)

cisco live!

Embedded Packet Capture

- Use when you suspect traffic of interest is not reaching or not egressing your router
- Recommendations and caveats:
 - Circular option is your best friend with EPC
 - · Be mindful of capture rate
 - Make sense to combine with packet-trace

Device# monitor capture mycap match ipv4 host 1.1.1.1 host 2.2.2.2 bidirectional

Device# monitor capture mycap limit duration 1000 Device# monitor capture mycap interface GigabitEthernet 0/0/1 both Device# monitor capture mycap buffer circular size 10 Device# monitor capture mycap start

<This is the timespan where the you're capturing the traffic of interest>

Device# monitor capture mycap stop

Device# monitor capture mycap export tftp://10.1.88.9/mycap.pcap

What about the control-plane?

<u>bTrace</u>

tool for process-specific troubleshooting

cisco ivel

process running on top of IOS XE (including SD-IOS plogd **FMAN** WAN processes)

Everyone

- Is your best friend to troubleshoot control-plane beyond regular show commands
- You better know where to look (the data • available is huge). Process names might be cryptic
 Will address that later today

a dedicated binary log collected for every

Enabled with "Notice" level by default -٠ remember to enable "Debug" level

bTrace stands for Binary Trace

bTrace – who are the usual suspects for the tool?

SDWAN

Router

Experts

CPP

Let's try bTrace!

Better use 'sdwan' profile for bTrace

```
edge1#show logging profile ?
  all all processes
hardware-diagnostics hardware diagnostics specific processes
netconf-yang netconf-yang specific processes
restconf restconf specific processes
sdwan SDWAN specific processes
Wireless Wireless specific processes
```

edge1#show logging profile sdwan internal start last 1 day

For the reference - profile "sdwan" includes:

plogd,viptela_start,cpp_cp,cxpd,ttm,dmiauthd,confd,nginx,pttcd,pubd,ndb mand,IOS,fman_rp,fman_fp,vip_confd_startup,vdaemon,fpmd,ftmd,ompd, binos,cfgmgr,dbgd

Have you noticed the blind spots with the tools?

There's no "silver-bullet" for troubleshooting

- Packet-trace -> cryptic, device-specific, no control-plane visibility
- Embedded Packet Capture -> device-specific, limited rate, no correlation with Packet-trace/NWPI
- NWPI -> less detailed than Packet-trace, requires control-plane to be up and running, could be cryptic sometimes
- **bTrace** how to identify the process name to trace? How to translate cryptic output?

Let's improve your bTrace's translation skills

XE SD-WAN Software Architecture

cisco ive!

SD-WAN processes – deciphering acronyms

- vDaemon: SDWAN Software Process
 Confd: Configuration Process
 Sysmgr: System Manager Process
 TTM: Tunnel Table Manager
- OMP: Overlay Management Protocol
- FPM: Forwarding Policy Manager
- FTM: Forwarding Table Manager

cisco / ille

SDWAN processes - where they're? what they do?

vDaemon

The one for control-plane DTLS/TLS tunnels

Having issues with control-plane connections?

cE1_BR1#	show	sdwan control c	onnect	ions											
						PEER		PEER				CONTRO	JLLER		
PEER	PEER	PEER	SITE	DOMAIN	PEER	PRIV	PEER	PUB				GROUP			
TYPE	PROT	SYSTEM IP	ID	ID	PRIVATE IP	PORT	PUBLIC IP	PORT	ORGANIZATION	I LOCAL COLO	R	PROXY	STATE UPTIME		ΙC
vsmart	tls	10.0.0.101	101	1	192.168.2.4	23556	192.168.2.4	23556	poctool-1	mpls	No	up	4:20:41:30	1	
vsmart	tls	10.0.0.101	101	1	192.168.2.4	23556	192.168.2.4	23556	poctool-1	biz-internet	No	up	4:20:41:25	1	
vmanage	tls	169.254.206.7	1	0	192.168.2.7	23756	192.168.2.7	23756	poctool-1	mpls	No	up	4:20:43:36	0	

cE1	BR1#show	sdwan	control	connection-history	b	PEER		
							-	۰.

PEER TYPE	PEER PROTOCOL	PEER SYSTEM IP	SITE ID	DOMAIN ID	PEER PRIVATE IP	PEER PRIVATE PORT	PEER PUBLIC IP	PEER PUBLIC PORT	LOCAL COLOR	STATE	LOCAL ERROR	R EMOTE E RROR	REPEA COUNT	T ORGANIZATION	DOWNTIME
vbond	dtls	0.0.0.0	0	0	192.168.2.2	12346	192.168.2.2	12346	biz-internet	tear_down	DISCVBD	NOERR	0	2022-12-16T17:0	06:10+0000
vbond	dtls	0.0.0.0	0	0	192.168.2.2	12346	192.168.2.2	12346	mpls	tear_down	DISCVBD	NOERR	0	2022-12-16T17:0	06:06+0000
vsmart	dtls	10.0.0.102	102	1	192.168.2.5	12446	192.168.2.5	12446	biz-internet	tear down	XTVSTRDN	NOERR	0	2022-12-16T17:0)5:53+0000
vsmart	dtls	10.0.0.102	102	1	192.168.2.5	12446	192.168.2.5	12446	mpls	tear down	XTVSTRDN	NOERR	0	2022-12-16T17:0	05:49+0000
vsmart	tls	10.0.0.101	101	1	192.168.2.4	23556	192.168.2.4	23556	biz-internet	trying	DCONFAIL	NOERR	5	2022-12-16T17:0	05:28+0000
vsmart	tls	10.0.0.101	101	1	192.168.2.4	23556	192.168.2.4	23556	mpls	trying	DCONFAIL	NOERR	5	2022-12-16T17:0	05:24+0000

vBond:

show orchestrator connections Show orchestrator connections-history

vSmart/vManage/vEdge:

show control connections show control connection-history

vDaemon process in a nutshell

cisco live!

ConfD

The one to apply configuration changes

Template attach and Config Push (Device Online) - Pre 20.6

ConfD behavior before 17.6.x (push-mode)

cisco live!

Template attach and Config Pull (Device Online) - 20.6+

ConfD behavior starting 17.6.x – cont.

cisco ive

ConfD for policy download

OMPd, TTMd, FTMd The ones for SDWAN FIB

cisco ile!

OMP: TLOCs and Route download

from CEF.

#CiscoLive BRKTRS-3050

BFD and **App-Route** statistics

cisco live!

OMP-related issues. Which process to look for and where?

Connecting the dots...

How SD-WAN FIB really works? And why it works that way?

cisco live!

SD-WAN FIB = Output Element Chain (OCE)

- RIB with overlay routes is handled by IOSd. OMP routes are populated into RIB via OMP-agent sitting next to IOSd
- FIB: IOSd's CEF is used for LAN-side routes while Output Chain Element(OCE) is used for overlay routes (not locally originated). OCE is populated by FTM (based on TTM, OMP and FPM inputs)

SD-WAN FIB = Output Element Chain (OCE)

cisco live!

5-level FIB hierarchy. Why so complex?

- Here is the SDWAN FIB (OCE) chain for a routes that are learnt via OMP
- FTM is constantly updating the OCE based on various events and inputs

- SLA NH (1): Corresponds to set of Remote TLOC's advertising the route
- Indirect NH: Gives the Label to be used for the chosen Remote TLOC for a particular VRF
- SLA NH (2): Set of local tunnels that can be used to reach Remote TLOC
- IPSEC/GRE NH: Provides Tunnel Encapsulation and connected NH for underlay routing

How to check OCE for a specific prefix (the hard way)?

Overlay

Prefix

cisco / ille

cisco ive!

OCE is not really a linked list – it's a tree!

cisco / ile !

Let's review the packet-trace again

Anything else to "de-cipher" a packet-trace output?

cisco ive!

Life of a Packet (FIAs): From LAN to WAN

Color Coding: LAN Interface Tunnel Interface WAN Interface

Packet processing "from service"

Key aspects:

- NAT DIA modifies the "normal" input processing bypassing OCE/CEF FIB
- "to WAN" uses OCE FIB for forwarding decision
- "to LAN" uses CEF FIB for forwarding decision

Life of a Packets (FIAs): From WAN to LAN

Color Coding: LAN Interface Tunnel Interface WAN Interface

Packet processing "from tunnel"

Key aspects:

- <u>Like</u> "from service" the NAT DIA modifies the "normal" input processing
 - With NAT DIA in place OCE FIB lookup is skipped and the traffic forwarded according to CEF FIB handling transport VPN #0
- <u>Unlike</u> "from service" behavior only OCE FIB is used (overlay routes FIB)

WAN and WAN-DIA Input

cisco / A

One more thing...

cisco live!

How to chase intermittent (come and go) issues?

- Normally, you would just run a subset of tools we've discussed earlier in the session, collect the output and analyze later.. or send it to the TAC ⁽ⁱ⁾
- The challenge with intermittent issues you need run these tools only when AND where the issue is present.

How would you address the challenge?

- Step 1 (mandatory) identify which of the following has a clear indication of issue presence:
 - Syslog message (show logging) use EEM with syslog tracking + Tools
 - Any other show command use EEM with cron + TCL + Tools

Case-study: Identify the microburst traffic causing tail-drops (EPC + EEM + TCL)

- Step 2 -
 - · Clear counters to reset tail-drops counters to zero
 - Run EPC for the interface with circular option so it will capture the traffic until stopped
 - # clear counters
 - # monitor capture TEST interface gigabitEthernet 0/0/0 out buffer circular size100 limit pps 1000000

• The EPC capture should be running until the issue comes to play.

So, how can we detect the moment to stop the EPC with no logging message available?

Case-study: Identify the microburst traffic causing tail-drops (EPC + EEM + TCL)

 Step 3 – build a TCL script to check if the tail/wred-drop counter IS non zero (=increased). Save it to the router's bootflash:

set syslog [open "syslog: " w+]
puts \$syslog "%EEM-7-CHECK-TAIL-DROPS: Checking for new packet
drops."

set out [exec "sh policy-map interface gigabitEthernet 0/0/0"]

```
foreach line [split $out "\n"] {
  set drops_string ""
  set dscp_value ""
  set taildrops_packets ""
  set randomdrops_packets ""
  regexp -all -line {([0-9]+/[0-9]+.*[0-9]+.*[0-9]+)} $line all drops_string
  if {[info exists drops_string ]} {
    if {![string equal "" $drops_string ]} {
      regexp -all -line {(af[\d]|\cs[\d]|ef|default)} $line dscp_value
      regexp -all -line {([0-9]+/[0-9]+)} $drops_string randomdrops_combined
  taildrops combined
```

```
regexp -all -line {(^[0-9]+)} $taildrops_combined taildrops_packets
regexp -all -line {(^[0-9]+)} $randomdrops_combined
randomdrops_packets
```

```
if { $randomdrops_packets != "0" || $taildrops_packets != "0"} {
    puts $syslog "%EEM-7-CHECK-TAIL-DROPS: New packet drops
    detected for DSCP: $dscp_value. Current random-drops (pkts)
    $randomdrops_packets tail-drops (pkts): $taildrops_packets"
    puts $syslog "%EEM-7-CHECK-TAIL-DROPS: Stopping packet
    capture. Please export pcap file manually."
    set out [exec "monitor capture stop"]
```

close \$syslog

Case-study: Identify the microburst traffic causing tail-drops (EPC + EEM + TCL)

• Step 4 – Configure EEM to run the TCL script every minute (minimum). Script will stop EPC once it detects a tail or wred drop.

event manager applet taildrops_check authorization bypass event timer cron cron-entry "*/1 * * * *" action 0.2 cli command "enable" action 0.4 cli command "tclsh bootflash:taildrops.tcl" ...

• Step 5 – Bring cup of your favorite drink and check periodically for syslog message *"%EEM-7-CHECK-TAIL-DROPS: Stopping packet capture. Please export pcap file manually."* The captured pcap file will contain the bursty traffic to analyze ©

To wrap up...

cisco Live!

Key take-aways and Call to Action

- Know your tools and when to use (and not to use) them
- If you have to choose one single tool use NWPI first
- bTrace best tool to debug (and learn) SD-WAN proccess interactions and control-plane
- Packet-trace (fia-trace) is your best friend to debug and learn packet processing inside a specific IOS XE Edge Router
- Use EPC make sure you're seeing the traffic you're expecting to see... and not seeing which you don't expect ☺

Complete Your Session Evaluations

Complete a minimum of 4 session surveys and the Overall Event Survey to be entered in a drawing to **win 1 of 5 full conference passes** to Cisco Live 2025.

Earn 100 points per survey completed and compete on the Cisco Live Challenge leaderboard.

Level up and earn exclusive prizes!

Complete your surveys in the Cisco Live mobile app.

Continue your education

 Visit the Cisco Showcase for related demos

- Book your one-on-one
 Meet the Engineer meeting
- Attend the interactive education with DevNet, Capture the Flag, and Walk-in Labs
- Visit the On-Demand Library for more sessions at <u>www.CiscoLive.com/on-demand</u>

Contact me at: LinkedIn

Thank you

#CiscoLive