
#CiscoLive

Yuanhua Luo
Technical Consulting Engineer
Xiaofei Sun
Technical Consulting Engineer
BRKATO-2105

Automation in data
collection with advanced
Embedded Event Manager

#CiscoLive © 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

Agenda

• Introduction

• Extended Log File Retention

• Trigger-Based Event Log Auto-Collection

• Integration with Python scripts

• Use Cases of running Python scripts

• References

BRKATO-2105 2

Introduction

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public#CiscoLive

Real Life Problems

• A roll-over of the buffer overwrite incident logs.

• Investigation stalled due to delayed log collection.

• Log collection takes time and labor.

• Save more logs before roll-over.

• Log auto-collect on issues.

BRKATO-2105 4

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public#CiscoLive

EEM Overview

System_switchover
File_system_events
tempsensor
module_failure

If that event
happens, do these

things

• Validates and records policy
• Directs event notifications
• Directs policy actions
• Logs events

Policy

Events Event
Manager

Event Log

Embedded Event Manager (EEM) monitors events and takes action to
recover or troubleshoot these events.

BRKATO-2105 5

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public#CiscoLive

EEM Policies
Predefined System Policies on Cisco Nexus 9000 switches

show event manager system-policy

__L2ACLRedirect Do CallHome, log error and disable further HM testing on
affected ports after 10 consecutive failures of GOLD
"L2ACLRedirect" test

__PortLoopback Do CallHome, log error and disable further HM testing on
affected ports after 10 consecutive failures of GOLD
"PortLoopback" test

__ethpm_link_flap More than 30 link flaps in 420 seconds interval. Action:
Error Disable the port

__ethpm_reinit_no_flap More than 30 reinits in 420 seconds interval. Action:
Error Disable the port

__syslog_trigger_default Default policy for trigger based logging

BRKATO-2105 6

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public#CiscoLive

EEM Policies
User-defined Policies

Embedded Event Manager

CLI/
Python

Application
Event

CLI Counter
Resource

Usage
Online

Diagnostic

Threshold
Module
Status

Module
Failure

OIR SNMP OID

Storm
Control

Switchover
Temperatu
re Sensor

Timer
Tracked
Object

Modify
Counter

Force
Shutdown

System
Reload

SNMP
Trap

Syslog
Message

Event Detectors

BRKATO-2105 7

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public#CiscoLive

EEM Policies
User-defined Policies

Monitoring Module Powerdown

event manager applet monitorPoweroff

 description "Monitors module power down."

 event cli match "conf t; poweroff *"

 action 1.0 cli show module

BRKATO-2105 8

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public#CiscoLive

EEM Overview
Integration with Python

EEM policies support Python scripts.

An EEM applet can include a Python script with an action command.

event manager applet a1

 event cli match "show clock"

 action 1 cli python bootflash:pydate.py

BRKATO-2105 9

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public#CiscoLive

EEM Overview
Auto-Collection and Backup

Methods of Auto-Collection and Backup:

• Extended Log File Retention

• Trigger-Based Event Log Auto-Collection

Buffer Roll-over

• Temporary buffer stores log files
for a fixed amount of time

• The roll-over uses a first-in-first-
out method

Buffer

First In, First Out

BRKATO-2105 10

Extended Log
File Retention

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public#CiscoLive

Extended Log File Retention
Overview

• Enabled by default for all services

• 15 minutes to several hours of event logs

• Depending on size, scale and component activity

• Can only enable specific services you need

BRKATO-2105 12

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public#CiscoLive

Extended Log File Retention
Default setting

Extended Log File Retention is enabled by default for all services
running on a switch.

BRKATO-2105 13

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public#CiscoLive

Extended Log File Retention
Log files and Statistics

• Event log files are stored in the debug:log-dump directory

• Statistics of the number of times a log being repeated

BRKATO-2105 14

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public#CiscoLive

Extended Log File Retention
Log files storage

• Log files are stored locally on flash RAM.

• 250MB memory is reserved for log file storage

• Log files are optimized in tar format

(one file for every five minutes or 10MB, whichever occurs first)

BRKATO-2105 15

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public#CiscoLive

Extended Log File Retention
Generating a Local Copy

bloggerd log-snapshot [file-name] [bootflash: file-path | logflash:
file-path | usb1:] [size file-size] [time minutes]

BRKATO-2105 16

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public#CiscoLive

Extended Log File Retention
Parsing the Log tar Files

component Decode logs belonging to the component identified by process name

from-datetime Decode logs from a specific date and time in yy[mm[dd[HH[MM[SS]]]]] format

instance List of SDWRAP buffer instances to be decoded (comma separated)

module Decode logs from modules such as SUP and LC (using module IDs)

to-datetime Decode logs up to a specific date and time in yy[mm[dd[HH[MM[SS]]]]] format

Additional keywords for parsing log tar file

BRKATO-2105 17

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public#CiscoLive

Extended Log File Retention
Enabling For a Single Service

To be able to collect relevant logs that span a longer period, only
enable event log retention for the specific services/features you need

no bloggerd log-dump all

//Disables the log file retention feature for all services

bloggerd log-dump sap 351

//Enables the feature for the sap 351 (aclmgr service)

BRKATO-2105 18

Trigger-Based
Event Log Auto-
Collection

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public#CiscoLive

Trigger-Based Event Log Auto-Collection
Feature capabilities

• Automatically collect relevant data when issues occur

• Store logs locally on the switch or remotely on an external server

• Support severity 0, 1, and 2 syslogs

• Support unexpected protocol events such as BGP, BFD, OSPF

BRKATO-2105 20

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public#CiscoLive

Trigger-Based Event Log Auto-Collection
Triggering Mechanism

Embedded Event
Manager

Policy

Triggers

Syslog Events
(Severity 0,1,2)

Protocol Flap Events
(BGP/OSPF/ISIS/BFD)

Defined Actions

YAML Files

Show commands Tech Support logs
Actions

Record PolicyEvent Detector

CLI

BRKATO-2105 21

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public#CiscoLive

Trigger-Based Event Log Auto-Collection
Auto-Collection YAML File

The Auto-Collection YAML file is specified in the action command in
the EEM function

manager applet test_1 override __syslog_trigger_default

 action 1.0 collect test.yaml $_syslog_msg

Default YAML file Located in the switch directory: /bootflash/scripts

Component-specific
YAML files

Located in the switch directory:
/bootflash/scripts/default-autocollect

BRKATO-2105 22

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public#CiscoLive

Trigger-Based Event Log Auto-Collection
Example YAML File

Key: Value Description

version: 1
Set to 1. Any other number creates an
incompatibility for the auto collect script

components:
Keyword specifying that what follows are
switch components

securityd:
Name of the syslog component (securityd
is a facility name in syslog)

default:
Identifies all messages belonging to the
component

tech-sup:
port

Collect tech support of the port module for
the securityd syslog component

commands:
show module

Collect show module command output for
the securityd syslog component

BRKATO-2105 23

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public#CiscoLive

Trigger-Based Event Log Auto-Collection
Example YAML File

Key: Value Description

securityd:
Name of the syslog component (securityd
is a facility name in syslog)

feature_enabl
e_disable:

Message ID of the syslog message

tech-sup:
security

Collect tech support of the security
module for the securityd syslog
component

commands:
show module

Collect show module command output for
the securityd syslog component

Associate auto-collect
metadata only for a specific log

BRKATO-2105 24

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public#CiscoLive

Trigger-Based Event Log Auto-Collection
Example YAML File

Use semicolons to separate multiple show commands and tech
support key values

version: 1
components:
 securityd:
 default:
 commands: show module;show version
 tech-sup: port;lldp

BRKATO-2105 25

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public#CiscoLive

Trigger-Based Event Log Auto-Collection
Enable auto-collect

Create an override policy for the __syslog_trigger_default system
policy with a custom YAML file and define the specific logs for which
information will be collected

BRKATO-2105 26

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public#CiscoLive

Trigger-Based Event Log Auto-Collection
YAML folder

The default YAML file can be replaced with a folder inside which
more than one YAML files can be present. All the YAML files in the
folder must follow the ComponentName.yaml naming convention.

event manager applet logging2 override __syslog_trigger_default
 action 1.0 collect test_folder rate-limt 30 $_syslog_msg

ls /bootflash/scripts/test_folder

bgp.yaml ppm.yaml

BRKATO-2105 27

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public#CiscoLive

Trigger-Based Event Log Auto-Collection
Enable auto-collect component

Default enabled auto-collect components

Enable auto-collection for a single or set of components based on
the requirement

BRKATO-2105 28

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public#CiscoLive

Trigger-Based Event Log Auto-Collection
Enable auto-collect component

Sample collection of supported logs for a few components

Component: IPQoSMgr

Supported logs:
QOSMGR_MTS_FAILURE
QOSMGR_NETWORK_QOS_POLICY_CHANGE
QOSMGR_LLFC_APPLY_FAILURE
QOSMGR_FCOE_POLICY_NOT_REMOVED

Component: ACLQOS

Supported logs:
ACLQOS_UNEXPECTED_MCAST_FRAMES
ACLQOS_UNEXPECTED_PFC_FRAMES
PPF_SUBSCRIPTION_FAILED
ACLQOS_QOS_NO_DROP_CLASSIFICATION_UNSUPPORTED
ACLQOS_QUEUE_LIMIT_IGNORED_ON_FEX
ACLQOS_BUFFER_DRAIN_FAILURE
ACLQOS_BURST_DETECT_FPGA_INCOMPATIBLE
ACLQOS_BURST_DETECT_OVER_THRESHOLD
ACLQOS_FAILED
PPF_FAILED

BRKATO-2105 29

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public#CiscoLive

Trigger-Based Event Log Auto-Collection
Auto-collect history

Trigger: support severity 0, 1, and 2 syslogs

Auto-collect history

Auto-collected log files

BRKATO-2105 30

Integration with
Python scripts

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public#CiscoLive

Integration with Python scripts
Why Python?

• Complex Logic Handling

• Readability and Maintainability

• Powerful Standard Library

• Better Error Handling

BRKATO-2105 32

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public#CiscoLive

Integration with Python scripts
Cisco Python Package

How to display the details of the Cisco Python package

BRKATO-2105 33

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public#CiscoLive

Integration with Python scripts
Python API

API Description

cli()
Example:
string = cli (“cli-command”)

Returns the raw output of CLI commands, including
control or special characters.

clid()
Example:
json_string = clid (“cli-
command”)

Returns JSON output for cli-command, if XML
support exists for the command, otherwise an
exception is thrown.

clip()
Example:
clip (“cli-command”)

Prints the output of the CLI command directly to
stdout and returns nothing to Python.

BRKATO-2105 34

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public#CiscoLive

Integration with Python scripts
Example of python API

cli() API
>>> from cli import *
>>> cli("conf t ; interface eth1/6 ; no sh")

N9K# show accounting log
user=admin:cmd=configure terminal ; interface Ethernet1/6 ; no shutdown (REDIRECT)
user=admin:cmd=configure terminal ; interface Ethernet1/6 ; no shutdown (SUCCESS)

BRKATO-2105 35

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public#CiscoLive

Integration with Python scripts
Example of python API

clid() API
This example is used to filter interface with up status.
>>> from cli import *
>>> import json
>>> intflist=json.loads(clid('show interface brief'))
>>> i=0
>>> while i < len(intflist['TABLE_interface']['ROW_interface']):
... intf=intflist['TABLE_interface']['ROW_interface'][i]
... i=i+1
... if intf['state'] == 'up':
... print(intf['interface'])
mgmt0
Ethernet1/1
Ethernet1/2

Note：check JSON structure
string = clid('show interface brief')
print(string)

BRKATO-2105 36

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public#CiscoLive

Integration with Python scripts
Example of python API

Session ID 37

clip() API
This example is used to print the output of the CLI
command

>>> from cli import *
>>> clip('show user-account')
user:admin
 this user account has no expiry date
 roles:network-admin
user:N93K
 this user account has no expiry date
 roles:dev-ops

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public#CiscoLive

Integration with Python scripts
EEM with python

• Script location

• EEM configuration and event log

•

BRKATO-2105 38

Use Cases of
running Python
scripts

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public#CiscoLive

Use Cases of running Python scripts
• Real Life Problems

Want a more real-
time and faster issue

handing?

Don’t know how to
implement complex
logic processing on

device?

Spend a long time
to perform similar

operations on
multiple devices?

More personalized
requirements?

BRKATO-2105 40

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public#CiscoLive

Use Cases of running Python scripts
Background:

The customer needs to monitor N9K devices that meet
specific conditions.

 condition1：The version is 10.4(x)
 condition2：System uptime is less than 30 days
 condition3: Has PBR（route-map A） configurations
 ……
 other necessary conditions

 For devices that meet the above conditions, PBR
statistics need to be sent to the specified ftp server at a
fixed time every day .

*filename is datetime+hostname+pbr-statistics.log

BRKATO-2105 41

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public#CiscoLive

Use Cases of running Python scripts
N9K# show run eem

event manager applet pbr_monitor
event timer cron cron-entry "30 10 * * *"
action 1 cli python bootflash:scripts/pbr_monitor.py
action 2 syslog priority alerts msg eem triggered

BRKATO-2105 42

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public#CiscoLive

Use Cases of running Python scripts
Code example

from cli import *
import json
import re
from ftplib import FTP
from datetime import datetime
from io import BytesIO

#condition1:The version is 10.4(x)
json_version = json.loads(clid("show version"))
pbr_log = None
if json_version:
 nxos_version = json_version["nxos_ver_str"]
 if re.search(r"(10\.4\([A-Za-z0-9]+\))",nxos_version):
 #condition2:System uptime is less than 30 days
 json_time = json.loads(clid("show system uptime"))
 if json_time:
 sys_days = json_time["sys_up_days"]
 if sys_days <= "30":
 #condition3:Has PBR（route-map A） configurations
 run_config = cli("show run | include route-map[[:space:]]A")
 if run_config:
 pbr_log = cli("show route-map A pbr-statistics")

#send logs to FTP server
#set the filename as datetime+hostname+pbr-statistics.log

if pbr_log != None:
 switchname = cli("show hostname").strip('\n')
 ftp_host = “x . x. x . x "
 ftp_username = “x"
 ftp_password = " x "
 ftp = FTP(ftp_host)
 ftp.login(user=ftp_username,passwd=ftp_password)
 current_datetime = datetime.now().strftime("%Y-%m-
%d %H:%M:%S")
 file_name =(f"{current_datetime}_{switchname}_pbr-
statistics.log")
 pbr_log_bytes = bytes(pbr_log,encoding="utf-8")
 pbr_log_stream = BytesIO(pbr_log_bytes)
 ftp.storbinary(f'STOR {file_name}', pbr_log_stream)
 pbr_log_stream.close()
 ftp.quit()

BRKATO-2105 43

References

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public#CiscoLive

References
Cisco Nexus 9000 Series NX-OS System Management Configuration
Guide, Release 10.4(x)

Cisco Nexus 9000 Series NX-OS Programmability Guide, Release
10.4(x)

BRKATO-2105 45

https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/104x/config-guides/cisco-nexus-9000-series-nx-os-system-management-configuration-guide-release-104x/m-configuring-eem-10x.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/104x/config-guides/cisco-nexus-9000-series-nx-os-system-management-configuration-guide-release-104x/m-configuring-eem-10x.html
https://www.cisco.com/c/en/us/td/docs/dcn/nx-os/nexus9000/104x/programmability/cisco-nexus-9000-series-nx-os-programmability-guide-104x/m-n9k-python-api-101x.html
https://www.cisco.com/c/en/us/td/docs/dcn/nx-os/nexus9000/104x/programmability/cisco-nexus-9000-series-nx-os-programmability-guide-104x/m-n9k-python-api-101x.html

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public#CiscoLive

Key notes/Take away
• Capabilities of Advanced EEM:

 Extended Log File Retention

 Trigger-Based Event Log Auto-Collection

 Integration with Python scripts

• Python and YAML Integration with EEM:

 How Python and YAML can be used to create EEM policies.

 Examples of Python scripts and YAML configurations for EEM.

• Use Cases:

 Real-world examples of EEM Python automation.

BRKATO-2105 46

Thank you

#CiscoLive

#CiscoLive

	Slide 1: Automation in data collection with advanced Embedded Event Manager
	Slide 2
	Slide 3: Introduction
	Slide 4: Real Life Problems
	Slide 5: EEM Overview
	Slide 6: EEM Policies
	Slide 7: EEM Policies
	Slide 8: EEM Policies
	Slide 9: EEM Overview
	Slide 10: EEM Overview
	Slide 11: Extended Log File Retention
	Slide 12: Extended Log File Retention
	Slide 13: Extended Log File Retention
	Slide 14: Extended Log File Retention
	Slide 15: Extended Log File Retention
	Slide 16: Extended Log File Retention
	Slide 17: Extended Log File Retention
	Slide 18: Extended Log File Retention
	Slide 19: Trigger-Based Event Log Auto-Collection
	Slide 20: Trigger-Based Event Log Auto-Collection
	Slide 21: Trigger-Based Event Log Auto-Collection
	Slide 22: Trigger-Based Event Log Auto-Collection
	Slide 23: Trigger-Based Event Log Auto-Collection
	Slide 24: Trigger-Based Event Log Auto-Collection
	Slide 25: Trigger-Based Event Log Auto-Collection
	Slide 26: Trigger-Based Event Log Auto-Collection
	Slide 27: Trigger-Based Event Log Auto-Collection
	Slide 28: Trigger-Based Event Log Auto-Collection
	Slide 29: Trigger-Based Event Log Auto-Collection
	Slide 30: Trigger-Based Event Log Auto-Collection
	Slide 31: Integration with Python scripts
	Slide 32: Integration with Python scripts
	Slide 33: Integration with Python scripts
	Slide 34: Integration with Python scripts
	Slide 35: Integration with Python scripts
	Slide 36: Integration with Python scripts
	Slide 37: Integration with Python scripts
	Slide 38: Integration with Python scripts
	Slide 39: Use Cases of running Python scripts
	Slide 40: Use Cases of running Python scripts
	Slide 41: Use Cases of running Python scripts
	Slide 42: Use Cases of running Python scripts
	Slide 43: Use Cases of running Python scripts
	Slide 44: References
	Slide 45: References
	Slide 46: Key notes/Take away
	Slide 47
	Slide 48

