

NXOS Troubleshooting

Expand Your Toolset with Feature Rich Nexus 9000

#CiscoLive

- Introduction
- Unveiling the tools
- Real-world Applications and Success Stories
- Summary

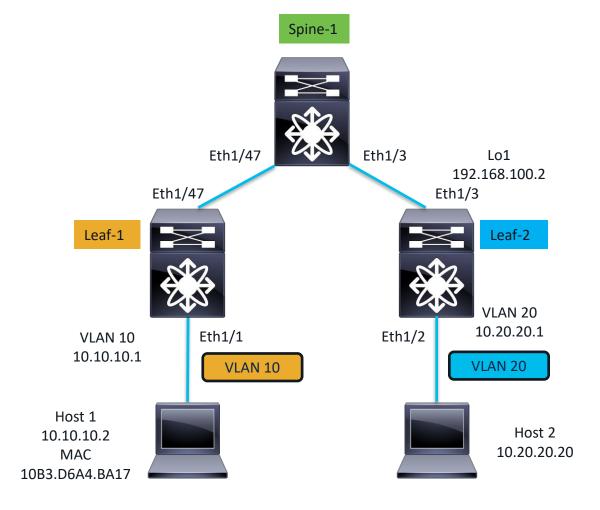
Tools Reviewed Today

Tool #1: Ethanalyzer

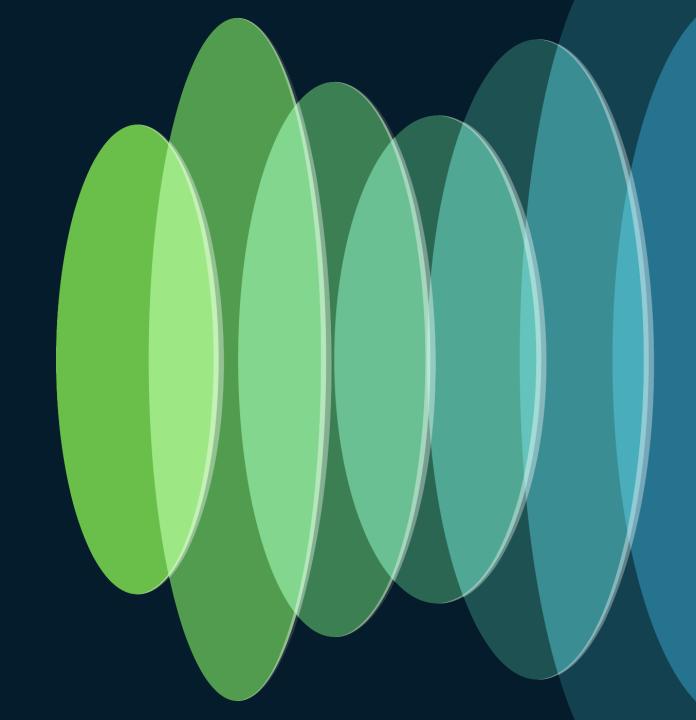
Tool #2: SPAN-to-CPU

Tool #3: ELAM

Tool #4: Consistency Checker


Tool #5: Show troubleshoot

Tool #6: iCAM



Network Topology

Tool #1: Ethanalyzer

cisco live!

Packet Capture Tool

Captures traffic going to and from CPU of Nexus switch.

Syntax

Leaf-1#Ethanalyzer local interface [Interface-type] [display-filer|capture-filter] limit-captured-frame [size] write bootflash:Filename.pcap detail

Interface-types: inband, mgmt, front-panel, port-channel

Detail: Gives detailed packet view

Decode-internal: Let you see which interface the packet received or sent

Capture-ring-buffer: Let you save the capture in multiple files

Limit-capture-frame: Let you limits capture size. 0 means unlimited packet capture size.

Packet Capture Tool

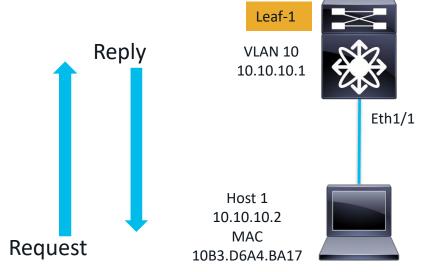
Capture-filter: Captures on the packet we asked to capture

Display-filter: Captures all packets but display only we ask to display

Interface-types: inband, mgmt, front-panel, port-channel

Inband Interface – Front panel ports

Mgmt Interface – Mgmt0 port


Front-panel Interface- Only captures control-plane traffic coming on front panel ports.

Limit-capture-frame: Let you define capture frame size. 0 means unlimited packet capture size.

Real Word Example [platform N9K-C93180YC-FX / 10.2(6)

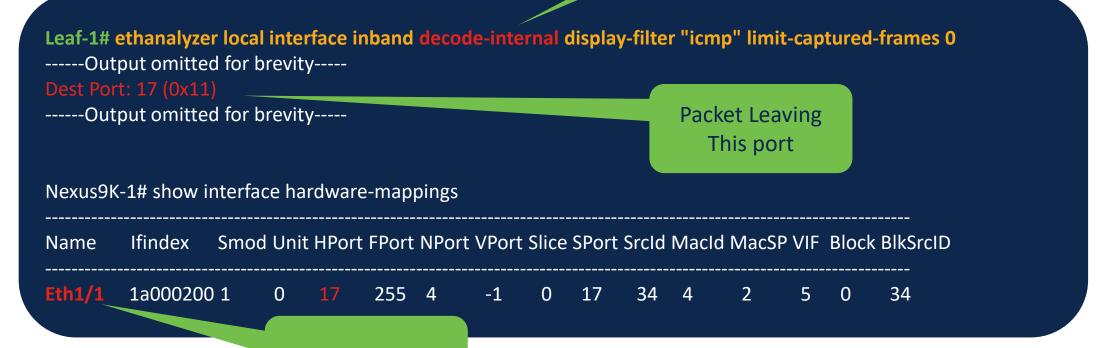
Example use case 1:Capture ICMP

Leaf-1# ethanalyzer local interface inband display-filter "icmp" limit-captured-frames 0

```
Capturing on 'ps-inb'
```

```
4 2024-04-18 15:33:48.226147776 10.10.10.2 → 10.10.10.1 ICMP 102 Echo (ping) request id=0x0a59, seq=0/0, ttl=255 5 2024-04-18 15:33:48.226507747 10.10.10.1 → 10.10.10.2 ICMP 102 Echo (ping) reply id=0x0a59, seq=0/0, ttl=255 (request in 4)
```

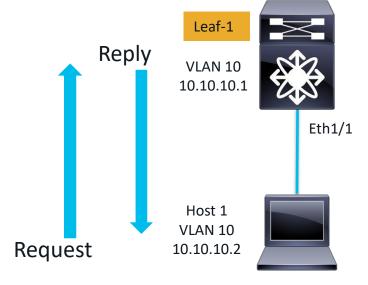
Leaf-1#


2

Real Word Example [platform N9K-C93180YC-FX / 10.2(6)

Decode Internal

Example use case 2: Capture ICMP with Decode-internal



Maps to E1/1

cisco life!

Real Word Example [platform N9K-C93180YC-FX / 10.2(6)

Example use case 3: Capture ARP

Leaf-1# ethanalyzer local interface inband display-filter "arp" limit-captured-frames 0

Capturing on 'ps-inb'

23 2024-04-18 16:08:07.492460719 10:B3:D6:A4:BA:17 \rightarrow ff:ff:ff:ff:ff:ff ARP 64 Who has 10.10.10.1? Tell 10.10.10.2 24 2024-04-18 16:08:07.492902971 e4:1f:7b:2f:a5:c7 \rightarrow 10:B3:D6:A4:BA:17 ARP 64 10.10.10.1 is at e4:1f:7b:2f:a5:c7

2

Leaf-1#

ARP Reply

ARP Request

Received

Real Word Example [platform N9K-C93180YC-FX / 10.2(6)

Example use case 4: Capture ARP with more filters

ARP filter based on sender IP

```
Leaf-1# ethanalyzer local interface inband display-filter "arp.src.proto_ipv4==10.10.10.2" limit-captured-frames 0 Capturing on 'ps-inb'
```

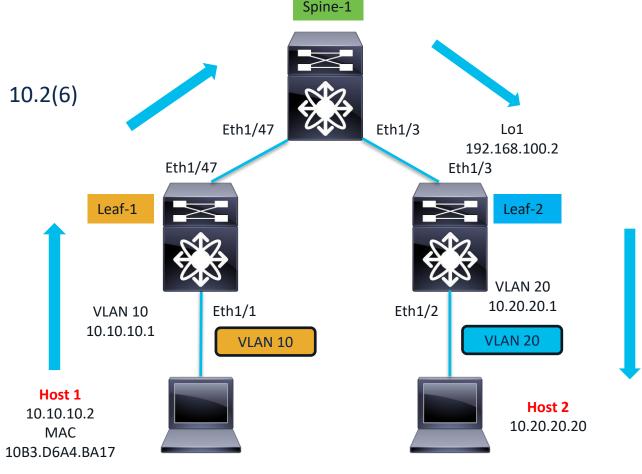
10 2024-04-18 16:16:36.974236159 10:B3:D6:A4:BA:17→ ff:ff:ff:ff:ff:ff ARP 64 Who has 10.10.10.1? Tell 10.10.10.2

1

Leaf-1 #

ARP filter based on Target IP

Leaf-1#ethanalyzer local interface inband display-filter "arp.dst.proto_ipv4==10.10.10.1" limit-captured-frames 0 Capturing on 'ps-inb'


7 2024-04-18 16:17:50.166112161 10:B3:D6:A4:BA:17→ ff:ff:ff:ff:ff:ff ARP 64 Who has 10.10.10.1? Tell 10.10.10.2

Leaf-1#

cisco livel

Real Word Example [platform N9K-C93180YC-FX / 10.2(6)

Example use case 5: Check if packets are getting software Switched

Leaf-1# ethanalyzer local interface inband display-filter "icmp" limit-captured-frames 0

Capturing on 'ps-inb'

 $4\ 2024-04-18\ 15:33:48.226147776\ 10.10.10.2 \rightarrow 10.20.20.20\ ICMP\ 102\ Echo\ (ping)\ request\ id=0x0a59,\ seq=0/0,\ ttl=255$

Real Word Example [platform N9K-C93180YC-FX / 10.2(6)

Example use case 6: Troubleshooting BGP neighbor flap using ethanalyzer

Leaf-1# ethanalyzer local interface inband display-filter "ip.addr==10.10.10.1 && ip.addr==10.10.10.2" limit-captured-frames 0
Capturing on 'ps-inb'

Len=0 TSval=22641527

37 2024-04-18 17:22:46 10.10.10.1 \rightarrow 10.10.10.2 BGP 146 OPEN Message

44 2024-04-18 17:22:47 10.10.10.1 \rightarrow 10.10.10.2 BGP 118 UPDATE Message, KEEPALIVE Message

45 2024-04-18 17:22:47 10.10.10.2 \rightarrow 10.10.10.1 BGP 166 UPDATE Message, KEEPALIVE Message, UPDATE Message

46 2024-04-18 17:22:472 10.10.10.1 \rightarrow 10.10.10.2 TCP 70 179 \rightarrow 51278 [ACK] Seq=144 Ack=192 Win=65536 Len=0

Update

Ack

Real Word Example [platform N9K-C93180YC-FX / 10.2(6)

Example use case 6: Troubleshooting BGP neighbor flap using ethanalyzer

Leaf-1# ethanalyzer local interface inbound-hi display-filter "bgp && ip.addr==10.20.20.1" limit-captured frames 0
Update packet

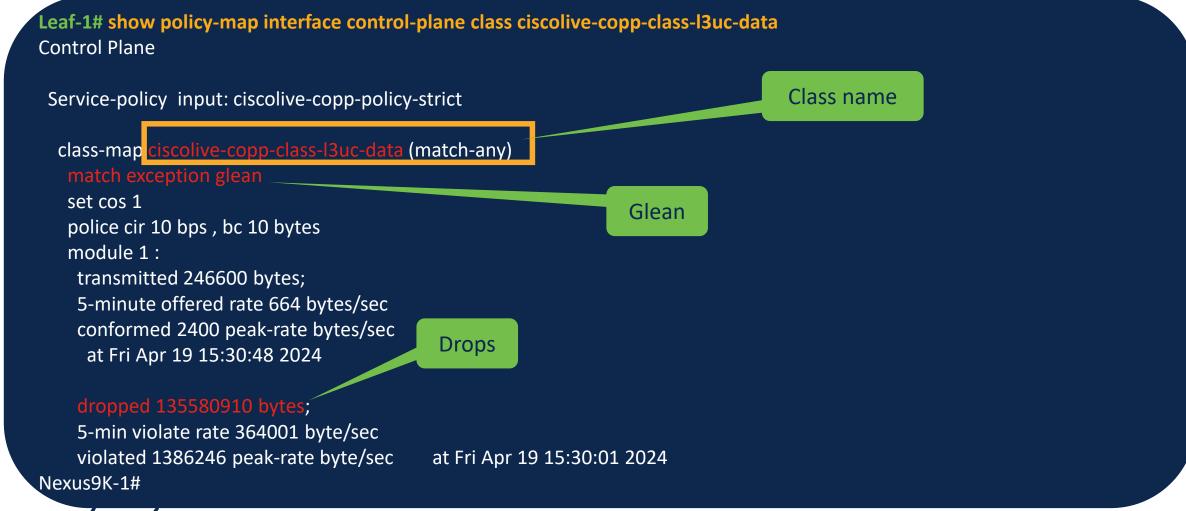
dropped

Capturing on inband

2024-05-04 21:51:28.977444 10.10.10.1 -> 10.20.20.1 BGP OPEN Message

2024-05-04 21:51:29.979955 10.10.10.1 -> 10.20.20.1 BGP KEEPALIVE Message

2024-05-04 21:51:30.996699 10.10.10.1 -> 10.20.20.1 BGP [TCP Retransmission] KEEPALIVE Message


2024-05-04 21:51:31.106224 10.10.10.1 -> 10.20.20.1 BGP UPDATE Message, UPDATE Message, UPDATE Message,

UPDATE Message, UPDATE Message

Real Word Example [platform N9K-C93180YC-FX / 10.2(6)

Example use case 7: Capture COPP dropped traffic

Real Word Example [platform N9K-C93180YC-FX / 10.2(6)

Example use case 7: Capture COPP dropped traffic

Real Word Example [platform N9K-C93180YC-FX / 10.2(6)

Example use case 7: Capture COPP dropped traffic

Filter Base on Queue Number

Leaf-1# ethanalyzer local interface inband decode-internal display-filter "cisco.blob.sup_qnum==36' captured-frames 0

-----Output omitted for brevity-----

Internet Protocol Version 4, Src: 10.10.10.2, Dst: 10.20.10.3

0100 = Version: 4

Time to live: 255

Protocol: ICMP (1)

Header checksum: 0x0503 [validation disabled]

[Header checksum status: Unverified]

Source: 10.10.10.2

Destination: 10.20.10.3

-----Output omitted for brevity-----

Detailed about the packet

Real Word Example [platform N9K-C93180YC-FX / 10.2(6)

102452 Apr 19 14:26:39 2024 ringcap_00004_20240419142636.pcap 102452 Apr 19 14:26:41 2024 ringcap_00005_20240419142639.pcap

Apr 19 14:26:41 2024 ringcap 00006 20240419142641.pcap

Apr 19 14:26:42 2024 ringcap 00007 20240419142641.pcap

Saving Capture and Ring Buffer

Save to bootflash

Leaf-1# ethanalyzer local interface inband limit-captured-frames 100

Leaf-1# ethanalyzer local interface inband limit-captured-frames

Capture-ring-buffer illesize 100 write bootflash:ringcap.pcap

Capturing on inband

5616

Leaf-1# dir | in pcap

11710 Apr 19 14:26:34 2024 ringcap_00001_20240419142633.pcap

102452 Apr 19 14:26:36 2024 ringcap_00002_20240419142634.pcap

102448 Apr 19 14:26:36 2024 ringcap_00003 20240419142636.pcap

cisco Live!

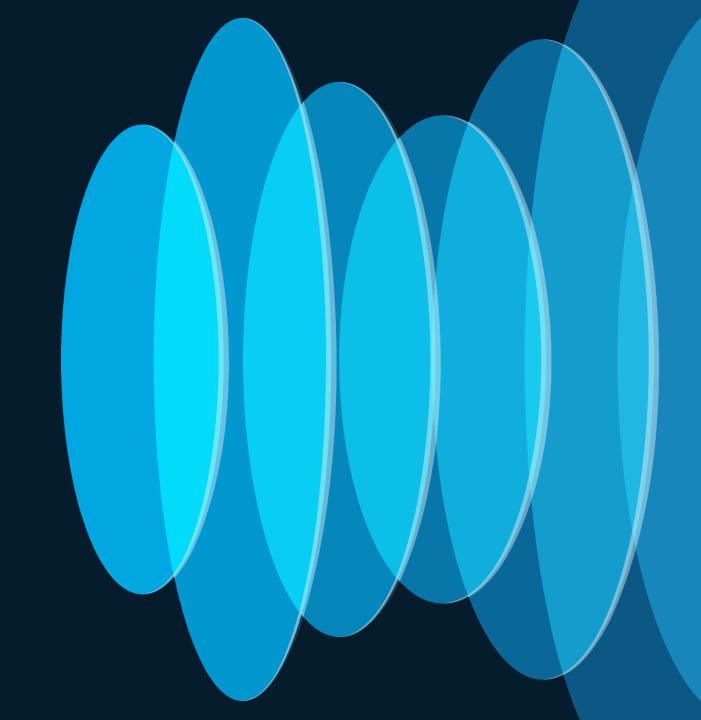
102448

47700

Leaf-1#

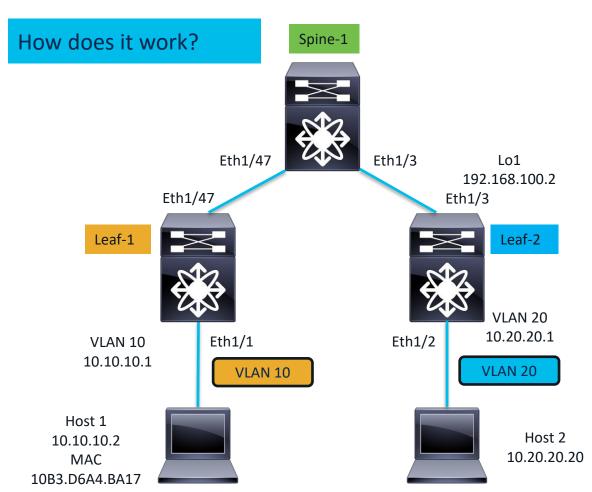
Real Word Example [platform N9K-C93180YC-FX / 10.2(6)

Reading the capture locally


Local Read

```
Leaf-1# ethanalyzer local read cpucap.pcap limit-captured-frames 0
```

```
2024-04-19 14:26:08.419367 10.10.10.2 -> 10.10.10.1 ICMP Echo (ping) request 2024-04-19 14:26:08.419749 10.10.10.1 -> 10.10.10.2 ICMP Echo (ping) reply 2024-04-19 14:26:08.420323 10.10.10.2 -> 10.10.10.1 ICMP Echo (ping) request 2024-04-19 14:26:08.420473 10.10.10.1 -> 10.10.10.2 ICMP Echo (ping) reply 2024-04-19 14:26:08.420945 10.10.10.2 -> 10.10.10.1 ICMP Echo (ping) request 2024-04-19 14:26:08.421073 10.10.10.1 -> 10.10.10.2 ICMP Echo (ping) reply 2024-04-19 14:26:08.421520 10.10.10.2 -> 10.10.10.1 ICMP Echo (ping) reply 2024-04-19 14:26:08.421520 10.10.10.2 -> 10.10.10.1 ICMP Echo (ping) request
```

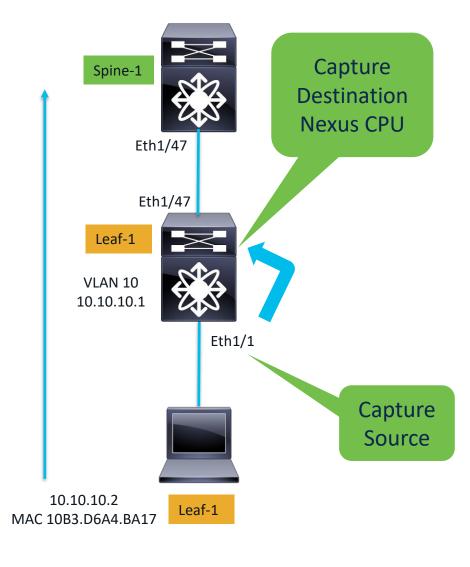


Tool #2: SPAN-to-CPU

cisco live!

SPAN-to-CPU

Real Word Example [platform N9K-C93180YC-FX / 10.2(6)

- · Capture passthrough traffic
- SPAN Replication is done in hardware with no impact to CPU
- SPAN-to-CPU packets are rate-limited. Default rate-list is 50 pps. "show hardware rate-limiter span"
- You can change this setting using command "hardware rate-limiter span"
- Filter using access-list, VLAN


SPAN-to-CPU

Real Word Example [platform N9K-C93180YC-FX / 10.2(6)

Configuration

Leaf-1# show run monitor
monitor session 1
source interface Ethernet1/1 both
destination interface sup-eth0
filter vlan 10 (We can either filter on VLAN or ACL)
filter access-group test
no shut

Leaf-1#

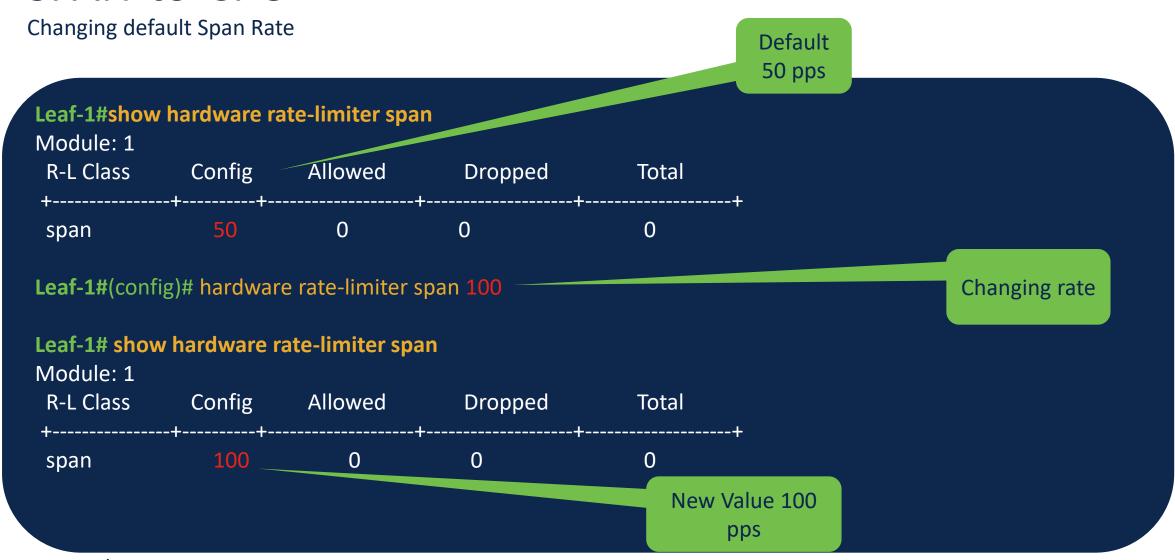
Span to CPU

Real Word Example [platform N9K-C93180YC-FX / 10.2(6)

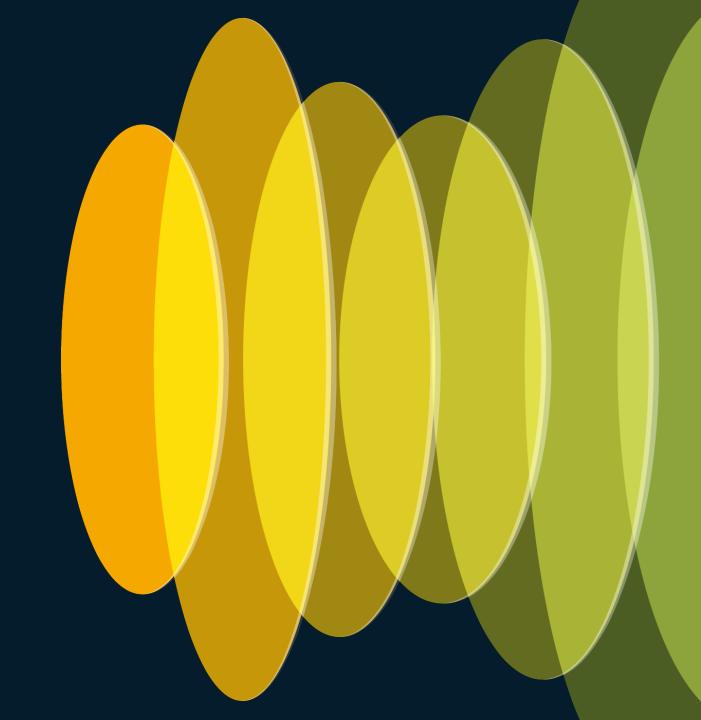
Example

Mirror

TACDCN-2010


Leaf-1# ethanalyzer local interface inband mirror display-filter "icmp" limit-captured-frames 0

Capturing on 'ps-inb'


10 2024-04-19 19:48:32.118031065 10.10.10.2 \rightarrow 10.20.20.20 ICMP 102 Echo (ping) request id=0x544c, seq=0/0 2024-04-19 19:48:32.118438013 10.20.20.20 \rightarrow 10.10.10.2 ICMP 102 Echo (ping) reply id=0x544c, seq=0/0

Leaf-1#

SPAN-to-CPU

Tool #3: ELAM

Packet Capture and Forwarding Verification Tool

- "Embedded Logic Analyzer Module"
- Captures a single packet on ingress going to switch's control plane or through the switch in the data plane
- Capture occurs just above the ASIC level of the switch (very close to the wire)
- Supported on all Cloud scale Nexus 9k switches
 - Not supported on first generation or –R Series Nexus 9ks

Nexus 9k Generations/Model Types

- First Generation: 9300-TX/PX/PQ, 9400-TX/PX/PQ, 9500-TX/PX/PQ
- Cloud scale: 9200, 9300-EX/FX/FXP/FX2/FX3/GX/GX2/H, 9400, 9700-EX/FX/GX
- R Series (Fretta): 9600-R/RX/R2

Syntax, Top of Rack

```
switch# debug platform internal tah elam

switch(TAH-elam)# trig init [slice <A>] [in-select <B>] [use-src-id <C>]

switch(TAH-elam-inselB)# set [inner|outer] [packet type] [options fields]

switch(TAH-elam-inselB)# start

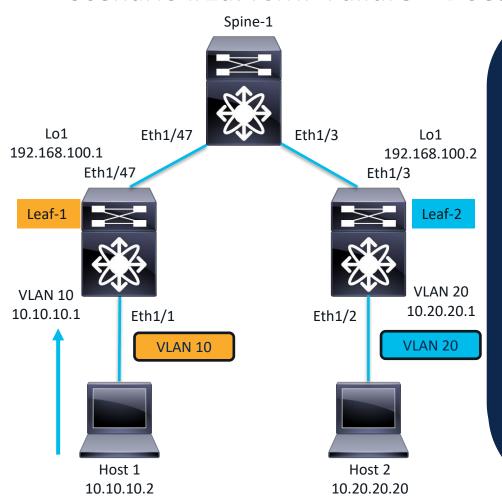
switch(TAH-elam-inselB)# report
```

- A: Slice # of the ASIC
- B: #'s that indicate potential OSI layers and headers/encapsulation
- C: Source interface ID of the packet

In-Select Options and Trigger options

switch(TAH-elam)# trig init in-select ?

- 10 {outer I4, inner I4, ieth} Less Common, generally used for checking L4 info
- 19 {udf_vec}
- 6 {outer I2, outer I3, outer I4} Most Common, used for normal IPv4/IPv6, ARP and more
- 7 {inner l2, inner l3, inner l4} Less Common, can be used for L2 flows or VXLAN
- 8 {outer l2, inner l2, ieth}
- 9 {outer l3, inner l3} More Commonly used with encapsulated traffic (VXLAN, MPLS)



In-Select Options and Trigger options

switch(TAH-elam-insel6)# set [inner|outer] [packet type] [options fields]

- Inner/Outer: Inner or Outer frame/packet header
- Packet Type: L2, ARP, IPv4, IPv6, L4, MPLS, FCoE
- Options Fields: SRC/DST MACs/IPs/Ports, Vlans, DSCP, Protocol Number, etc.

Scenario #1a: ICMP Failure – Does it reach me?

Leaf-1# debug platform internal tah elam

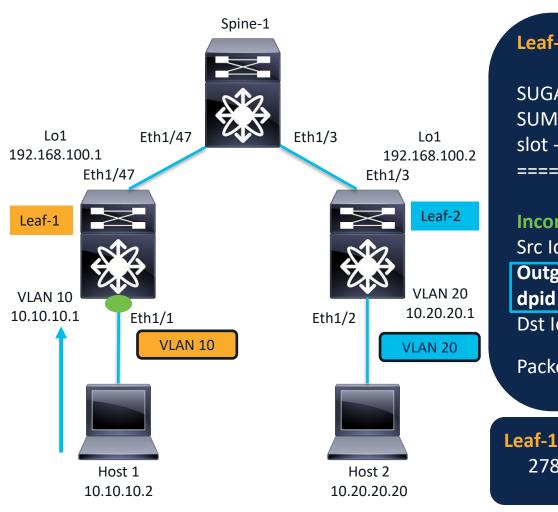
Leaf-1(TAH-elam)# trig init

Slot 1: param values: start asic 0, start slice 0, lu-a2d 1, in-select 6, out-select 0

Leaf-1(TAH-elam-insel6)# set outer ipv4 src_ip 10.10.10.2 dst_ip 10.10.10.1

Leaf-1(TAH-elam-insel6)# start

Leaf-1(TAH-elam-insel6)# report


Asic Trigger Explanations and vPC Notes

Leaf-1(TAH-elam)# trig init
Slot 1: param values: start asic 0, start slice 0, lu-a2d 1, in-select 6, out-select 0

- The **asic value** is only necessary for modular (EoR) Nexus 9ks due to the different linecards which may use different ASIC values per port group
- The slice number corresponds to the partition of the ASIC to which the interfaces are associated
- In modern ELAM (post 7.0(3)I5(2)), defining the **lu-a2d value** and **out-select** is not necessary, but it is associated with the different aspects of the forwarding table
- When using vPC, it is important to set up the ELAM capture on both sides, since traffic can technically land on either peer

Scenario #1a: ICMP Failure – Does it reach me?

Leaf-1(TAH-elam-insel6)# report

SUGARBOWL ELAM REPORT **SUMMARY**

slot - 1, asic - 0, slice - 0

Incoming Interface: Eth1/1

Src Idx: 0x1, **Src BD: 10**

Outgoing Interface Info: dmod 0,

dpid 0

Dst Idx : 0x5bf, **Dst BD : 10**

Packet Type: IPv4

<prev>

Dst MAC address:

10:B3:D6:A4:75:A7

Src MAC address:

10:B3:D6:A4:BA:17

.1q Tag0 VLAN: 10, $\cos = 0x0$

Sup hit: 1, Sup Idx: 2788

Dst IPv4 address: 10.10.10.1

Src IPv4 address: 10.10.10.2

Ver = 4, DSCP = 0, Don't

Fragment = 0

<cont>

Leaf-1# show system internal access-list sup-redirect-stats | i 2788

2788 copp-system-p-acl-icmp 4

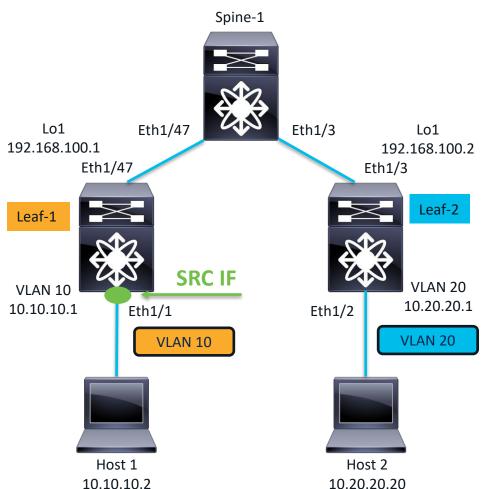
ELAM Report Component Notes

Leaf-1(TAH-elam-insel6)# report
ELAM not triggered yet on slot - 1, asic - 0, slice - 0
ELAM hit flop error on slot - 1, asic - 0, slice - 1. Try elam again.

- If you expect to receive the traffic on a specific interface or general and see "ELAM not triggered" there are one of three possible scenarios:
 - You may need to run the ELAM again (it is possible that you started the capture too late)
 - You are not receiving the traffic on the interface that you think you are (particularly relevant if you do not know on what interface you should receive the traffic)
 - The Nexus 9k is not receiving the traffic
- If you see the error "ELAM hit flop error", this is not a cause for concern. This simply means that you should enter "reset" and then set the trigger with the "set" command again

ELAM Report Component Notes

- If your ingress interface or egress interface is an L3 port or loopback, the SRC/DST BD field for that interface will show as a number outside of the normal range of vlans allowed by the Nexus, which is normally in the 4096+ range
- When using dot1q tunnels, a transit switch may show a different SRC/DST BD tag than the .1q Tag field; this is expected behavior
- If this packet is not destined for the Nexus 9k and you see a supervisor hit, there are one of two possible scenarios:
 - You have an SVI on the switch active
 - Your switch is incorrectly punting the packet into the control plane, which can cause latency and/or drops

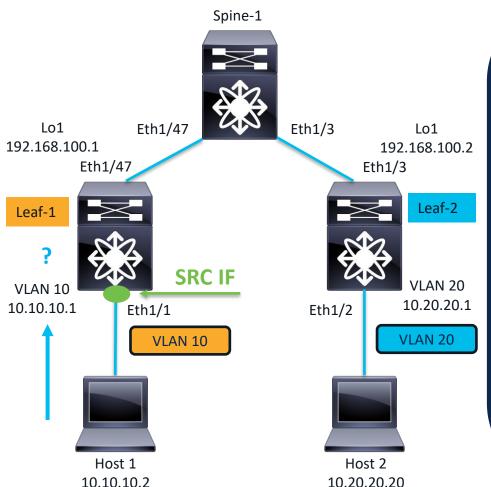


ELAM Report Component Notes

```
Drop Info:
LUA:
LUB:
LUC:
LUD:
Final Drops:
vntag:
vntag valid : 0
vntag vir : 0
vntag svif : 0
```

- Just because you see something under the "Drop Info" in the second half of the output does not mean that it will drop. If the ELAM correctly registers the packet drop, you should see a reason under BOTH LUA/B/C/D AND the Final Drops sections
- Although ELAM is normally very reliable, sometimes ELAM may show that it is forwarding even though it is not. To verify if this is happening, do the following:
 - Confirm, if possible, that the next hop receives the expected packet
 - Confirm, through consistency checker and troubleshooting commands, that we have correctly programmed routes/L2 adjacencies/protocols

Scenario #1b: ICMP Failure – Do I forward it correctly?


• Determine your SRC Interface and its slice number and source ID:

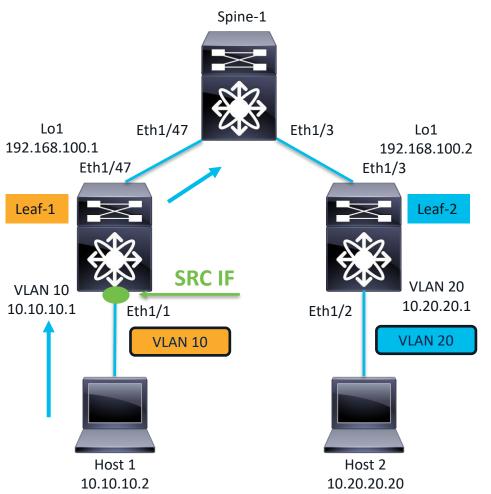
Leaf-1# show system internal ethpm info interface eth1/1 | i dpid IF_STATIC_INFO:

port_name=Ethernet1/1,if_index:0x1a000000,ltl=6144,slot=0, nxos_port=0,dmod=1,dpid=16,unit=0,queue=65535,xbar_unitbmp= 0x0,ns_pid=255,slice_num=0,port_on_slice=16,src_id=32

Confirm that the packet is non-encapsulated

Scenario #1b: ICMP Failure – Do I forward it correctly?

Leaf-1# debug platform internal tah elam

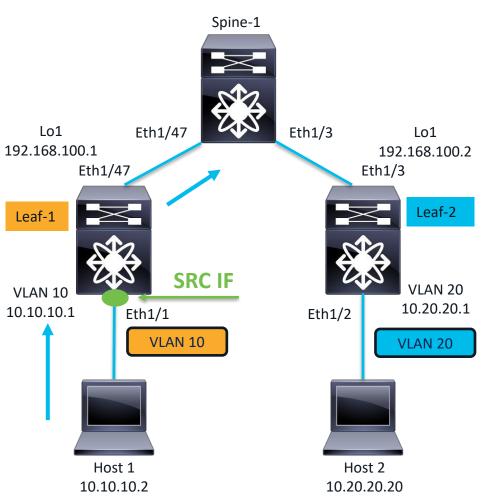

Leaf-1(TAH-elam)# trig init slice 0 in-select 6 use-src-id 32 Slot 1: param values: start asic 0, slice 0, lu-a2d 1, in-select 6, out-select 0, src_id 32

Leaf-1(TAH-elam-insel6)# set outer ipv4 src_ip 10.10.10.2 dst_ip 10.20.20.20

Leaf-1(TAH-elam-insel6)# start

Leaf-1(TAH-elam-insel6)# **report**

Scenario #1b: ICMP Failure – Do I forward it correctly?



Leaf-1# report **SUGARBOWL ELAM REPORT SUMMARY** slot - 1, asic - 0, slice - 0 **Incoming Interface: Eth1/1 Src Idx : 0x1, Src BD : 10** Outgoing Interface Info: dmod 1, dpid 38 **Dst Idx: 0xb9, Dst BD: 200** <snip> Dst IPv4 address: 10.20.20.20 Src IPv4 address: 10.10.10.2

cisco life!

<snip>

Scenario #1b: ICMP Failure – Do I forward it correctly?


```
Leaf-1# show system internal ethpm info global | i dpid=38
 IF STATIC INFO:
port_name=Ethernet1/47 if_index:0x1a005c00,ltl=5960,slot=0,
nxos_port=184, dmod=1, dpid=38, unit=0, queue=65535, xbar_unitbmp=
0x0,ns pid=255,sli
ce num=0,port on slice=38,src id=68
Leaf-1# show cdp neighbor interface e1/47
              Local Intrfce Hidtme Capability Platform
Device-ID
                                                        Port ID
Spine-1(FDO233201F9)
          Eth1/47
                      124 R S HDMI
                                       N9K-C93180YC-EX Eth1/47
Total entries displayed: 1
```

ELAM Report: Optional way to run it

Leaf-1(TAH-elam-insel6)# show elam report

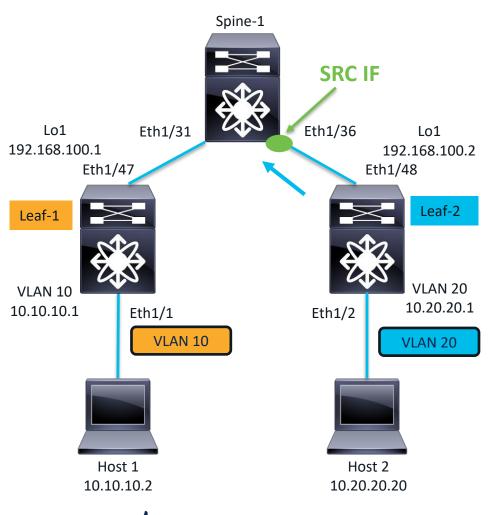
Dumping report for module 1 inst 0 slice 0 a_to_d 1 insel 6 outsel 0

Elam Report captured on Interface: Eth1/1

Outgoing Interface: Eth1/47

Final Drop reason: NA

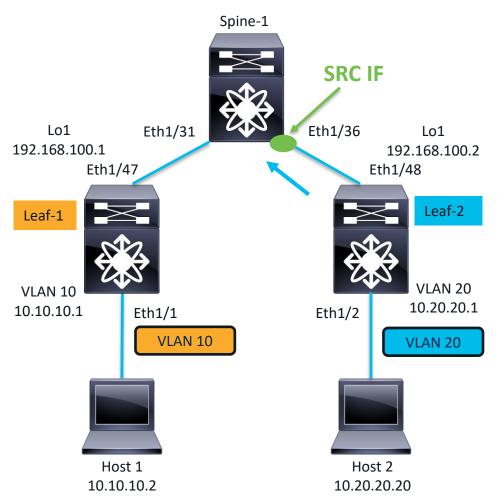
Printing output related to 12 header


<snip>

Printing output related to 13 header

Another way to run it which prevents you from having to decode the outgoing dmod/dpid values

Scenario #1c: ICMP Failure – Do I forward it correctly (End of Rack/9500s)

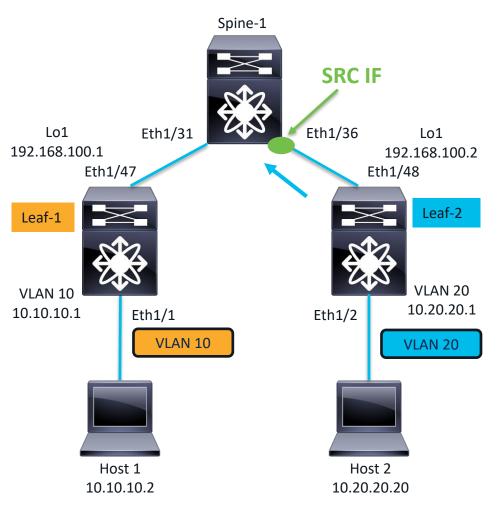


Spine-1(config)# debug platform internal tah elam Spine-1(TAH-elam)# trig init

Slot 1: param values: start asic 0, start slice 0, lu-a2d 1, in-select 6, out-select 0 Slot 22: param values: start asic 0, start slice 0, lu-a2d 1, in-select 6, out-select 0 Slot 23: param values: start asic 0, start slice 0, lu-a2d 1, in-select 6, out-select 0 Slot 24: param values: start asic 0, start slice 0, lu-a2d 1, in-select 6, out-select 0 Slot 26: param values: start asic 0, start slice 0, lu-a2d 1, in-select 6, out-select 0 switch(TAH-elam-insel6)#

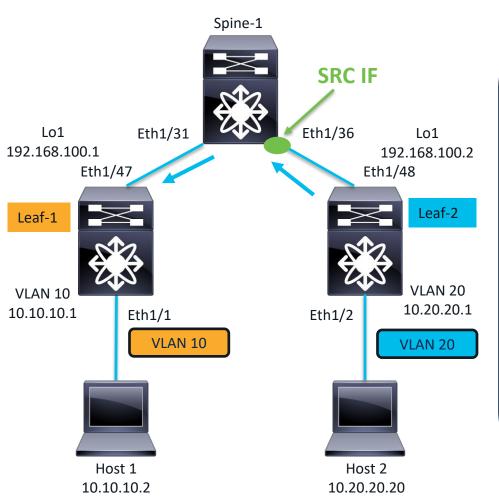
- If you have a Nexus 9500, you likely have multiple linecards and fabric modules
- If you try to run an ELAM wide open on a Nexus 9500, it will attempt to trigger on all of the modules, and only on one slice of a specific ASIC of module 1
- To trigger for a packet correctly on a Nexus 9500, you must capture on the correct linecard/module, the right ASIC and the right slice where the traffic may appear

Scenario #1c: ICMP Failure – Do I forward it correctly (End of Rack/9500s)


Spine-1# show system internal ethpm info int e1/36 | i dpid IF_STATIC_INFO: port_name=Ethernet1/36,if_index:0x1a004600,ltl=6004,slot=0, nxos_port=140,dmod=4,dpid=44,unit=3,queue=65535,xbar_unitbmp=0x0,ns_pid=255, slice_num=0,port_on_slice=44,src_id=88

- Keep in mind that if you have multiple interfaces (like ECMP, portchannels with multiple links, etc.), you will need the highlighted info for all of the interfaces
- If the interfaces are on different modules, you will need to attach to each module and check each one separately

Spine-1# attach mod 1
Attaching to module 1 ...
To exit type 'exit', to abort type '\$.'
Last login: Sat May 11 16:44:59 UTC 2024 from sup27 on pts/1



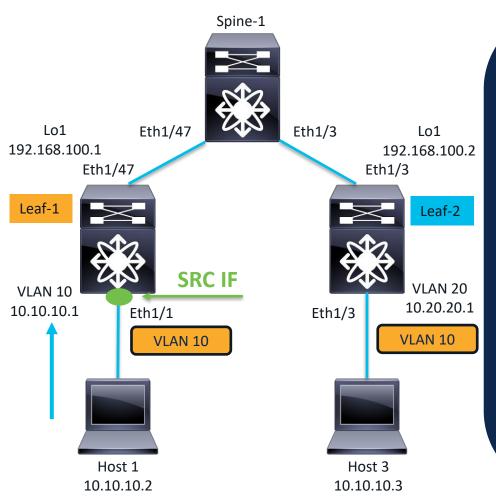
Scenario #1c: ICMP Failure – Do I forward it correctly (End of Rack/9500s)


```
module-1# debug platform internal tah elam asic 3
module-1(TAH-elam)# trig init slice 0 in-select 6 use-src-id 88
Slot 1: param values: start asic 0, slice 0, lu-a2d 1, in-select 6, out-select
0, src id 88
module-1(TAH-elam-insel6)# set outer ipv4 src 172.16.2.2 dst 9.9.9.9
module-1(TAH-elam-insel6)# start
module-1(TAH-elam-insel6)# report
ELAM not triggered yet on slot - 1, asic - 0, slice - 0
ELAM not triggered yet on slot - 1, asic - 1, slice - 0
ELAM not triggered yet on slot - 1, asic - 2, slice - 0
HOMEWOOD ELAM REPORT SUMMARY
slot - 1. asic - 3. slice - 0
Incoming Interface: Eth1/36
Src Idx: 0x8d, Src BD: 4395
Outgoing Interface Info: dmod 2, dpid 48
Dst Idx: 0x79, Dst BD: 4390
```

Scenario #1c: ICMP Failure – Do I forward it correctly (End of Rack/9500s)

module-1(TAH-elam-insel6)# end module-1# exit

Spine-1# show system internal ethpm info glob | i dpid=48


IF_STATIC_INFO: port_name=Ethernet1/29,if_index:0x1a003800,ltl=6032,slot=0, nxos_port=112,dmod=1,dpid=48,unit=0,queue=65535,xbar_unitbmp=0x0,ns_pid=255,slice_num=0,port_on_slice=48,src_id=96

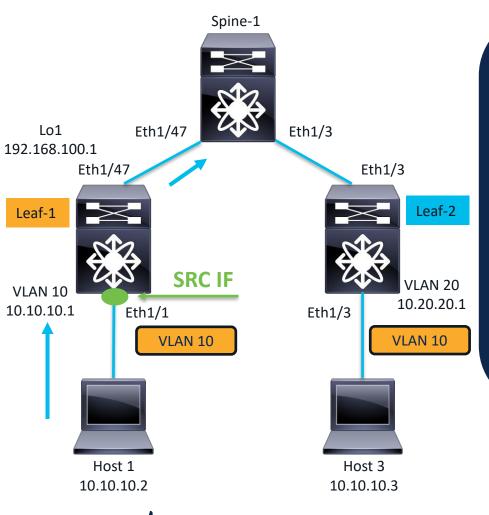
IF_STATIC_INFO: port_name=Ethernet1/31,if_index:0x1a003c00,ltl=6024,slot=0, nxos_port=120,dmod=2,dpid=48,unit=1,queue=65535,xbar_unitbmp=0x0,ns_pid=255,slice_num=0,port_on_slice=48,src_id=96

IF_STATIC_INFO: port_name=Ethernet1/33,if_index:0x1a004000,ltl=6016,slot=0, nxos_port=128,dmod=3,dpid=48,unit=2,queue=65535,xbar_unitbmp=0x0,ns_pid=255,slice_num=0,port_on_slice=48,src_id=96

IF_STATIC_INFO: port_name=Ethernet1/35,if_index:0x1a004400,ltl=6008,slot=0, nxos_port=136,dmod=4,dpid=48,unit=3,queue=65535,xbar_unitbmp=0x0,ns_pid=255,slice_num=0,port_on_slice=48,src_id=96 switch#

Scenario #2: Am I receiving the ARP Request and Flooding it?

Leaf-1# debug platform internal tah elam


Leaf-1(TAH-elam)# trig init slice 0 in-select 6 use-src-id 32 Slot 1: param values: start asic 0, slice 0, lu-a2d 1, in-select 6, out-select 0, src_id 32

Leaf-1(TAH-elam-insel6)# set outer arp source-ip-addr 10.10.10.2 target-ip-addr 10.10.10.3

Leaf-1(TAH-elam-insel6)# start

Leaf-1(TAH-elam-insel6)# report

Scenario #2: Am I receiving the ARP Request and Flooding it?

slot - 1, asic - 0, slice - 0 **Incoming Interface: Eth1/1** Src Idx: 0x1, **Src BD: 10** Outgoing Interface Info: dst ptr 10, dst_ptr_is_flood 1 Packet Type: ARP Dst MAC address: FF:FF:FF:FF:FF Src MAC address: 10:B3:D6:A4:BA:17 .1q Tag0 VLAN: 10, $\cos = 0x6$ <cont>

Sup hit: 1, Sup Idx: 2648

Leaf-1# show system internal access-list sup-redirect-stats | i 2648

2648 ARP REQUEST 3 2648 ARP REQUEST 0

Decode Flood Interfaces Option #1: Consistency Checker

Non-detailed output:

Leaf-1# show consistency-checker membership vlan 10

Checks: Port membership of Vlan in vifvlanmbr, rwepgstate and qsmt_ovtbl tables Additional Checks: Fex port membership of Vlan in vifvlanmbrsearchtable table Ports configured as "switchport monitor" will be skipped

Ports configured as "switchport mode private-vlan" will be skipped For additional PVLAN membership vlan checks use:

"show consistency-checker membership vlan [vlan-id] private-vlan"

Checking hardware for Module 1 Unit 0 No FEX interfaces to validate Consistency Check: PASSED Vlan:10, Hardware state consistent for:

Ethernet1/1 Ethernet1/47 Ethernet1/48

Decode Flood Interfaces Option #1: Consistency Checker

Detailed output:

```
Leaf-1# show consistency-checker membership vlan 10 detail
"expectedDetails": {},
          "actualDetails": {
           "hwTableName": "tah sug qsmt ovtbl",
           "hwIndexName": "data",
           "tableData": [
             "number": 1,
             "units": [
                "number": 0,
                "slices": [
                  "number": 0,
                  "bitmap": "0x00000000:0x000000c0:0x00010000"
                                                                                     Slide 52
<snip>
```

Translated Bitmap on Slide 52

Decode Flood Interfaces Option #2: ELAM and ASIC Hardware Tables

```
Leaf-1# attach module 1
module-1# debug platform internal tah elam
module-1(TAH-elam)# trig init slice 0 in-select 6 use-src-id 32
Slot 1: param values: start asic 0, slice 0, lu-a2d 1, in-select 6, out-select 0,
src id 32
module-1(TAH-elam-insel6)# set outer arp source-ip 10.10.10.1 target-ip
10.10.10.254
module-1(TAH-elam-insel6)# start
module-1(TAH-elam-insel6)# report
SUGARBOWL ELAM REPORT SUMMARY
slot - 1, asic - 0, slice - 0
Incoming Interface: Eth1/1
Src Idx : 0x1, Src BD : 10
Outgoing Interface Info: dst_ptr 10, dst_ptr_is_flood 1
<snip>
```

module-1# hex 100xa


Decode Flood Interfaces Option #2: ELAM and ASIC Hardware Tables

```
module-1(TAH-elam-insel6)# debug hardware internal sug dump asic 0 slice
0 table tah_sug_qsmt_ovtbl 0xa changed field-per-line
asic instance is 0
asic slice is 0
tbl name is tah sug qsmt ovtbl
start entry is 10
change entries only
one field per line
Block base address: 0x01400000
1st table entry address: 0x016800a0
FNTRY[10] = {
data=0x00000000:0x000000c0:0x00010000
```


Decode Flood Interfaces Option #2: ELAM and ASIC Hardware Tables

• Starting from right and moving to the left in the above hex string, each value holds 4 bits (starting from 0 on the far right). Therefore, if we count the bits:

• This bitmap corresponds to the Sport column values under "show interface hardware-mappings"

```
show interface hardware-mappings | i 16|38|39|Sport
        Ifindex Smod Unit HPort FPort NPort VPort Slice SPort SrcId MacId MacSP VIF Block BlkSrcID
Name
Eth1/1
        1a000000 1
                          16 255
                                                         32 4
                                                   16
<ain>>
                                                    38
                                                          68 8
Eth1/47
         1a005c00 1
                                                                   4 1537
                     0 38 255 184
                                                                                 68
                                                          70 8
Eth1/48
         1a005e00 1
                          39
                              255 188 -1
                                                                       1537
<snip>
```

ELAM for ARP Reply

For the ARP Reply, you can just get the results from an ARP ELAM for the reverse flow:

Leaf-1(TAH-elam-insel6)# set outer arp source-ip-addr 10.10.10.254 target-ip-addr 10.10.10.1 EX3(TAH-elam-insel6)# start EX3(TAH-elam-insel6)# report SUGARBOWL ELAM REPORT SUMMARY slot - 1, asic - 0, slice - 0 _____ Incoming Interface: Eth1/47

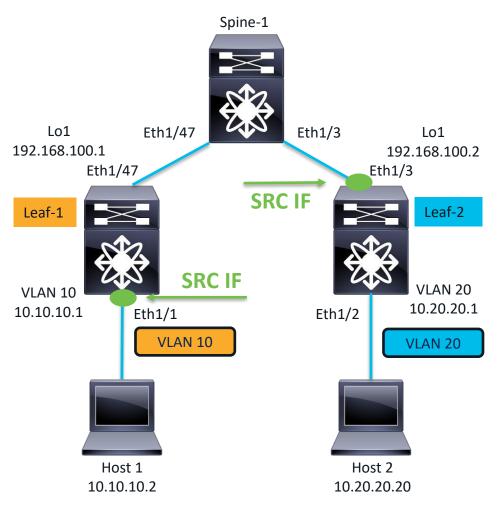
Src Idx: 0x601, Src BD: 10

Outgoing Interface Info: dmod 1, dpid 16

Dst Idx: 0x1, Dst BD: 10

Packet Type: ARP

<snip>


Target Hardware address: 10:B3:D6:A4:BA:17 Sender Hardware address: 00:00:0C:9F:F0:0A

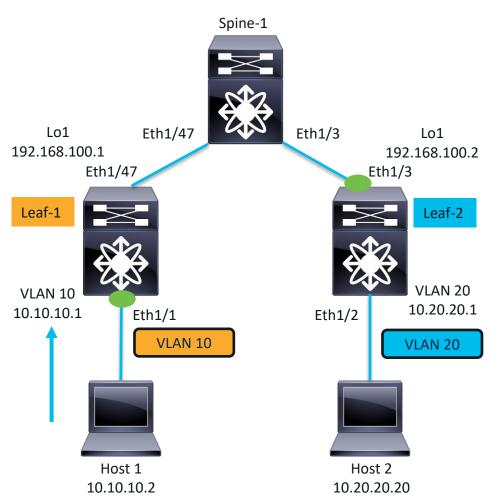
Target Protocol address: 10.10.10.1 Sender Protocol address: 10.10.10.254

ARP opcode: 2

Scenario #3: VXLAN Flow – Is the fabric dropping the packet?

 Determine your SRC Interface and its slice number and source ID on each switch:

Leaf-1# show system internal ethpm info interface eth1/1 | i dpid IF STATIC INFO:


port_name=Ethernet1/1,if_index:0x1a000000,ltl=6144,slot=0, nxos_port=0,dmod=1,dpid=16,unit=0,queue=65535,xbar_unitbmp=0x0,ns_pid=255_slice_num=0,port_on_slice=16_src_id=32

Leaf-2# show system internal ethpm info interface eth1/3 | i dpid IF STATIC INFO:

port_name=Ethernet1/3,if_index:0x1a000400,ltl=6136,slot=0, nxos_port=8,dmod=1,dpid=18,unit=0,queue=65535,xbar_unitbmp=0x0,ns_pid =255,slice_num=0,port_on_slice=18_src_id=36

Confirm that the packet is non-encapsulated on ingress for Leaf-1, but it would be encapsulated on ingress for Leaf-2

Scenario #3: VXLAN Flow – Is the fabric dropping the packet?

Leaf-1# debug platform internal tah elam

Leaf-1(TAH-elam)# trig init slice 0 in-select 6 use-src-id 32

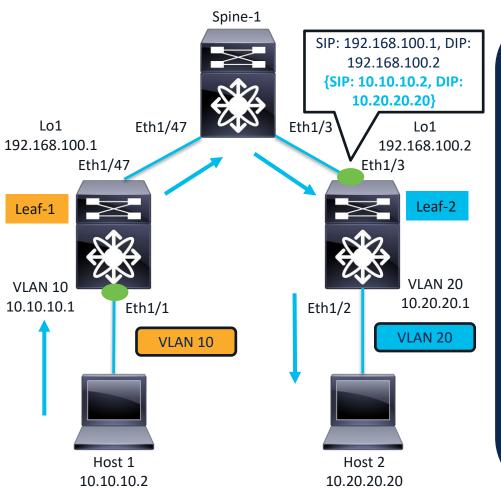
Slot 1: param values: start asic 0, slice 0, lu-a2d 1, in-select 6, out-select 0, src id 32

Leaf-1(TAH-elam-insel6)# set outer ipv4 src_ip 10.10.10.2 dst_ip 10.20.20.20 Leaf-1(TAH-elam-insel6)# start

Leaf-1(TAH-elam-insel6)# report

TACDCN-2010

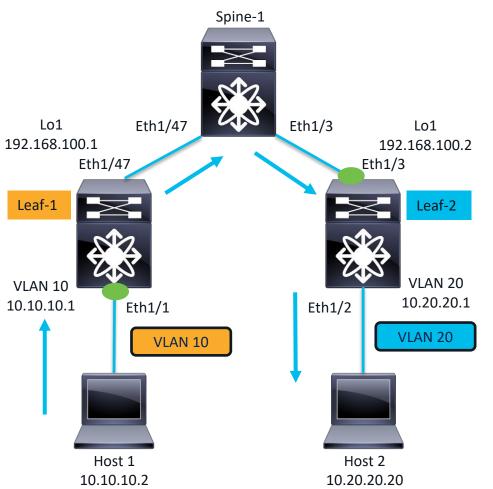
Leaf-2# debug platform internal tah elam


Leaf-2(TAH-elam)# trig init slice 0 in-select 9 use-src-id 36

Slot 1: param values: start asic 0, slice 0, lu-a2d 1, in-select 9, out-select 0, src id 36

Leaf-2(TAH-elam-insel6)# set inner ipv4 src_ip 10.10.10.2 dst_ip 10.20.20.20 Leaf-2(TAH-elam-insel6)# start

Leaf-2(TAH-elam-insel6)# report


Scenario #3: VXLAN Flow – Is the fabric dropping the packet?


```
Leaf-1# report
SUGARBOWL ELAM REPORT
SUMMARY
slot - 1, asic - 0, slice - 0
Incoming Interface: Eth1/1
Src Idx: 0x1, Src BD: 10
Outgoing Interface Info: dmod 1
dpid 38
Dst Idx: 0xb9, Dst BD: 200
<snip>
Dst IPv4 address: 10.20.20.20
Src IPv4 address: 10.10.10.2
<snip>
```

Leaf-2# report SUGARBOWL ELAM REPORT SUMMARY slot - 1, asic - 0, slice - 0 ______ **Incoming Interface: Eth1/3** Src Idx: 0x9, Src BD: 200 Outgoing Interface Info: dmod 1, dpid 17 Dst Idx: 0x5, Dst BD: 20 Outer Dst IPv4 address: 192.168.100.2 Outer Src IPv4 address: 192.168.100.1 <snip> **Inner Payload** Inner Dst IPv4 address: 10.20.20.20 Inner Src IPv4 address: 10.10.10.2 <snip>

Scenario #3: VXLAN Flow – Is the fabric dropping the packet?

Leaf-1# show system internal ethpm info global | i dpid=38


IF_STATIC_INFO:
port_name=Ethernet1/47, if_index:0x
1a005c00,ltl=5960,slot=0,
nxos_port=184,dmod=1,dpid=38 unit
=0,queue=65535,xbar_unitbmp=0x0,
ns_pid=255,sli
ce_num=0,port_on_slice=38,src_id=6
8

Leaf-2# show system internal ethpm info global | i dpid=17

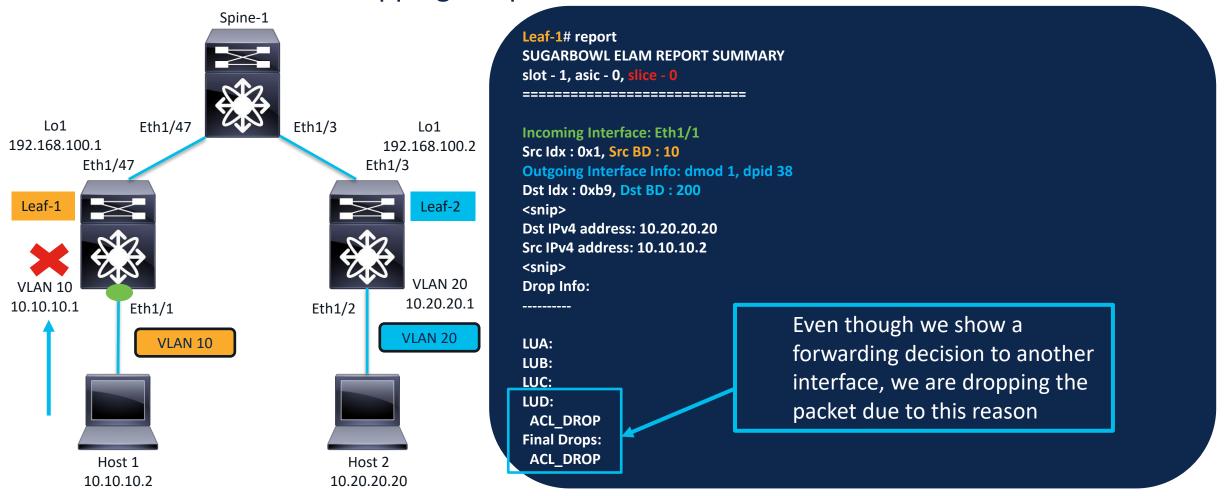
IF_STATIC_INFO:
port_name=Ethernet1/2,if_index:0x1
a000200,ltl=6140,slot=0,
nxos_port=4_dmod=1,dpid=17,unit=0,
queue=65535,xbar_unitbmp=0x0,ns_
pid=255,slice_
num=0,port_on_slice=17,src_id=34

Scenario #4: Are we dropping the packet?

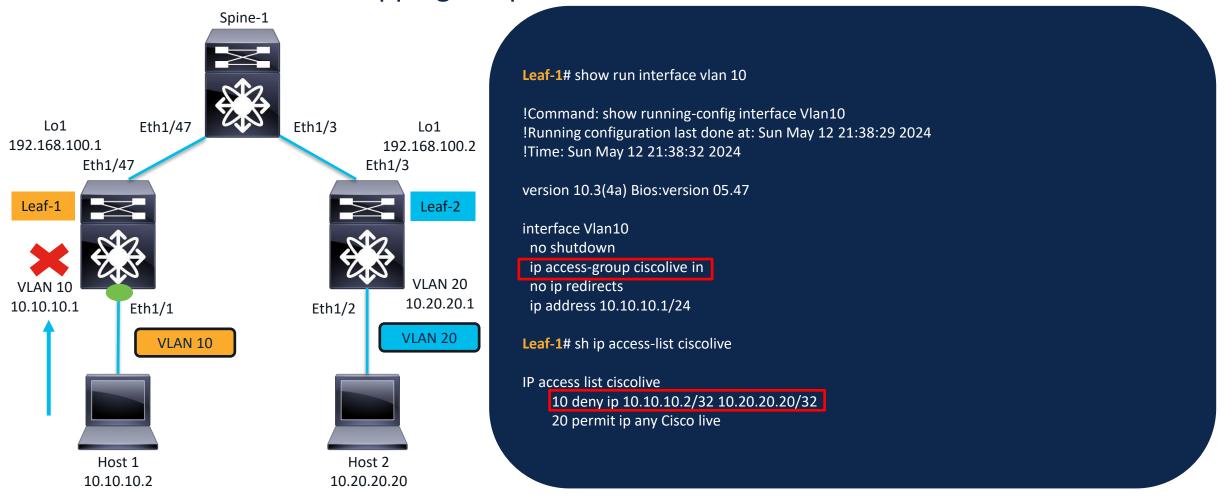
Leaf-1# debug platform internal tah elam

Leaf-1(TAH-elam)# trig init

Slot 1: param values: start asic 0, start slice 0, lu-a2d 1, in-select 6, out-select 0

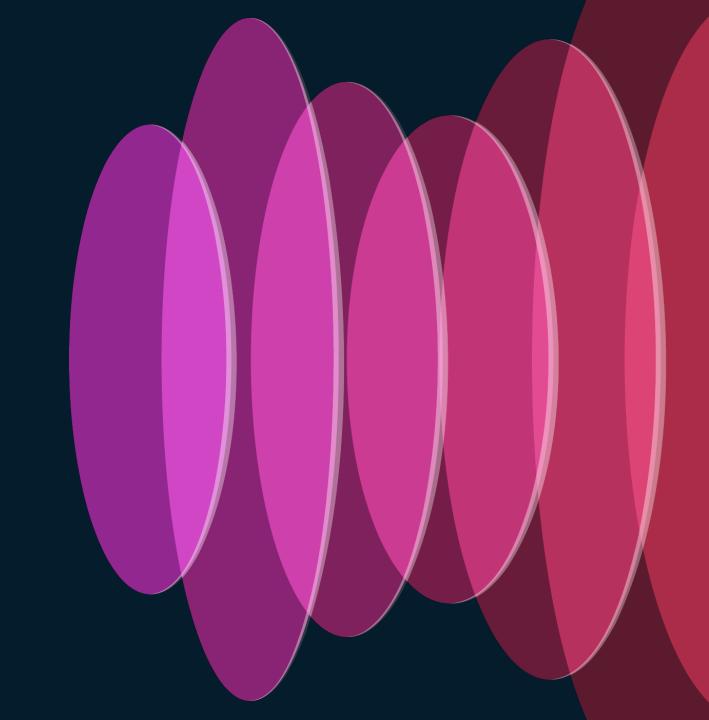

Leaf-1(TAH-elam-insel6)# set outer ipv4 src_ip 10.10.10.2 dst_ip 10.20.20.20

Leaf-1(TAH-elam-insel6)# start

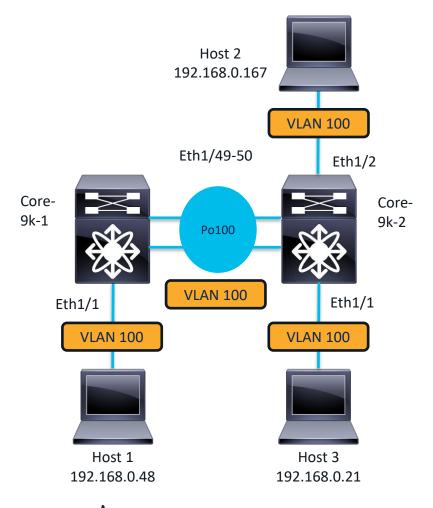

Leaf-1(TAH-elam-insel6)# report

Scenario #4: Are we dropping the packet?

Scenario #4: Are we dropping the packet?


Scenario #4: Are we dropping the packet?

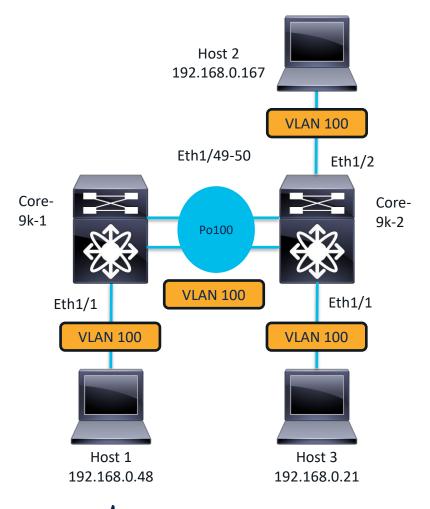
- Most common drop codes for ELAM/codes that indicate bad forwarding:
 - ACL_DROP: Frame/Packet matched on a deny entry for an ACL
 - IP_MTU_CHECK_FAILURE: Frame failed the MTU check for the interface
 - IP_SELF_FWD_FAILURE: IP Redirects enabled on the SVI
 - ROUTING_DISABLED: Routing for particular vlan disabled
 - SRC_VLAN_MBR: Packet/Frame received on an interface where the vlan is not configured/programmed
 - TTL_EXPIRED: Packet received on an interface that causes the TTL to be decremented to zero, resulting in a drop
 - UC_DF_CHECK_FAILURE: vPC loop avoidance failure
 - UC_PC_CFG_TABLE_DROP: No route in the VRF for the destination
 - UC_RPF_FAILURE:
 - UC_TENANT_MYTEP_BRIDGE_MISS: VXLAN leaf receiving traffic from a leaf for which it has not learned any
 hosts/routes; it does not have a peering with that VTEP
 - UC_TENANT_MYTEP_ROUTE_MISS: VXLAN leaf in the particular tenant VRF does not have a route for the given destination


Tool #4:

Consistency-Checker

cisco live!

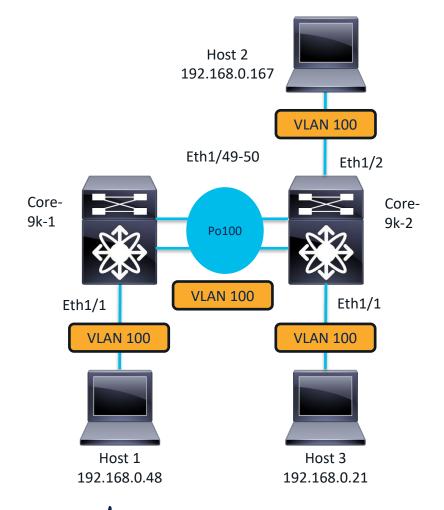
Example Customer Scenario



Problem Description:

You have devices in vlan 100 in a similar (simplified) topology to that on the left. Some can resolve ARP and ping, while others cannot ping or even resolve ARP.

How would you troubleshoot this?

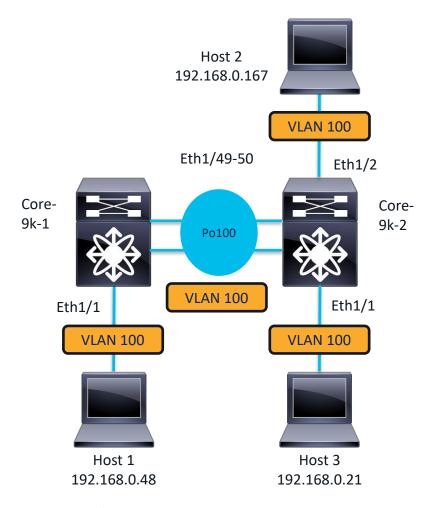

Example Customer Scenario

Normal Troubleshooting Reveals:

- Links from the switches to the affected devices (and between the switches themselves) were tested and found to be clean
- MACs of affected devices are learned on relevant interfaces.
- STP found to be forwarding on all relevant interfaces
- No ACLs on the core switches
- Host 2 can always resolve ARP and Host 3, and can resolve ARP for Host 1, but not ping it
- Host 1 cannot resolve ARP for Host 2, but if Host 2 tries, it successfully pings it

Example Customer Scenario

Troubleshooting Using Our Session's Tools (So Far) Reveals:


- No software switching of the traffic on either of the switches for any flows, as per Ethanalyzer
- Multiple ELAM captures reveal the following:
 - For the ARP traffic between Hosts 1 and 3, the ARP Request is flooded and the Reply is seen to ingress and egress Eth1/49 on Core-9k-1
 - ICMP traffic between Hosts 1 and 3 shows the Request Entering Core-9k-1 on Eth1/49, and the Reply is seen leaving Eth1/50
 - ARP traffic between Hosts 1 and 2 shows the Request makes it to Host 2, and the Reply is sent by Core-9k-2 on Eth1/50
 - When Host 3 attempts to Host 1, all traffic is seen on Eth1/49 between Eth1/49 on both switches?

Eth1/50 appears to have some issue, but what is it and how can we figure it out?

Forwarding State/Feature Consistency Verification Tool

- Validates consistency between software and hardware programming of many features
 - Grabs output directly from ASIC hardware tables and compares it to the existing configuration
 - Includes both L2 and L3 features and technologies such as Switching, Unicast/ Multicast Routing, VXLAN config checks, Interface Programming Checks
- Can complement troubleshooting done with Ethanalyzer and ELAM
- Syntax:
 - Show consistency-checker [feature/technology] [feature options] [detail]

Example Customer Scenario

Using the consistency checker for our problem:

Core-9k-1# show consistency-checker member vlan 100 <snip>
Checking hardware for Module 1 Unit 0

Consistency Check: FAILED

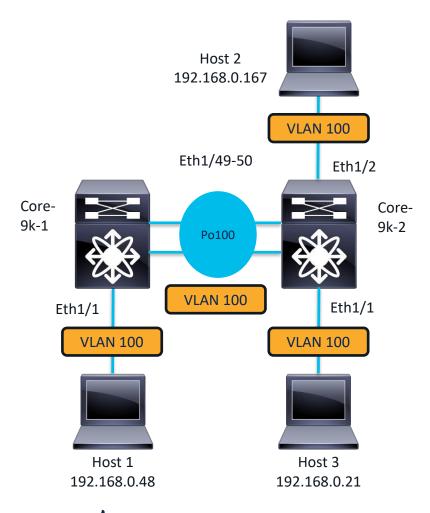
Vlan:10, Hardware state consistent for:

Ethernet1/1 Ethernet1/49

<snip>

Vlan:10, Hardware state inconsistent for:

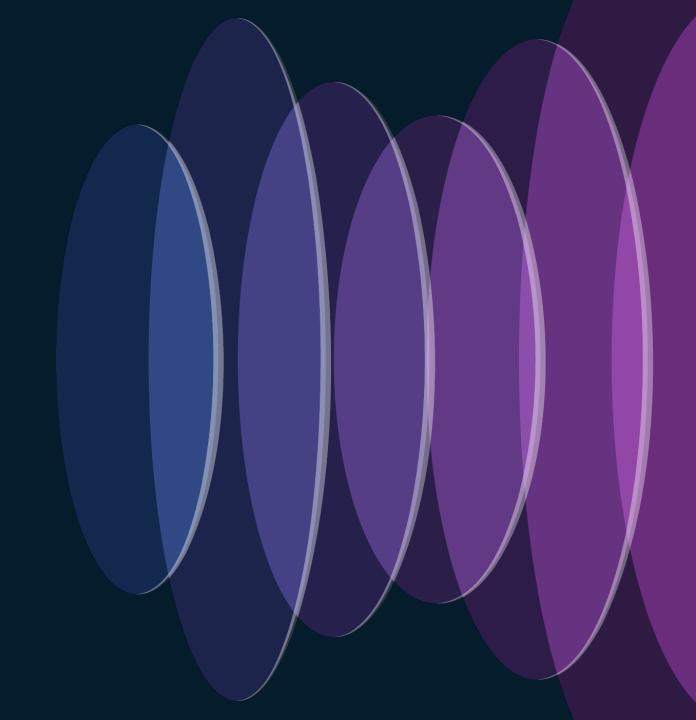
Ethernet1/50


Other commands that would work in this instance:

show consistency-checker stp-state vlan 100

show consistency-checker I2 switchport int port-channel 100

Example Customer Scenario: Resolution Steps



- You've identified the underlying issue. Now what?
- Steps:
 - Grab a [show tech detail] and/or relevant feature show techs
 - Flap the relevant SVI/interface/route
 - If flapping doesn't work, perform [reload ascii]
 - Regardless of flapping/reloads working, take a show tech detail/feature show tech after
 - For further analysis, you can send your troubleshooting results and the show techs to TAC

Tool #5:

Show Troubleshoot

cisco live!

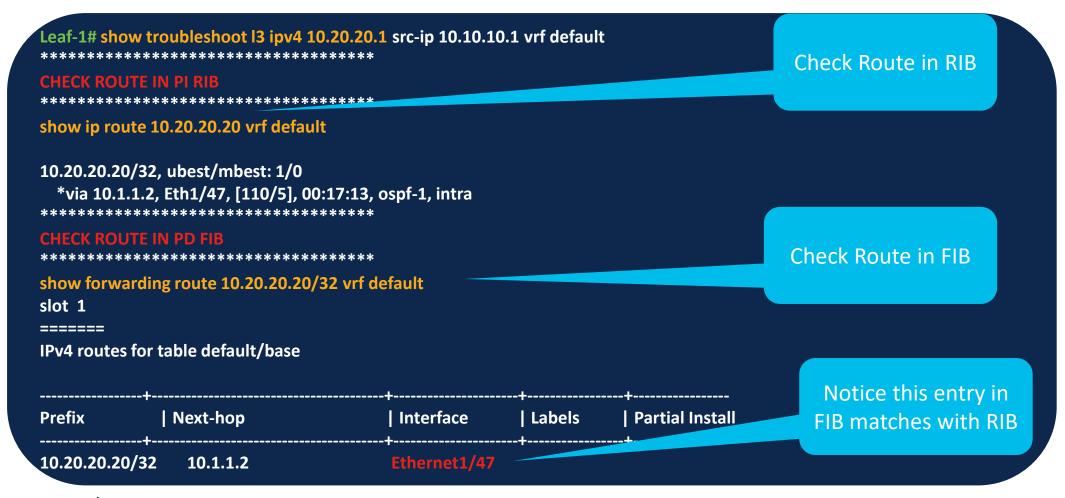
Troubleshoot Command

- Helps us check MAC and IP route programming in hardware
 - Gathers hardware and software table commands
 - · Nests and organizes commands and their output for more coherent viewing

Syntax

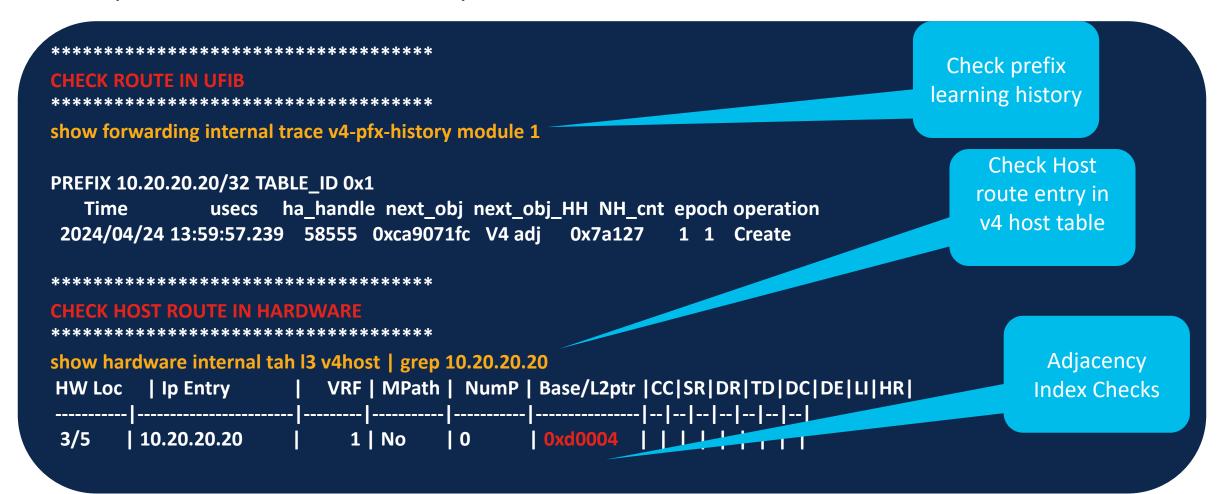
• L2:

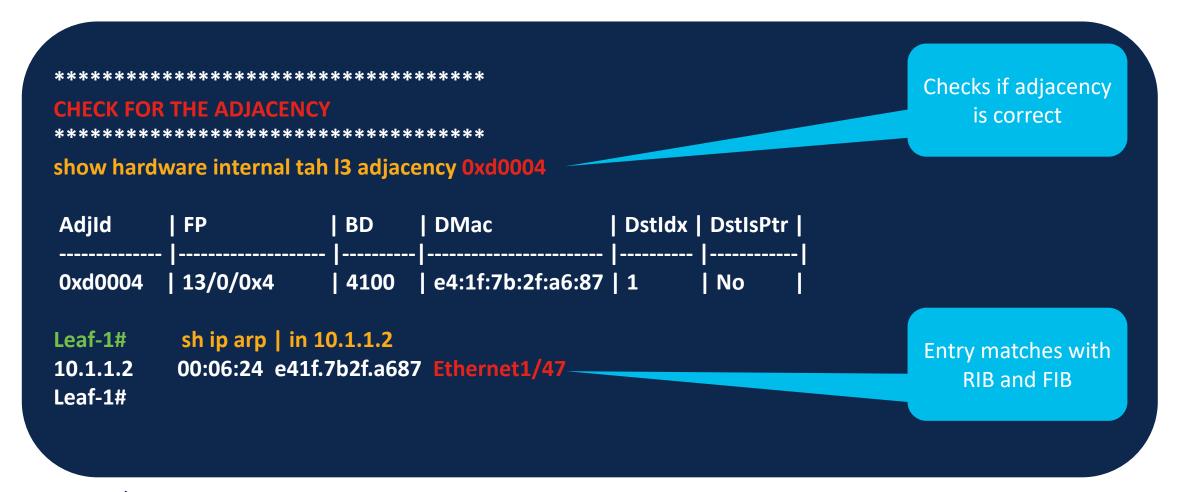
Leaf-1#show troubleshoot |2 [mac|port-channel] [interface | vlan]


• L3

Leaf-1#show troubleshoot |3 [ipv4|ipv6] [src-ip|vrf] [IP|vrf_name]

Troubleshoot Command


Example of L3 Troubleshoot Output



Troubleshoot Command

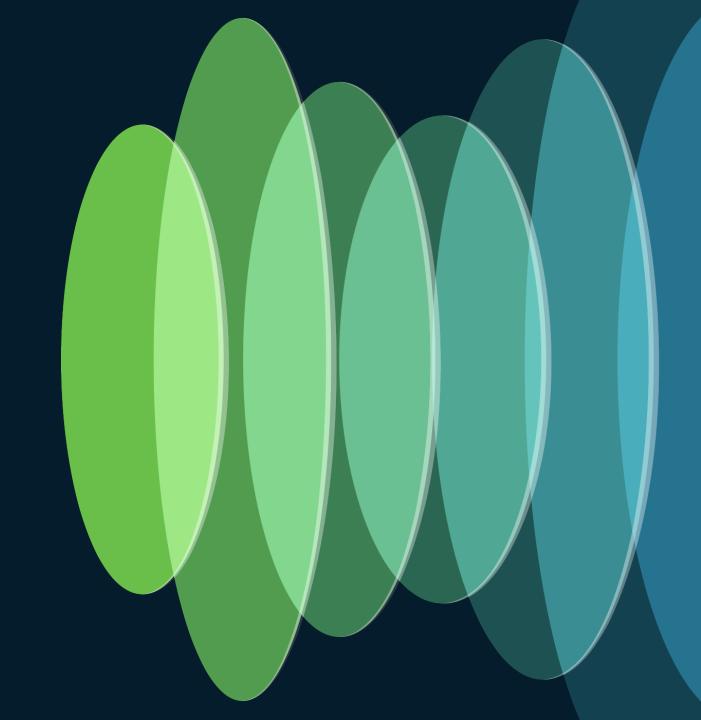
Example of L3 Troubleshoot Output

Example of L3 Troubleshoot Output

Example of L3 Troubleshoot Output

Example of L2 Troubleshoot Output

Example of L2 Troubleshoot Output


```
Leaf-1# show troubleshoot I2 mac 689e.0b8b.0327 vlan 10 detail
MAC: 689e.0b8b.0327 Vlan: 10
Show spanning-tree VLAN 10
VLAN Name
             Status Ports
10 VLAN0010 active Eth1/1
             Vlan-mode
VLAN Type
10 enet
show mac address-table address 689e.0b8b.0327 vlan 10
Legend:
   * - primary entry, G - Gateway MAC, (R) - Routed MAC, O - Overlay MAC
   age - seconds since last seen,+ - primary entry using vPC Peer-Link,
   (T) - True, (F) - False, C - ControlPlane MAC, ~ - vsan
 VLAN MAC Address Type age Secure NTFY Ports
 10 689e.0b8b.0327 dynamic 0 F F Eth1/1
```

Example of L2 Troubleshoot Output

```
show system internal l2fm l2dbg macdb address 689e.0b8b.0327 vlan 10
Legend
Db: 0-MACDB, 1-GWMACDB, 2-SMACDB, 3-RMDB, 4-SECMACDB 5-STAGEDB
Src: 0-UNKNOWN, 1-L2FM, 2-PEER, 3-LC, 4-HSRP
  5-GLBP, 6-VRRP, 7-STP, 8-DOTX, 9-PSEC 10-CLI 11-PVLAN
  12-ETHPM, 13-ALW LRN, 14-Non PI MOD, 15-MCT DOWN, 16 - SDB
  17-OTV, 18-Deounce Timer, 19-AM, 20-PCM DOWN, 21 - MCT UP
  22-VxLAN, 23-L2RIB 24-CTRL, 25-UFDM
Slot:0 based for LCS 31-MCEC 20-OTV/ORIB
VLAN: 10 MAC: 689e.0b8b.0327 FE ID: 0
               If/swid
                                    Src Slot FE-BMP
 Time
                          Db Op
                                                                   Count Detail
Apr 24 13:56:37 2024:176320 0x0901000a 0
                                            REGDB ADD
                                                                   0 0 0xffff
Apr 24 13:56:37 2024:176334 0x1a000200 0
                                            MAC NOTIF AM MOVE 1 0 0xffff
VLAN: 10 MAC: 689e.0b8b.0327
 Time
               If/swid Db Op Src Slot FE-BMP Count Detail
Apr 24 13:56:32 2024:729  0x1a000200 0 INSERT
                                                  3 0 0x1
```


Tool #6: iCAM

cisco live!

Intelligent CAM Analytics and Machine-learning (iCAM)

- iCAM provides resource monitoring and analytics.
- You can obtain traffic, scale and resource (usage level) monitoring for the following resources and functions:

Enable Feature icam and monitoring

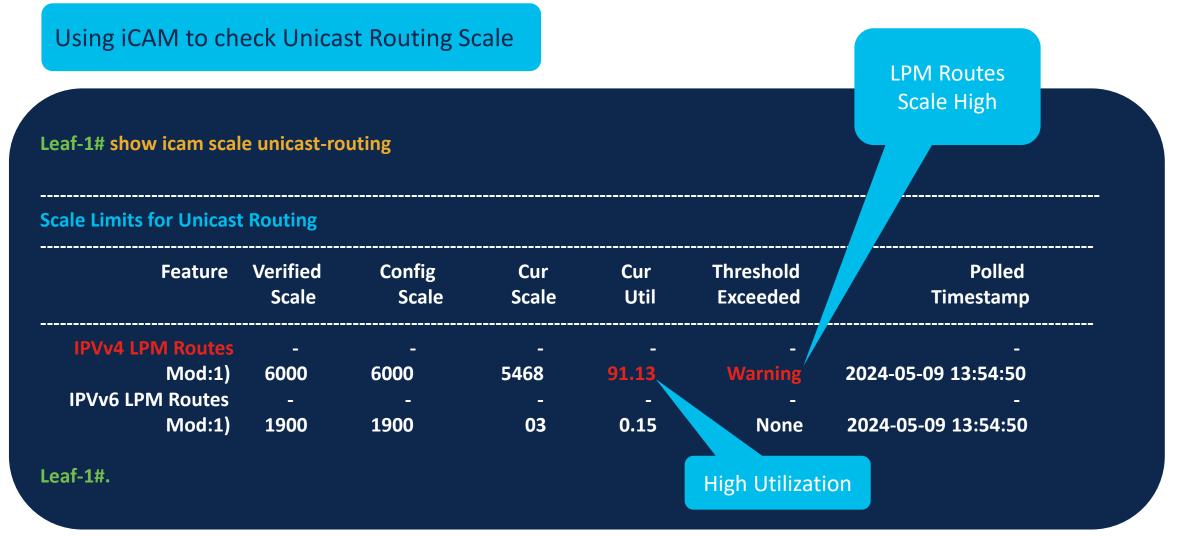
Leaf-1(config)# feature icam
Leaf-1(config)#icam monitor scale

Beginning with 9.3(5)

This feature is enabled by default

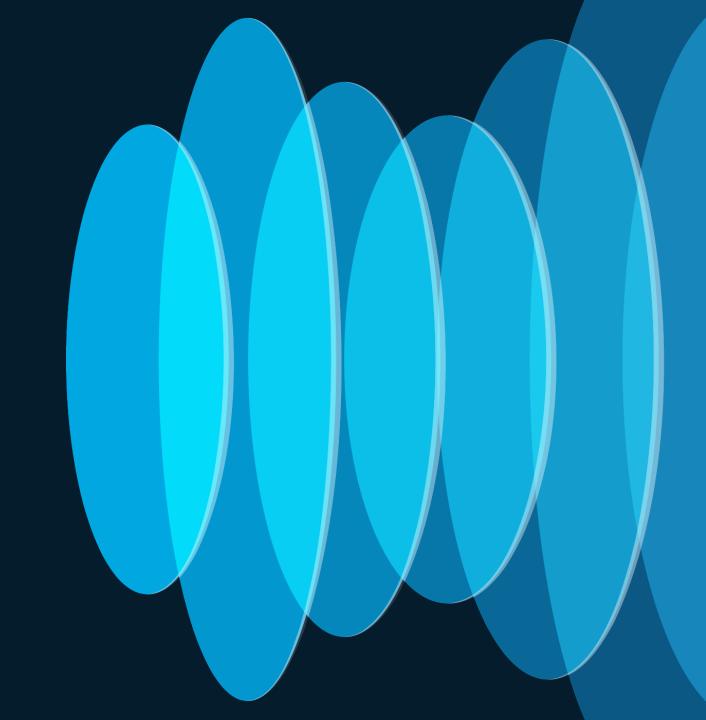
iCAM monitoring

ACL TCAM entries	ACL TCAM resource utilization
Forward information base (FIB) TCAM resource utilization	Layer 2 Switching
Unicast routing	Multicast Routing
VXLAN	Process memory
Shared memory	



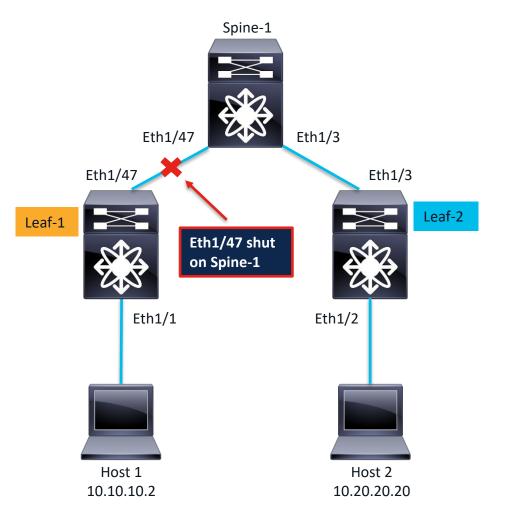
Intelligent CAM Analytics and Machine-learning (iCAM)

Using iCAM to check L2-Switching Scale **VLAN Utilization Level** Critical Leaf-1# show icam scale l2-switching **Scale Limits for L2 Switching** Verified Config Cur Threshold. **Polled** Feature Cur Scale Scale Scale Util Exceede **Timestamp MAC Addresses** 0.01 Mod:1,FE:0) 92000 92000 16 None 2024-05-09 13:54:50 **VLANs** 3967 3000 3839 127.96 Critical 2024-05-09 13:54:50 (VDC:1) Critical 3839 127.96 2024-05-09 13:54:50 Isolated Port*Vlan 190000 190000 None 2024-05-09 13:54:50 0 (VDC:1) 2024-05-09 13:54:50 0 None Leaf-1#



Intelligent CAM Analytics and Machine-learning (iCAM)

Tool #7: PIE

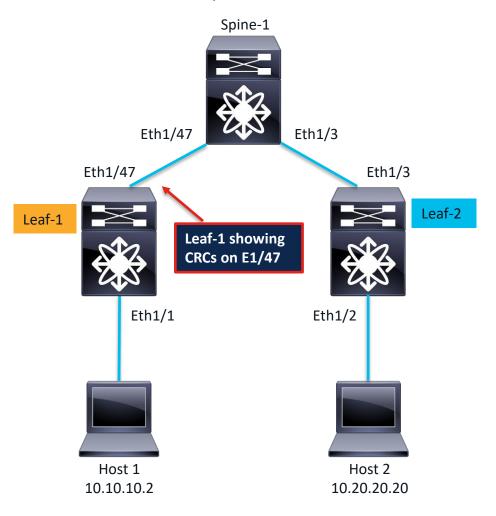

cisco live!

Platform Telemetry Tool

- Platform Insights Engine
- Can help to identify or RCA issues with different Layer 1 issues
- Supported on Cloudscale ToR switches starting on 10.2(1)
 - EoR Cloudscale (not Fretta) linecards supported as of 10.2(2)

Scenario #1: Link Failure

Leaf-1# show pie interface ethernet 1/47 link-down-rca


2024-05-01 04:56:42 Event Id: 00003377 Ethernet1/50

Source Id: 436232704 RCA Code: 1

Reason: No Signal from peer is detected .Please check peer configuration.

- Apart of Link Debug Telemetry to assist with more granular L1 link issues related to signaling
- Show pie interface ethernet X [link-down-rca|link-flap-rca] [detail]

Scenario #2: Optic Health

Leaf-1# show pie interface e1/47 transceiver-insights

2024-05-01 01:03:26 Event Id: 00008608 Event Class: xcvr DOM DB

Event Interface: Ethernet1/1

Health Metric: ------BAD----- Mod: 01

- Provides metrics for optics to indicate source of link flaps or optic health with respect to current/voltage/power
- Only supported when DOM is supported on the transceiver
- Show pie interface ethernet X [transceiver-insights] [detail]

Scenario #3: Environment Monitoring (PSUs and FANs)

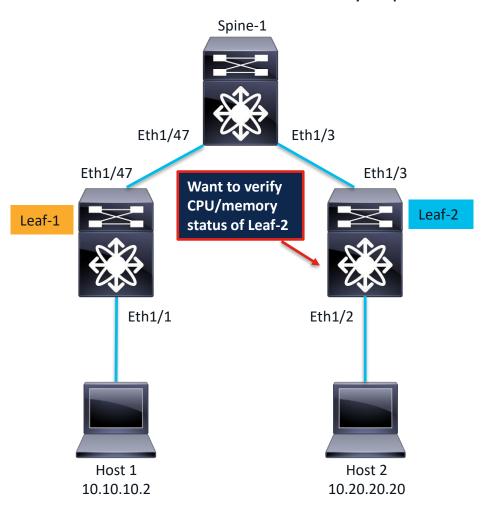
Leaf-1# show pie envmon fan

2024-05-01 05:36:32 Event Id: 00003419 Event Class: Fan insights

Source Id: 0x0102 Mod: 01

fan_health : PIE_ENTITY_HEALTH_BAD

Leaf-1# show pie envmon psu all


2024-05-01 05:36:32 Event Id: 00003418 Event Class: PSU insights

Source Id: 0x0101 Mod: 01

psu health : PIE ENTITY HEALTH GOOD

- Provides metrics for all fan and PSU statuses.
- Show pie envmon fan [detail]
- Show pie envmon psu [#|all] [detail]

Scenario #4: CPU and Memory Top Talkers

Leaf-2# show pie envmon cpu-usage

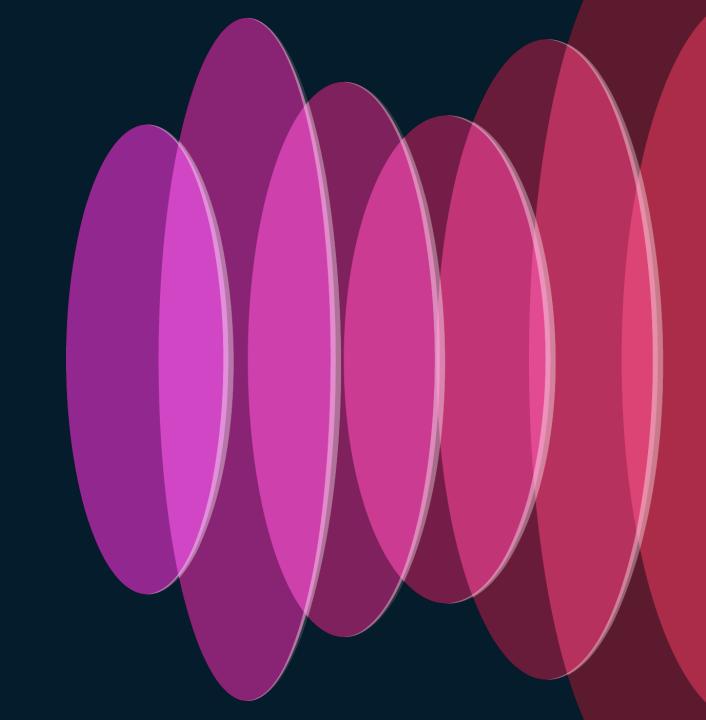
2024-05-01 06:06:35 Event Id: 00003453 Event Class: CPU usage

Source Id: 0x0102 Mod: 01 insights

> Cpu Health : Normal

Leaf-2# show pie envmon mem-usage

2024-05-01 06:06:35 Event Id: 00003454 Event Class: MEM usage


Source Id: 0x0102 Mod: 01 insights

> Memory_Health : OK

- Shows overall CPU/memory status and top 10 talkers
- Show pie env cpu-usage [detail]
- Show pie env mem-usage [detail]

Summary

Summary

Tool #1: Ethanalyzer – Captures packet going to and from CPU

Tool #2: SPAN-to-CPU — Captures Passthrough Traffic

Tool #3: ELAM – Captures 1 packet at a time

Tool #4: Consistency Checker – Checks consistency of various component

Tool #5: Show troubleshoot - Check hardware programming for I2 and I3 entries

Tool #6: iCAM - iCAM provides resource monitoring and analytic

Conclusion

In conclusion, NXOS is a feature rich OS with lots of inbuilt tools.

If you know how to use them, it will expand your tool and empower you in your troubleshooting.

Question & Answer

cisco live!

Additional Reference Resources

ELAM

https://www.cisco.com/c/en/us/support/docs/switches/nexus-9000-series-switches/213848-nexus-9000-cloud-scale-asic-tahoe-nx-o.html

https://www.youtube.com/watch?v=s0PSHN2Qxhc

Ethanalyzer

https://www.cisco.com/c/en/us/support/docs/switches/nexus-7000-series-switches/116136-trouble-ethanalyzer-nexus7000-00.html

Continue your education

- Visit the Cisco Showcase for related demos
- Book your one-on-one
 Meet the Engineer meeting
- Attend the interactive education with DevNet, Capture the Flag, and Walk-in Labs
- Visit the On-Demand Library for more sessions at www.CiscoLive.com/on-demand

Contact me at: vinsawan@cisco.com, crissoto@cisco.com

Complete Your Session Evaluations

Complete a minimum of 4 session surveys and the Overall Event Survey to be entered in a drawing to win 1 of 5 full conference passes to Cisco Live 2025.

Earn 100 points per survey completed and compete on the Cisco Live Challenge leaderboard.

Level up and earn exclusive prizes!



Complete your surveys in the Cisco Live mobile app.

Thank you

