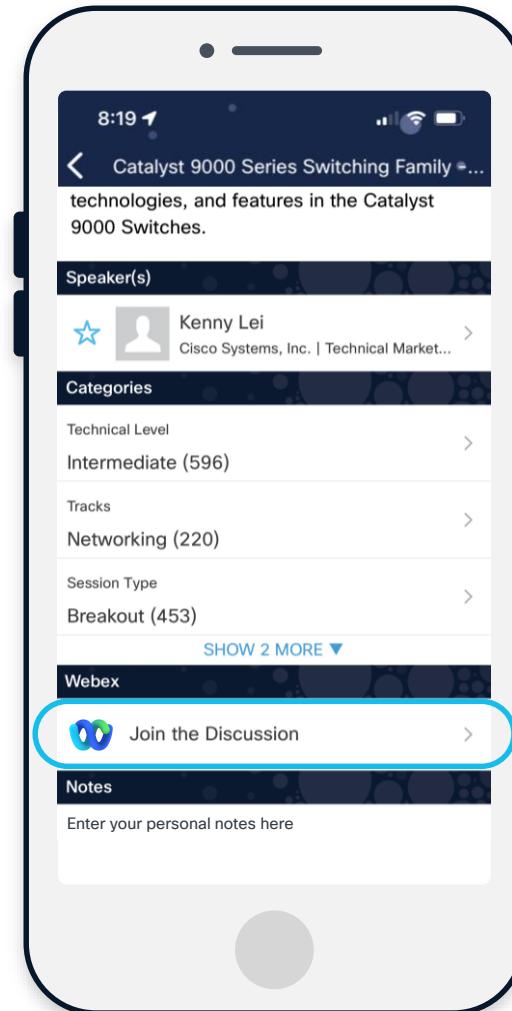


# Best Practices for Troubleshooting Cisco Catalyst 8000 Edge Platforms

**cisco** Live !

Michał Stanczyk  
Technical Leader, Cisco TAC  
CCIE #40054

# Cisco Webex App


## Questions?

Use Cisco Webex App to chat with the speaker after the session

## How

- 1 Find this session in the Cisco Live Mobile App
- 2 Click “Join the Discussion”
- 3 Install the Webex App or go directly to the Webex space
- 4 Enter messages/questions in the Webex space

**Webex spaces will be moderated by the speaker until June 13, 2025.**



<https://ciscoevents.cisco.com/ciscolivebot/#BRKTRS-2572>

# Disclaimer

## This session IS NOT about:

 Sales pitch

 Troubleshooting using mouse

 Cisco 8000 Series (IOS-XR)

## This session IS about:

 Defining and diagnosing problems

 Troubleshooting using keyboard

 Catalyst 8000 (IOS-XE) and its tools

## Session Goal

Boost your troubleshooting proficiency and confidence in tackling Catalyst 8000 platform issues either independently or with support of Cisco TAC

# Agenda

- 01 **Introduction**
- 02 **Packet Walk Through Catalyst 8000**
- 03 **Troubleshooting Packet Loss**
- 04 **Platform Resources Verification**
- 05 **Conclusion**

# Introduction

# Glossary



RP – Route Processor

FP – Forwarding Processor

QFP – Quantum Flow Processor

PPE – Packet Processing Engine

BQS – Buffering, Queueing, Scheduling

SoC – System on Chip

DPDK – Data Plane Development Kit

QAT – Quick Assist Technology

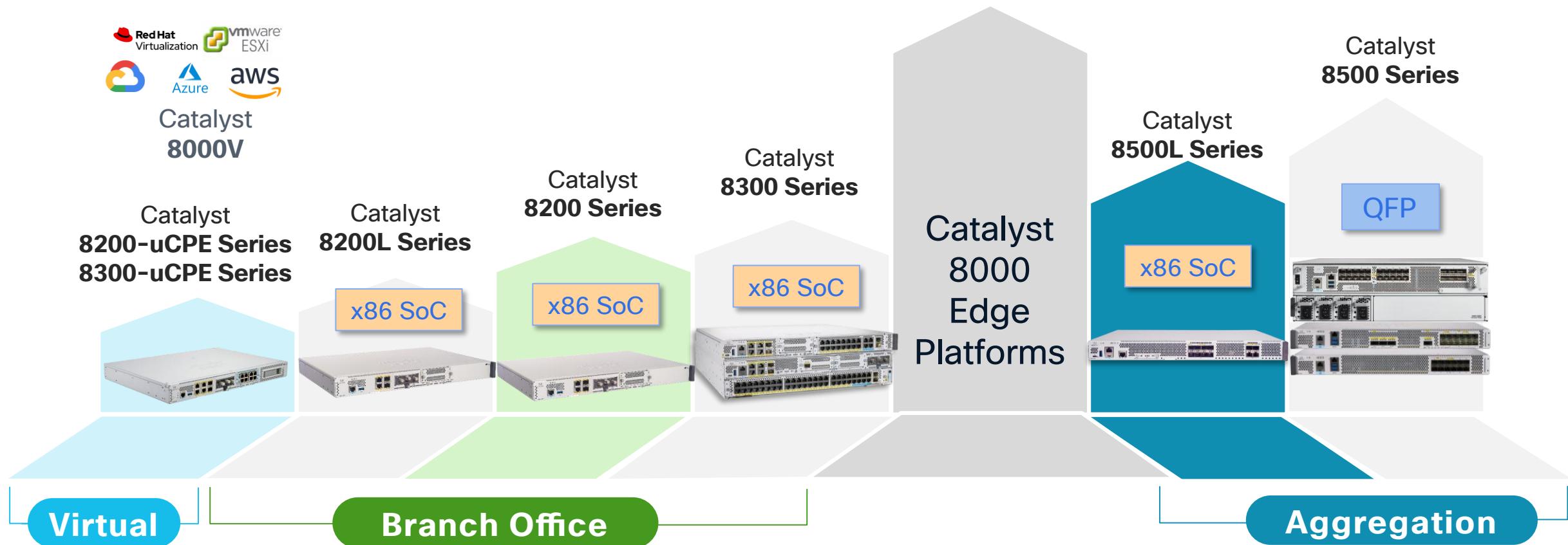
LBD – Load Based Distribution

NSFBD – Non-strict Flow Based Distribution

SFBD – Strict Flow Based Distribution

COFF – Crypto Offload

TM – Traffic Manager


EEM – Embedded Event Manager

RSS – Resident Set Size

CACE – Common Adaptive Classification Engine

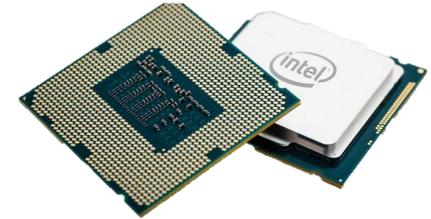
# Cisco Catalyst 8000 Edge Family

- \* QFP = Quantum Flow Processor
- \* SoC = System on Chip



# What's different?

Main architectural differences between Catalyst 8000 physical platforms


## QFP-based platforms (successors of ASR1000)

- C8500-20X6C
- C8500-12X4QC
- C8500-12X

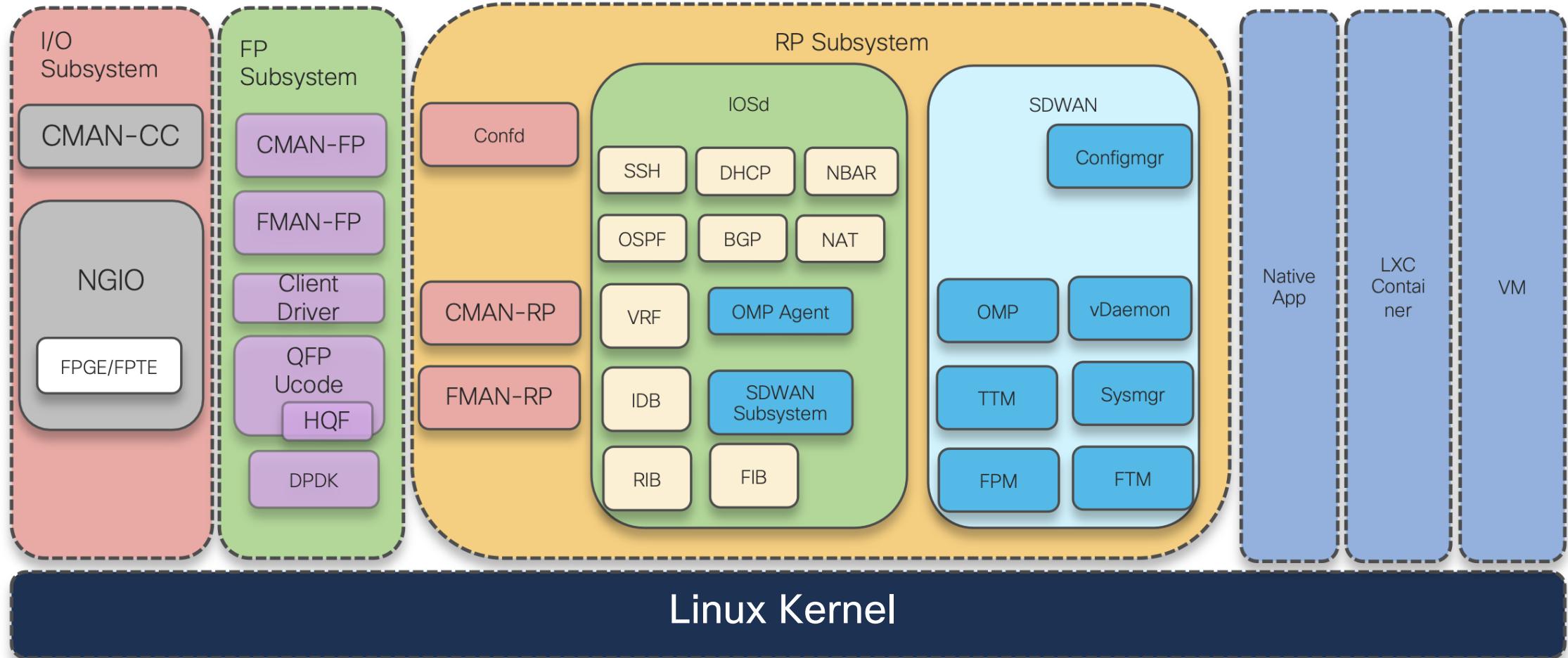


## x86 SoC (System on Chip) platforms (successors of ISR4000)

- C8200(L)
- C8300
- C8500L



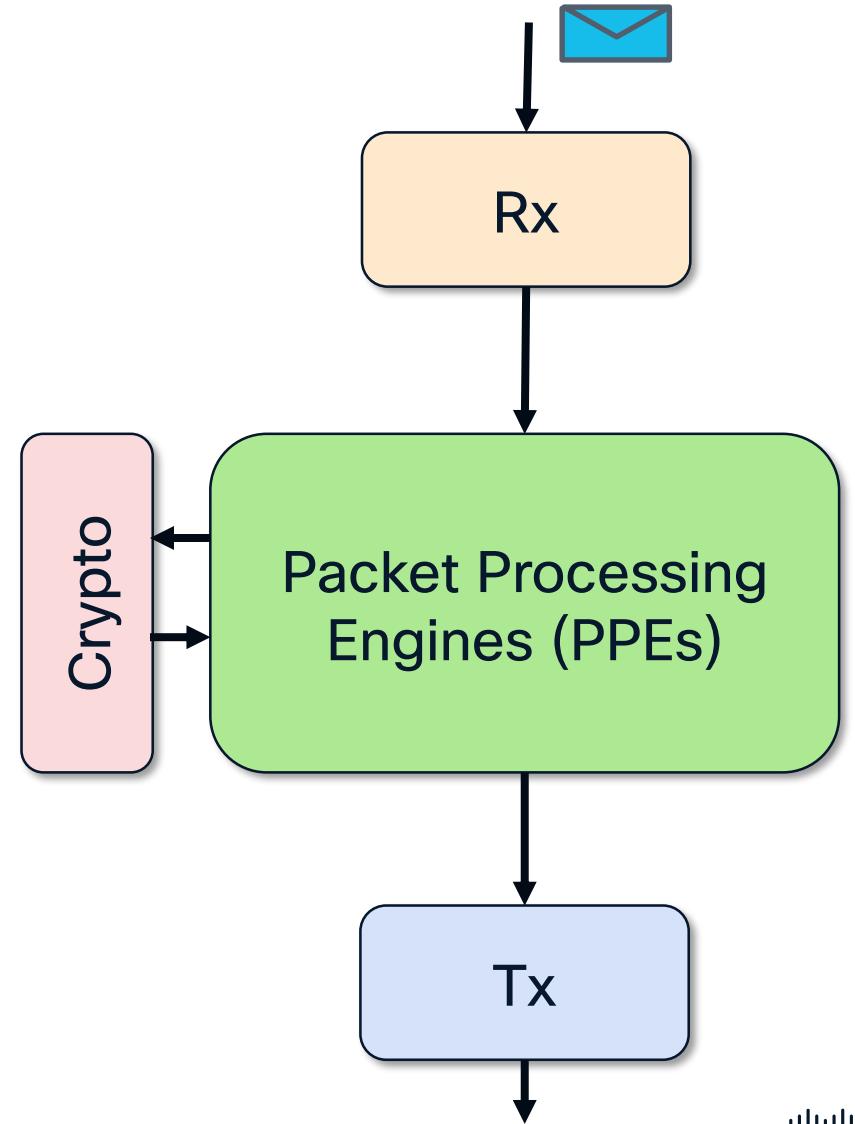
- Physical dataplane CPU (QFP 3.0)
- Hundreds of packet processing cores/threads
- Hardware accelerated crypto (16 crypto engines)
- Physical TCAM for classification lookups


- x86 CPU with DPDK for dataplane
- Up to ~20 CPU threads (Dynamic Core Allocation)
- QAT for in-line crypto acceleration
- QFP Resource Memory for classification lookups

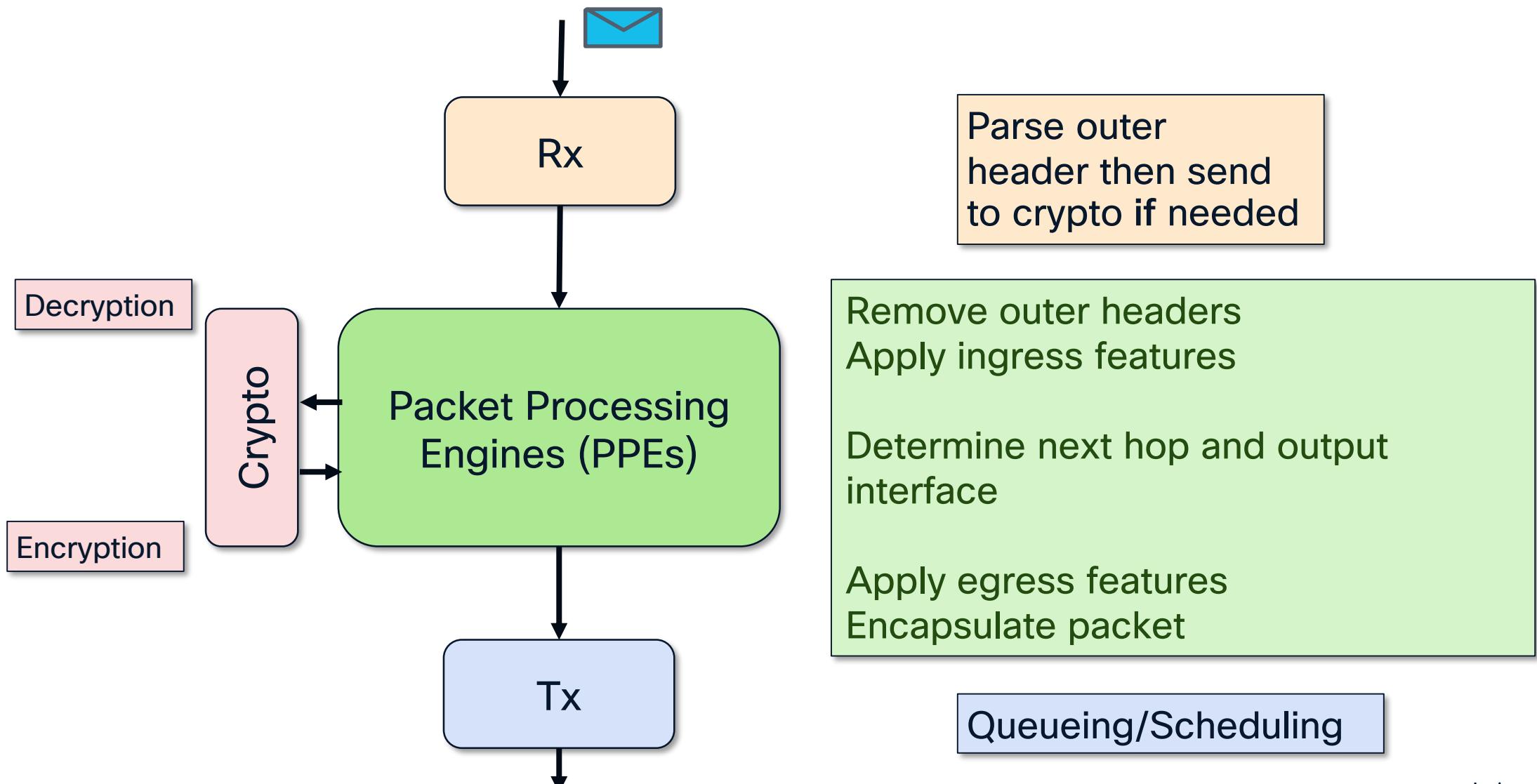
# What's common?

Common areas across Catalyst 8000 platforms

- IOS-XE software architecture
- Logging infrastructure (binary tracing/unified tracing)
- QFP datapath troubleshooting workflow and tools
  - Packet Trace
  - Embedded Packet Capture
  - Conditional Debugging

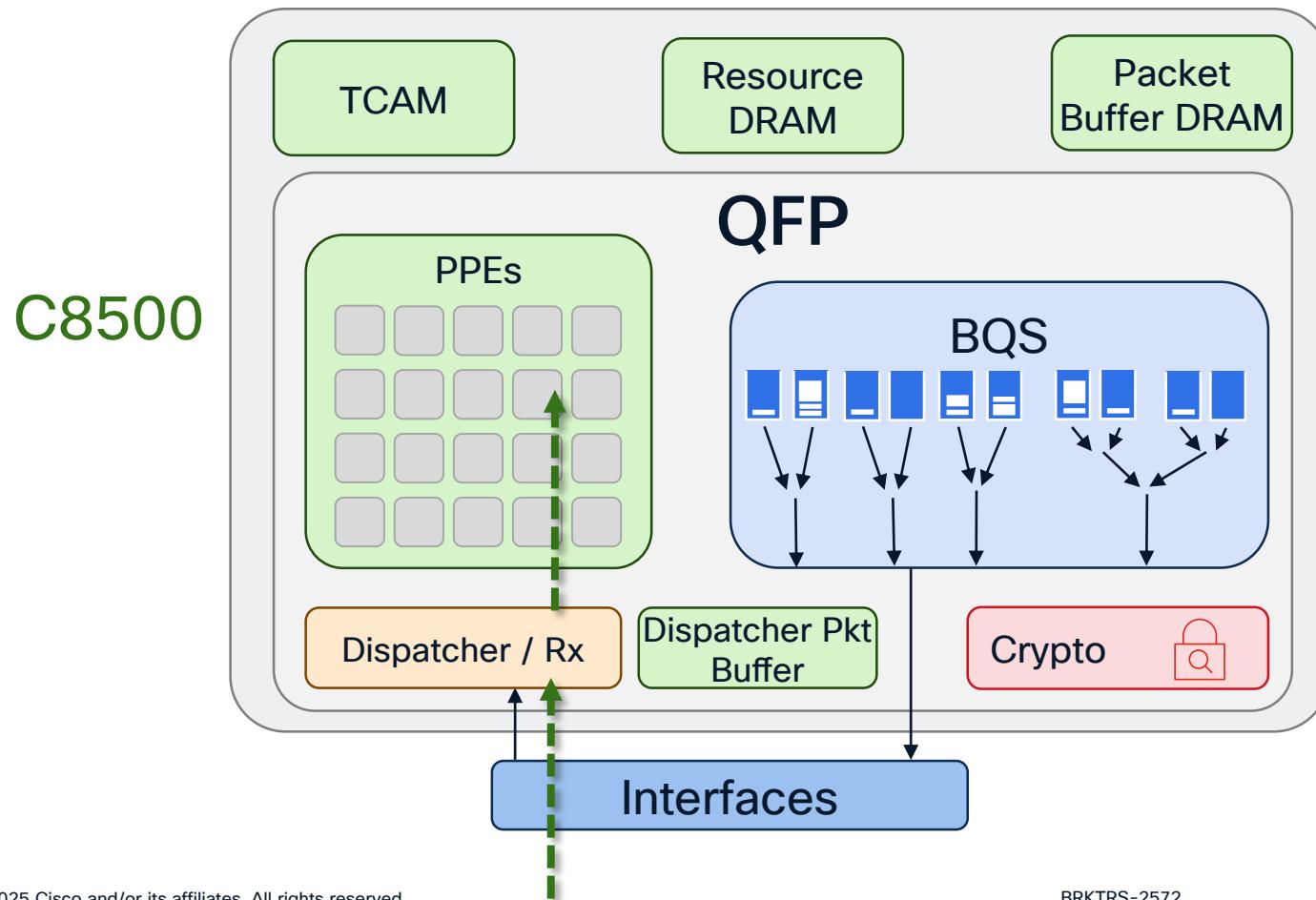

# IOS-XE Software Architecture



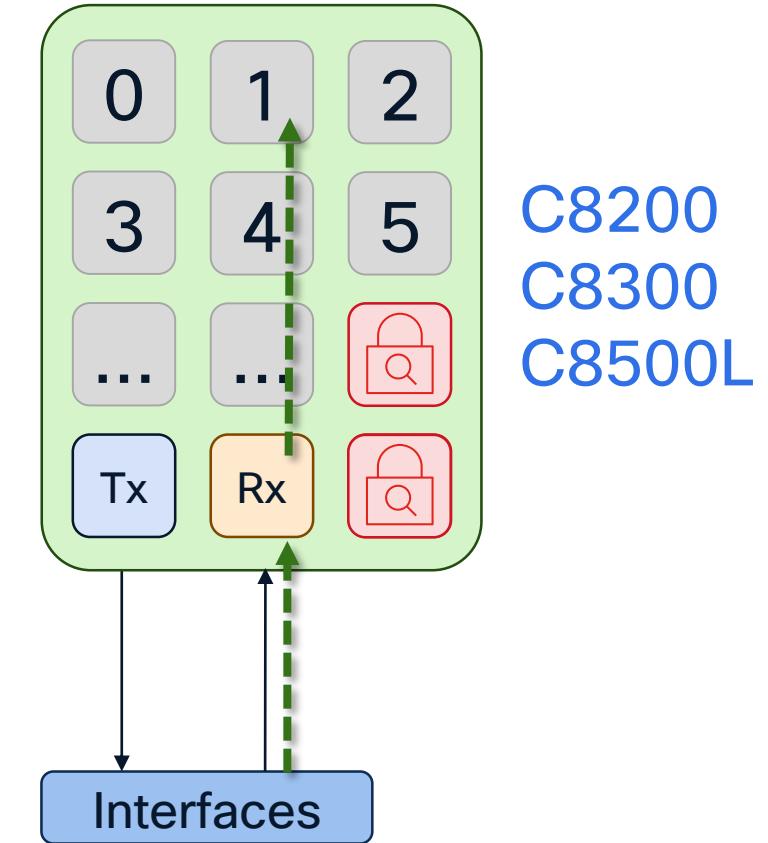

# Packet Walk Through Catalyst 8000

# General Data Plane Functions on Catalyst 8000

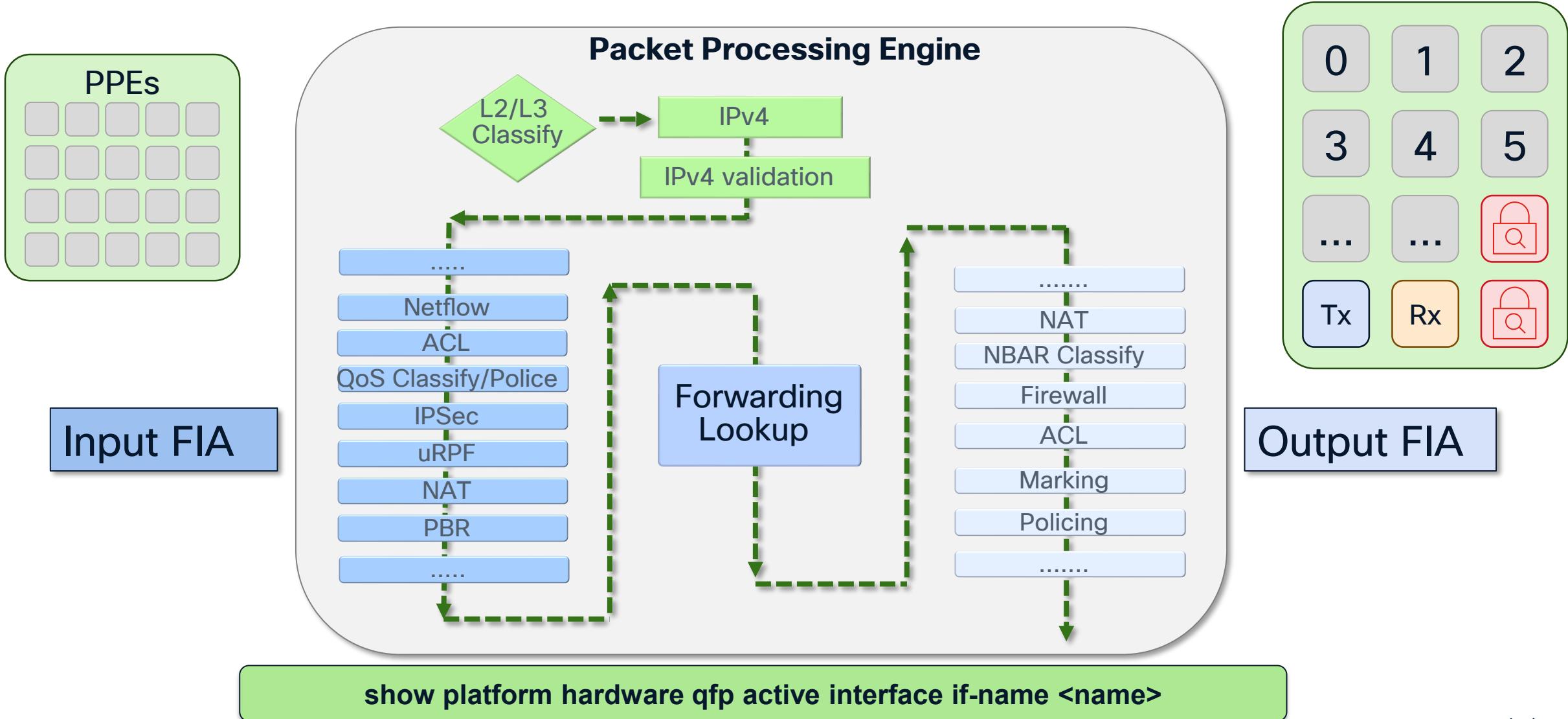
- Receiving traffic (Rx)
- Distributing traffic (Rx)
  - Load based distribution (LBD)
  - Non-strict flow-based distribution (NSFBD)
  - Strict flow-based distribution (SFBD)
- Crypto processing
- Forwarding/Feature Processing (PPE)
- Queuing and scheduling (Tx)




# General Data Plane Functions on Catalyst 8000

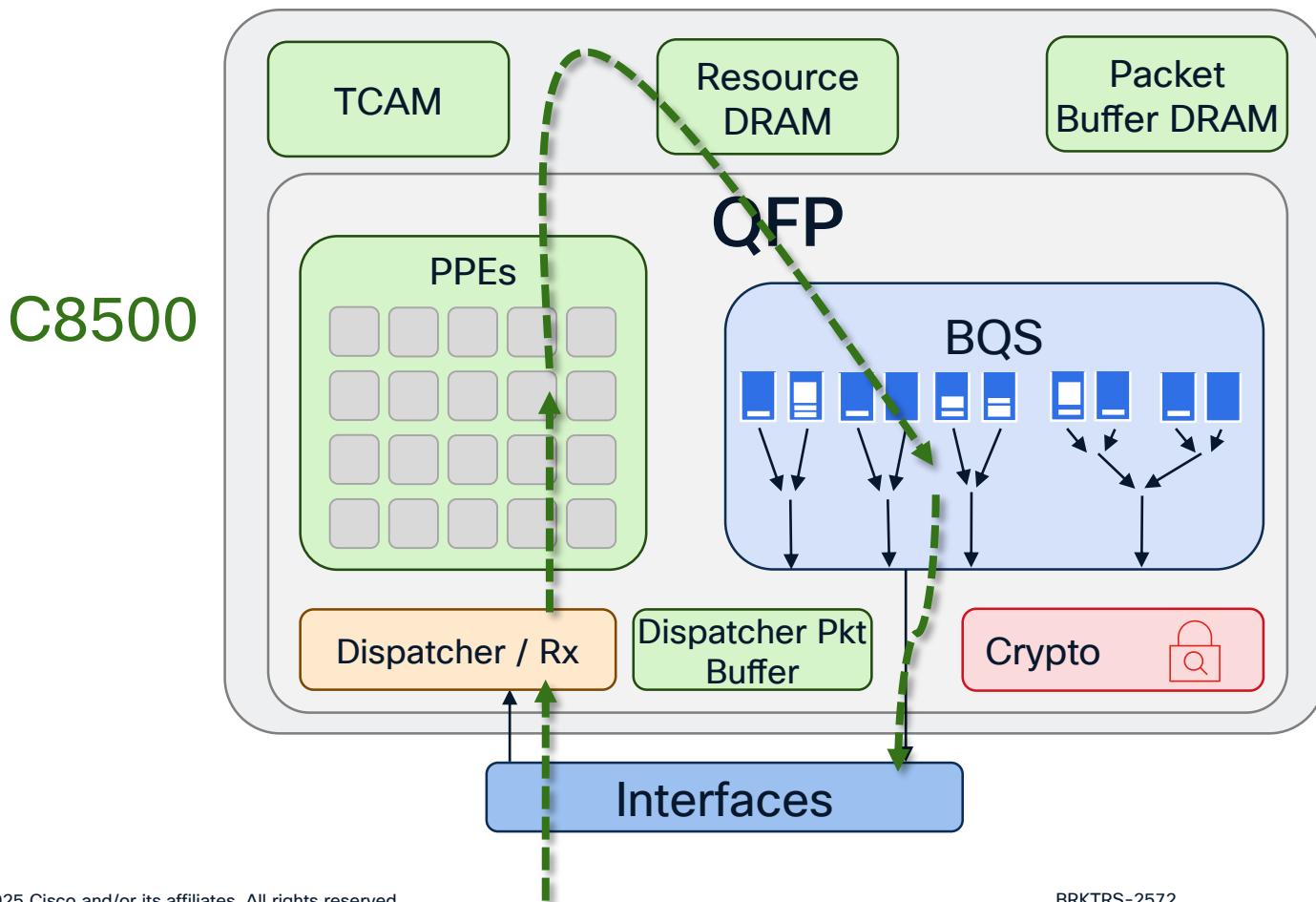



# Packet Walk Through Catalyst 8000


QFP-based packet flow

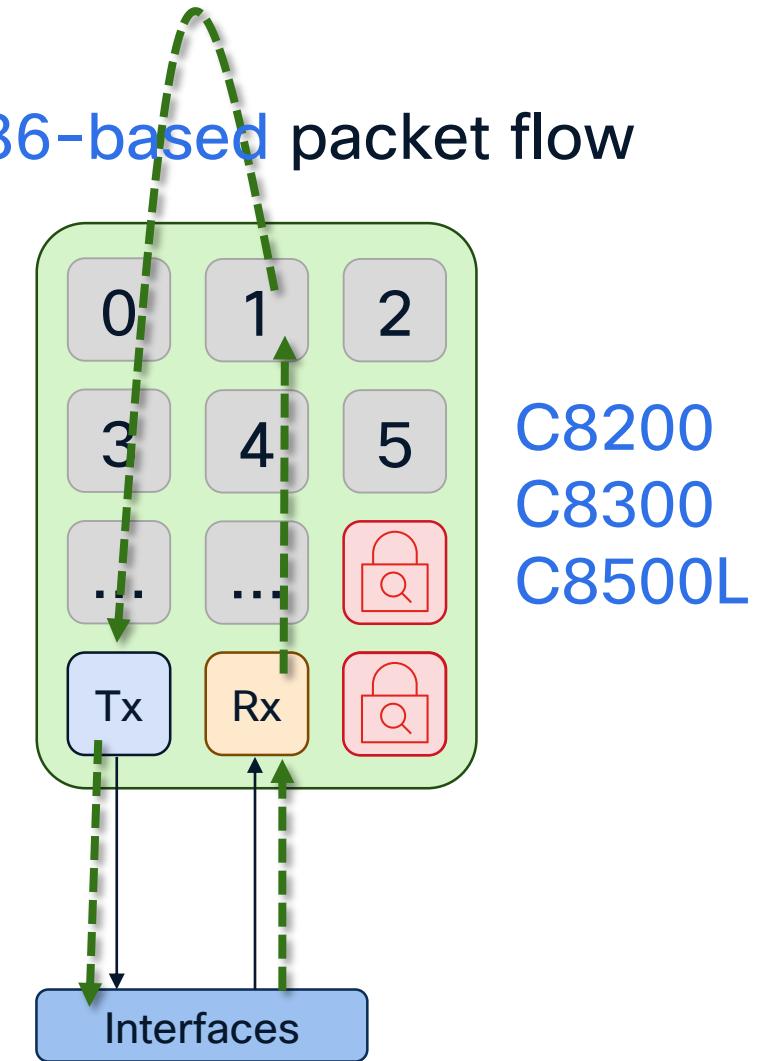


x86-based packet flow




# Inside the PPE – Feature Invocation Array (FIA)




# Packet Walk Through Catalyst 8000

## QFP-based packet flow



C8500

## x86-based packet flow



# Dynamic Core Allocation (x86 based platforms)

- SoC platforms use multi-core CPUs



**data plane**



**control plane**



**service plane**

- HyperTreading enabled on some cores (~30% performance gain)

## Core allocation templates

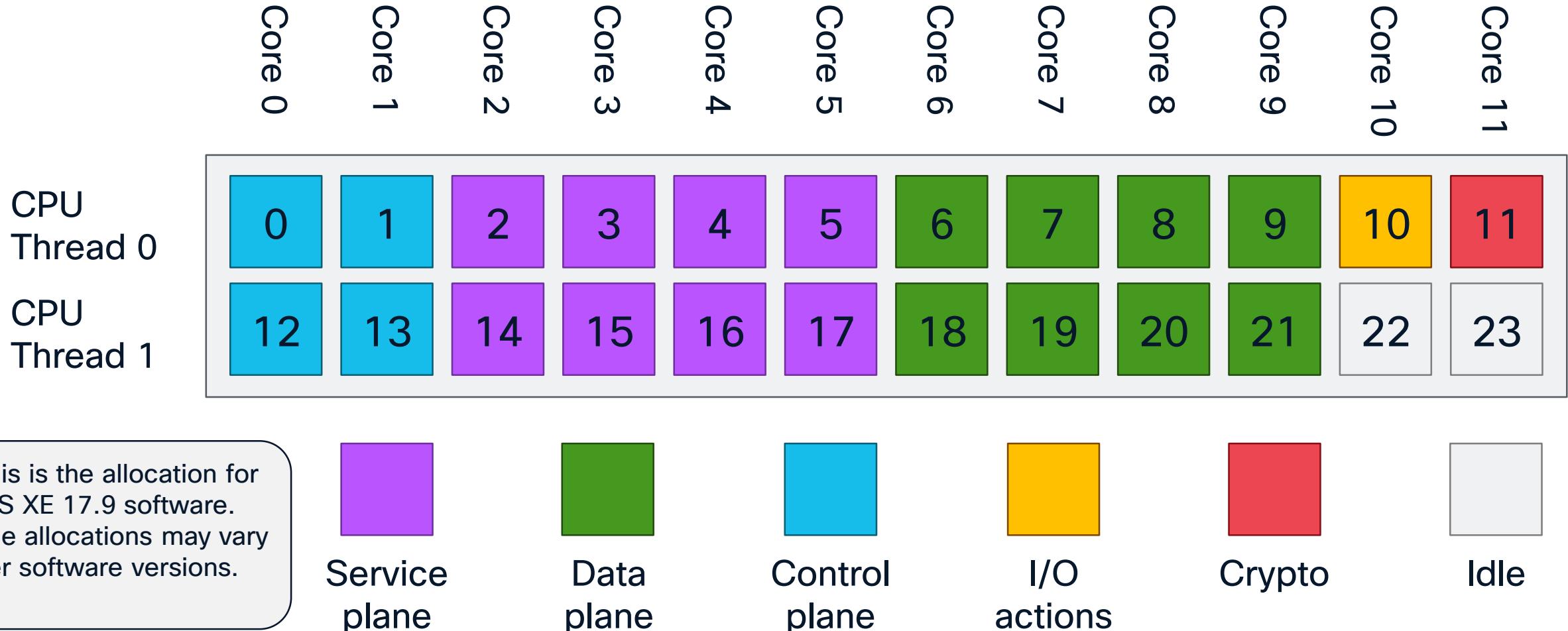
**Data Plane Heavy (DPH)**

**Optimized for throughput**

**Service Plane Heavy (SPH)**

**Optimized for app hosting**

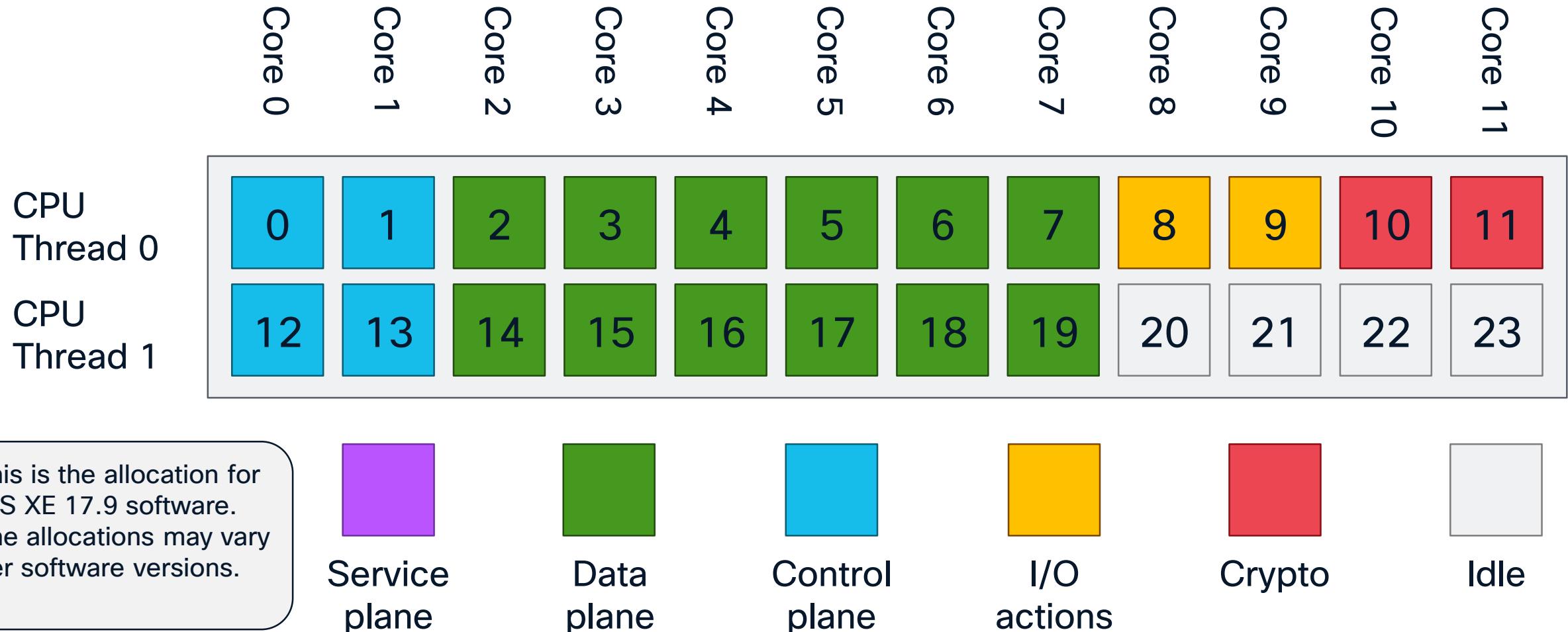
**Application Heavy (APH)**


**Optimized for app hosting (extra CPUs)**

**C8500L only**

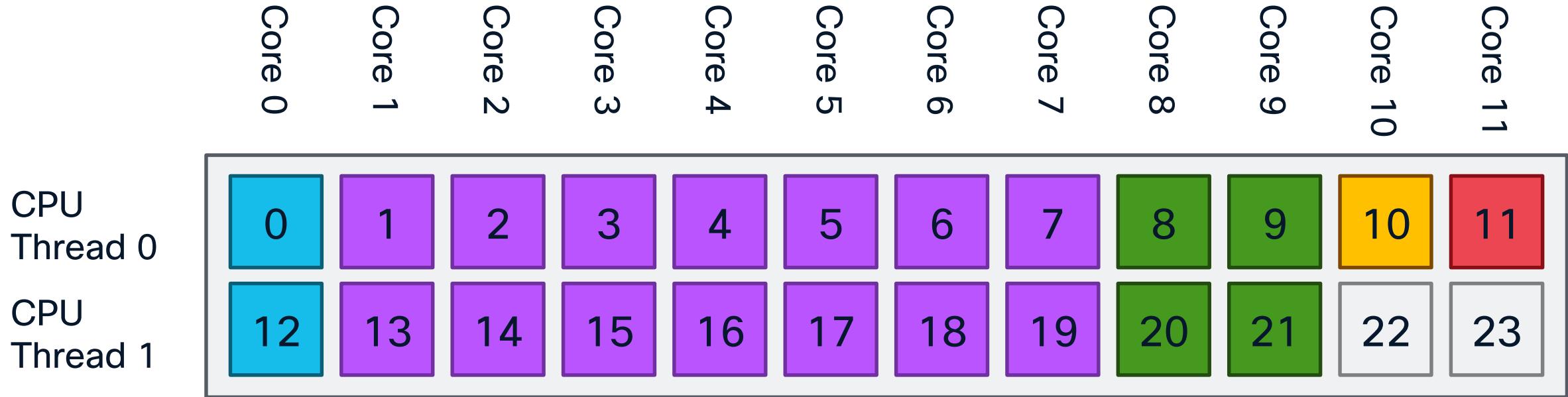
# C8500L-8S4X - SP heavy

Default in SD-WAN mode

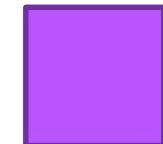

BRKENT-2653



# C8500L-8S4X - DP heavy


Default in autonomous mode

BRKENT-2653




# C8500L-8S4X - App heavy

BRKENT-2653



This is the allocation for IOS XE 17.9 software.  
The allocations may vary per software versions.

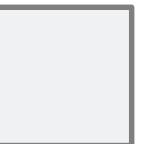


Service  
plane



Data  
plane



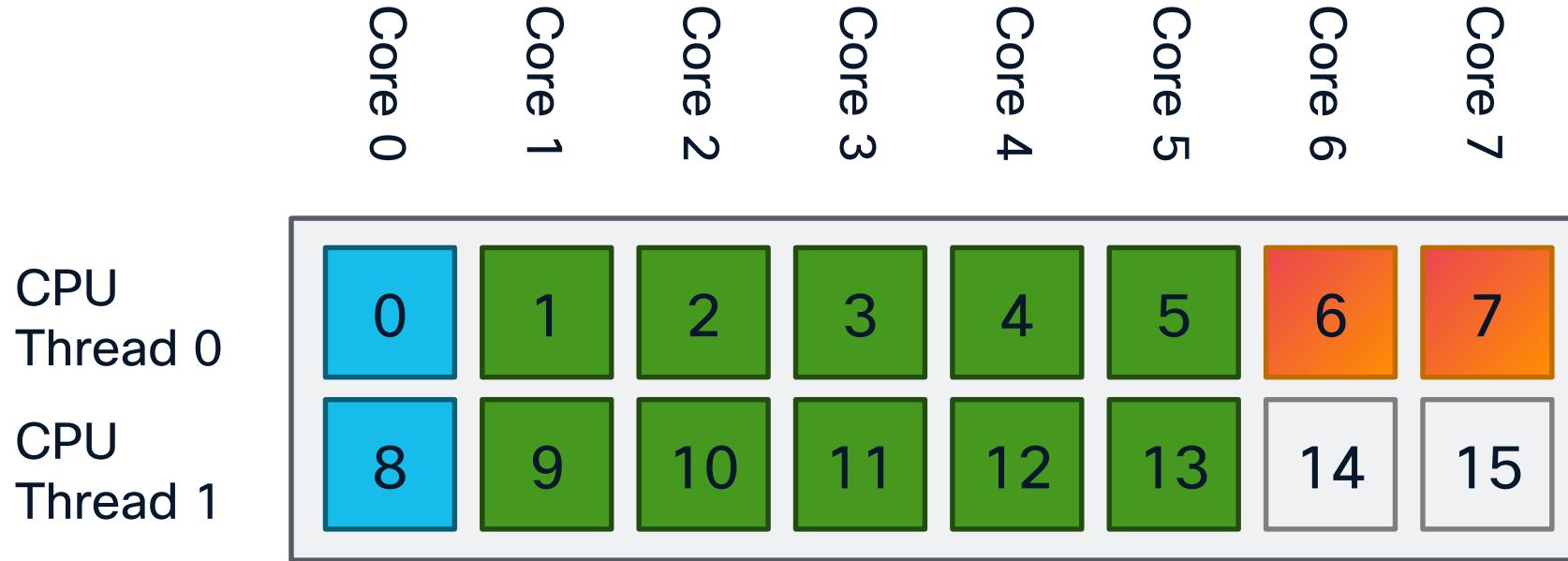

Control  
plane



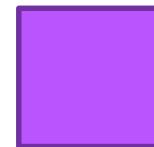
I/O  
actions



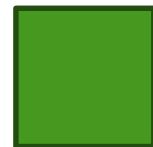
Crypto




Idle


# C8300-1N1S-4T2X - DP heavy

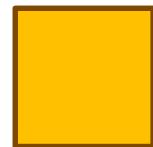
Default in autonomous mode


BRKENT-2653



This is the allocation for IOS XE 17.9 software.  
The allocations may vary per software versions.




Service  
plane



Data  
plane



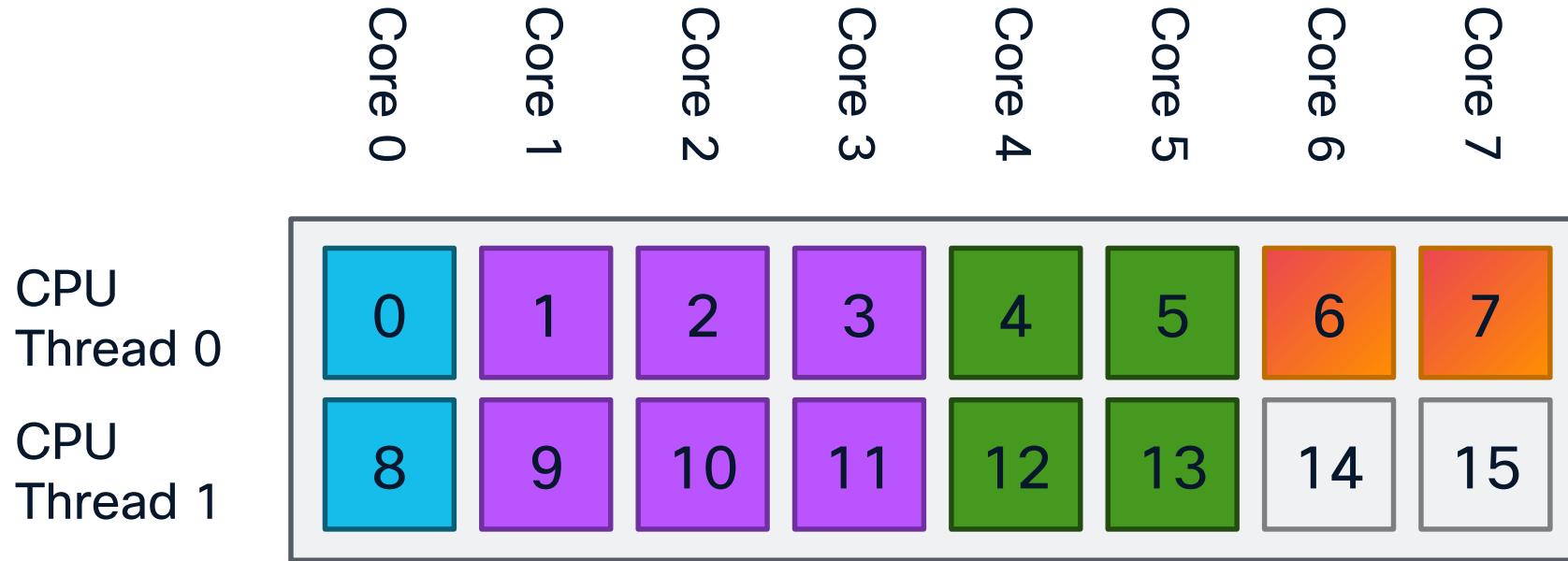
Control  
plane



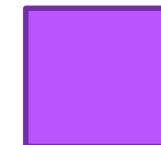
I/O  
actions



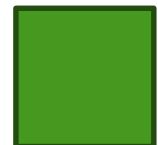
Crypto



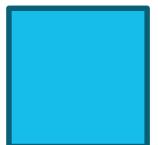

Idle


# C8300-1N1S-4T2X - SP heavy

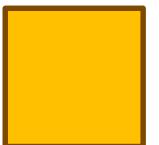
Default in SD-WAN mode


BRKENT-2653




This is the allocation for  
IOS XE 17.9 software.  
The allocations may vary  
per software versions.

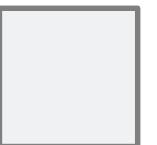



Service  
plane



Data  
plane



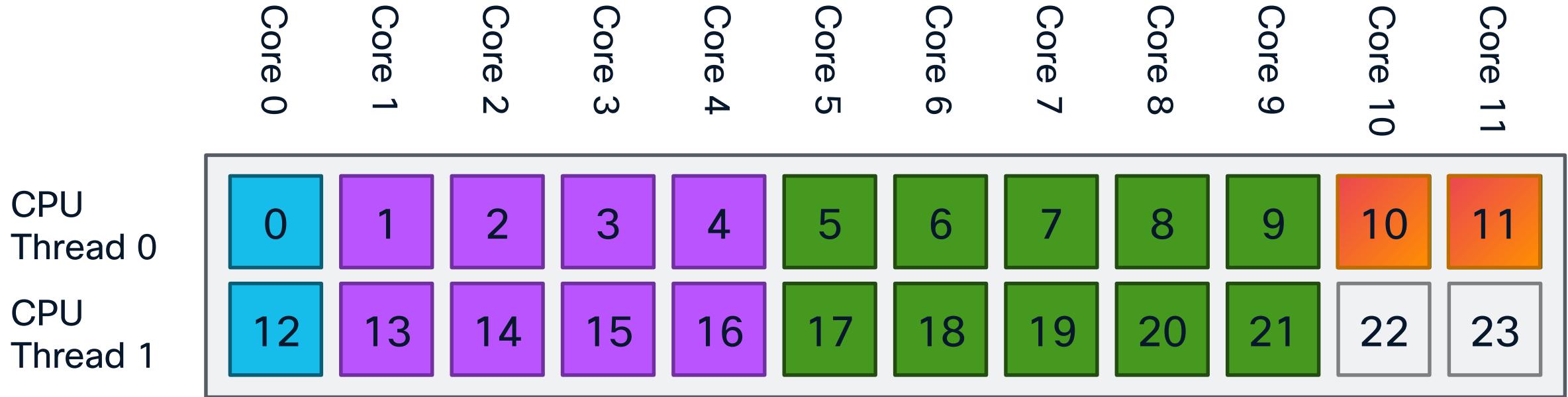

Control  
plane



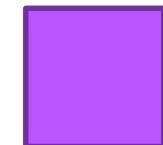
I/O  
actions



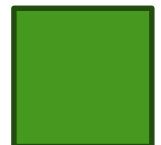
Crypto



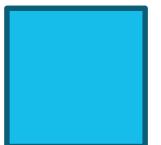

Idle


# C8300-2N2S-4T2X - DP heavy

Default in autonomous mode


BRKENT-2653




This is the allocation for IOS XE 17.9 software.  
The allocations may vary per software versions.

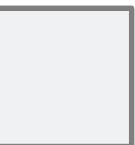


Service plane



Data plane



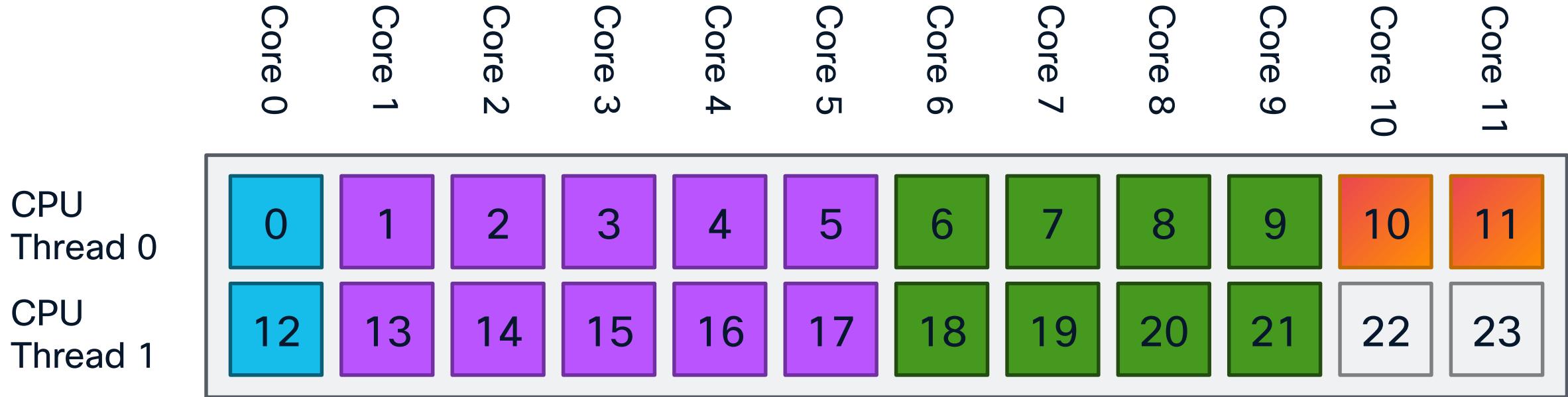

Control plane



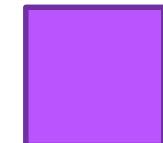
I/O actions



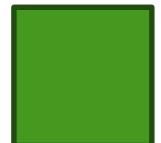
Crypto



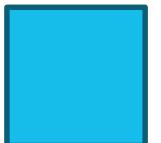

Idle


# C8300-2N2S-4T2X - SP heavy

Default in SD-WAN mode


BRKENT-2653




This is the allocation for IOS XE 17.9 software.  
The allocations may vary per software versions.



Service plane



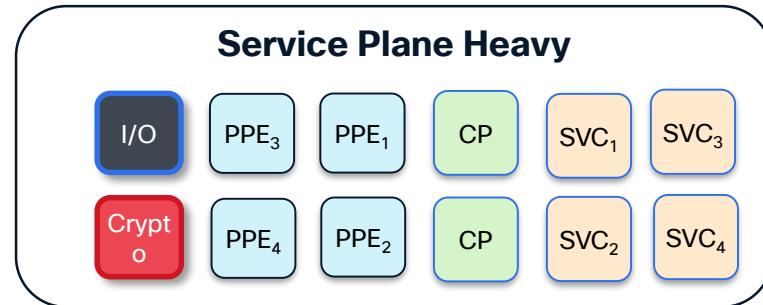
Data plane



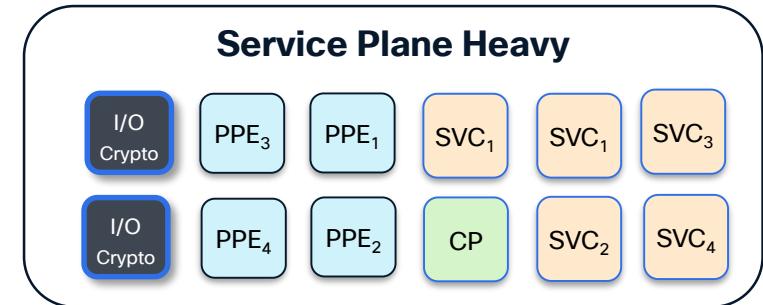
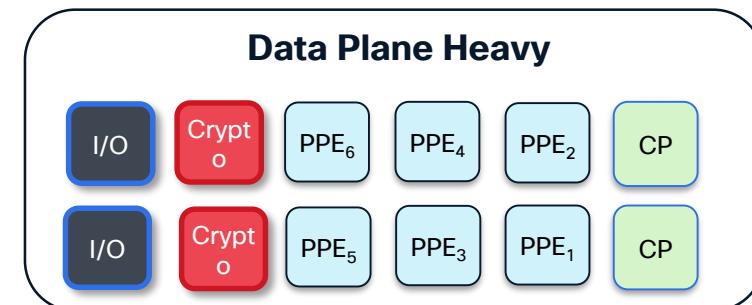
Control plane



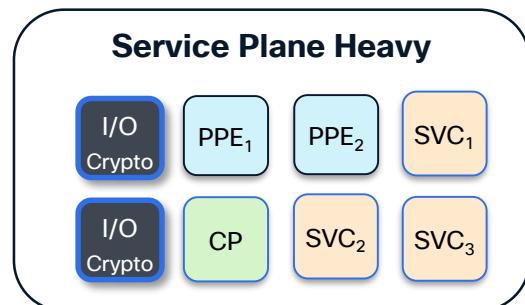
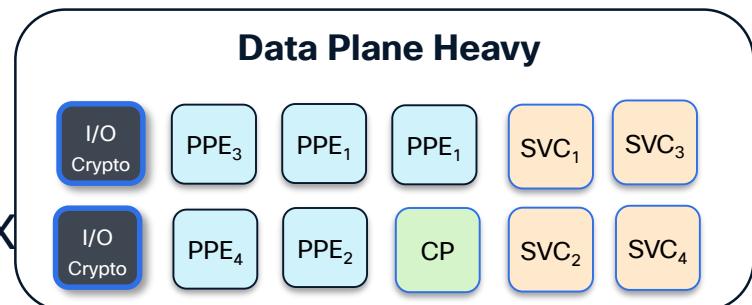
I/O actions



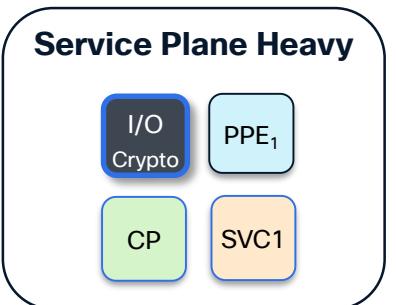
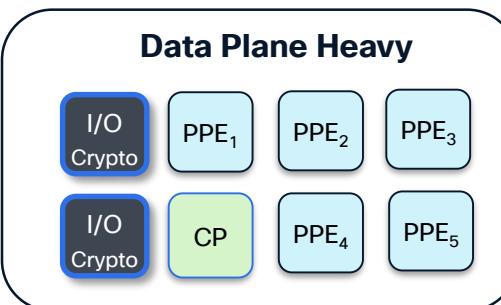

Crypto

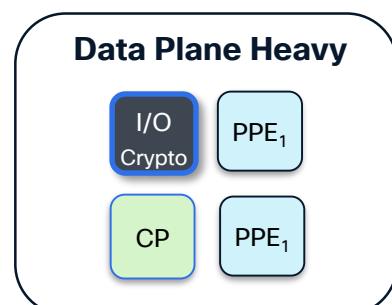

Idle



# Dynamic Core Allocation (x86 based platforms)





➤➤➤  
C8500L-8S4X




➤➤➤  
C8300-2N2S-4T2X



➤➤➤  
C8300  
C8200



➤➤➤  
C8200L



# Traffic Distribution Models

## Load Based (LBD)

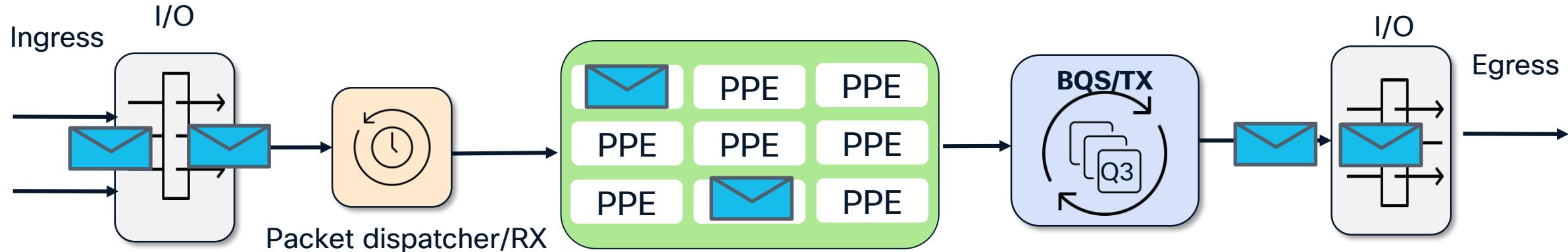
Packets are handled by any available data plane thread.

Platforms: C8500 (QFP)  
C8000V (x86) until 17.16.x

## Strict Flow Based (S-FBD)

Packets are **strictly** distributed to PPEs based on flow hashing.

Platform: C8500L


## Non-Strict Flow Based (NS-FBD)

Trying to keep packets from a given flow on a given thread, in some conditions idle threads may assist.

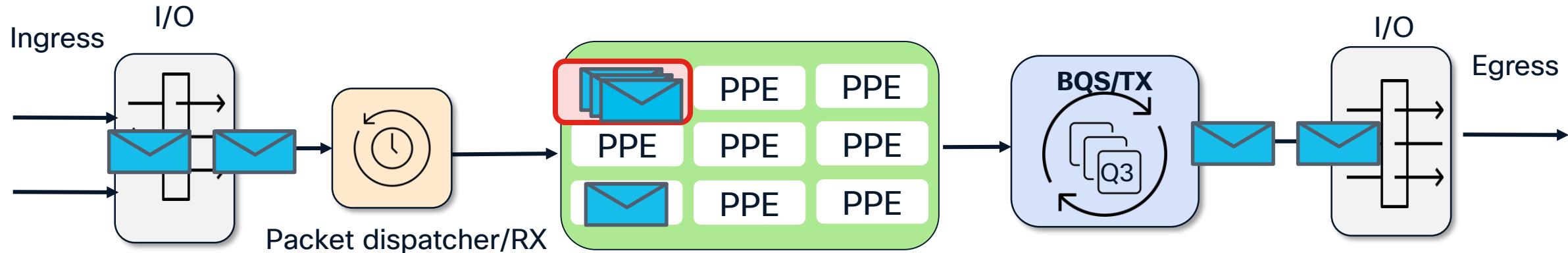
Platforms: C8200L, C8200, C8300  
C8000V (17.17.1 onwards)

# Load Based Distribution (LBD)

C8500  
C8000v



## Challenges


Packet ordering

Memory access

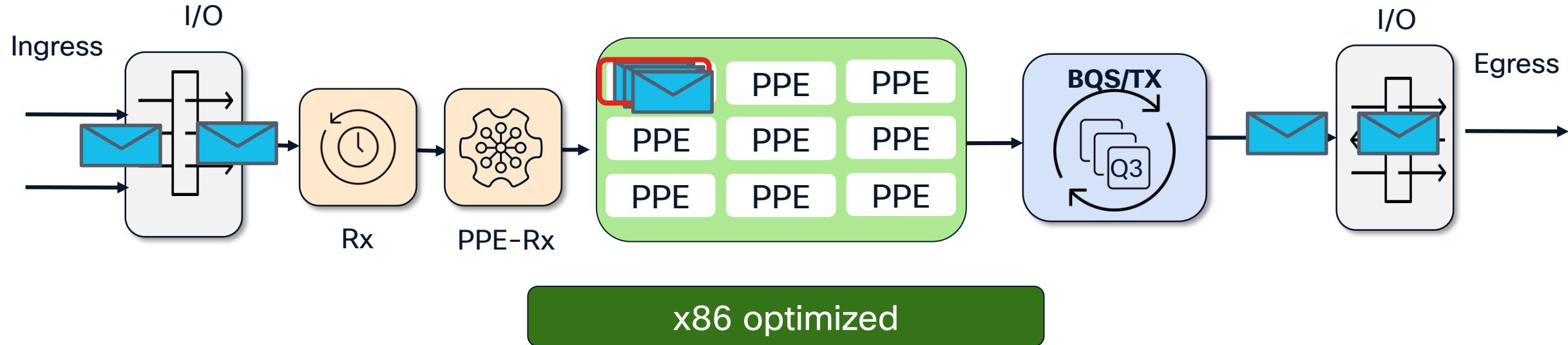
- Packets from the same flow can be processed by any available core
- State of the flow must be available to all core at any given time
- Packets are distributed strictly based on availability of QFP cores either via hardware dispatcher (QFP) or software Rx function (x86)
- QFP have optimized design which makes these challenges less of a concern

# Non-Strict Flow Based Distribution (NS-FBD)

C8200L  
C8200  
C8300



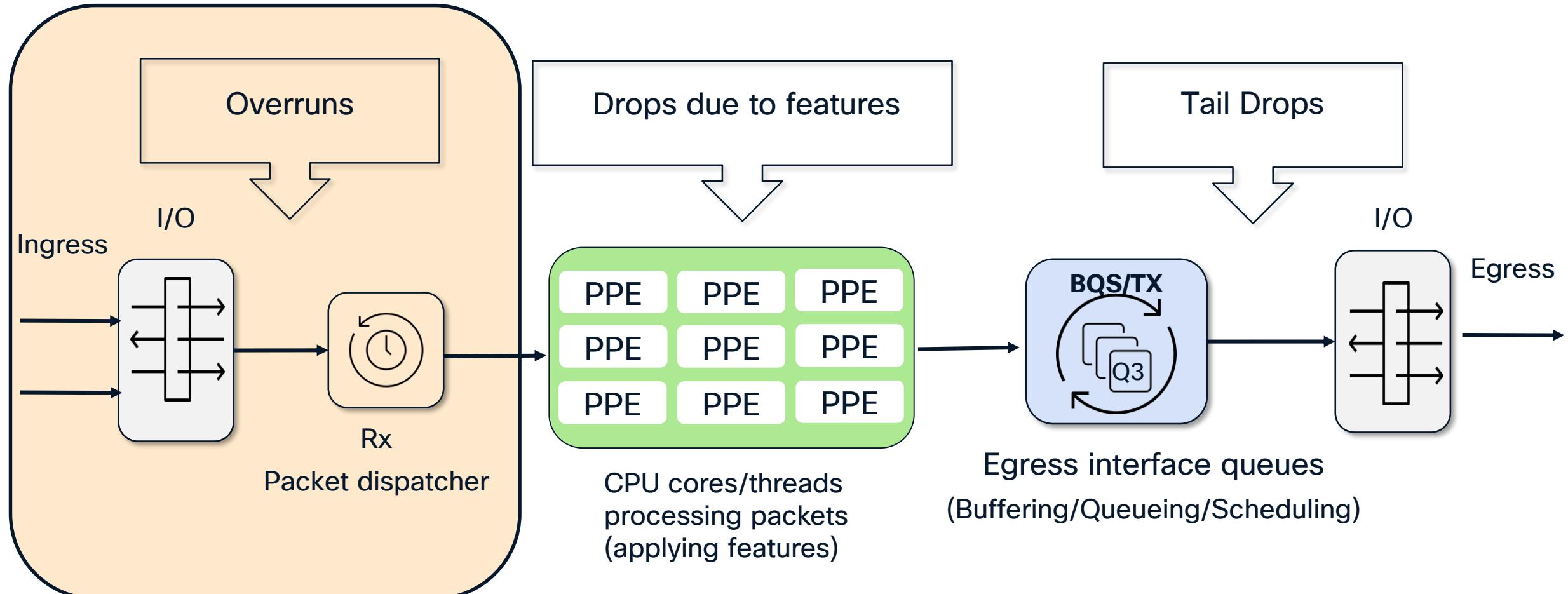
## Challenges


Packet ordering

Memory access

- There are efforts to keep same flow on same core to optimize forwarding
- State of the flow must be available to all cores at any given time
- Packets are classified to given cores based on the outer encapsulation of packets.  
If targeted core is busy, packet can be processed by different core.

# Strict Flow Based Distribution (S-FBD)

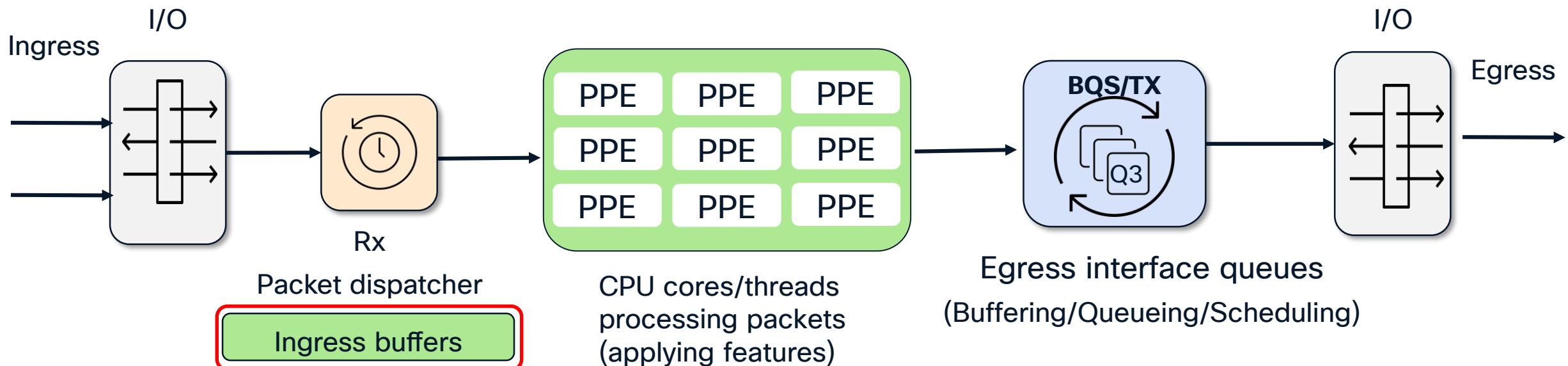

C8500L



- Packets from same flow are always processed by same core
- State of the flow must be available only to single CPU core
- Packets are initially hashed and handled by Rx core and later passed to PPE-Rx function, so the CPU core handling specific flow can be found
- Suitable for environment with huge number of flows, **elephant flow might be concern**

# Troubleshooting Packet Drops

# Packet Drops – Most Common Scenarios



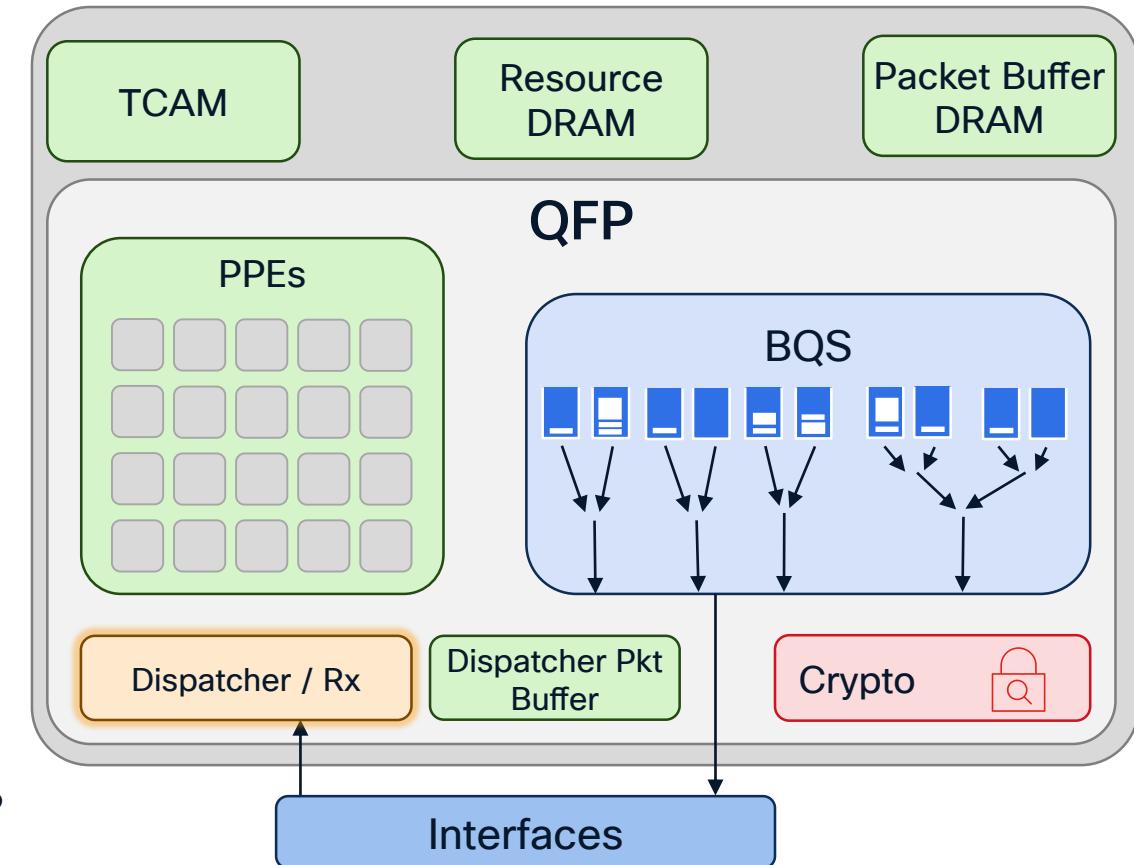

# Overruns

```
GigabitEthernet0/0/0 is up, line protocol is up
[...]
13464 input errors, 0 CRC, 0 frame, 13464 overrun, 0 ignored
```

Input drops due to no available resources to handle incoming traffic:

- 1) PPEs/CPU cores are busy processing packets
- 2) Ingress buffers are already occupied and cannot store new incoming packets

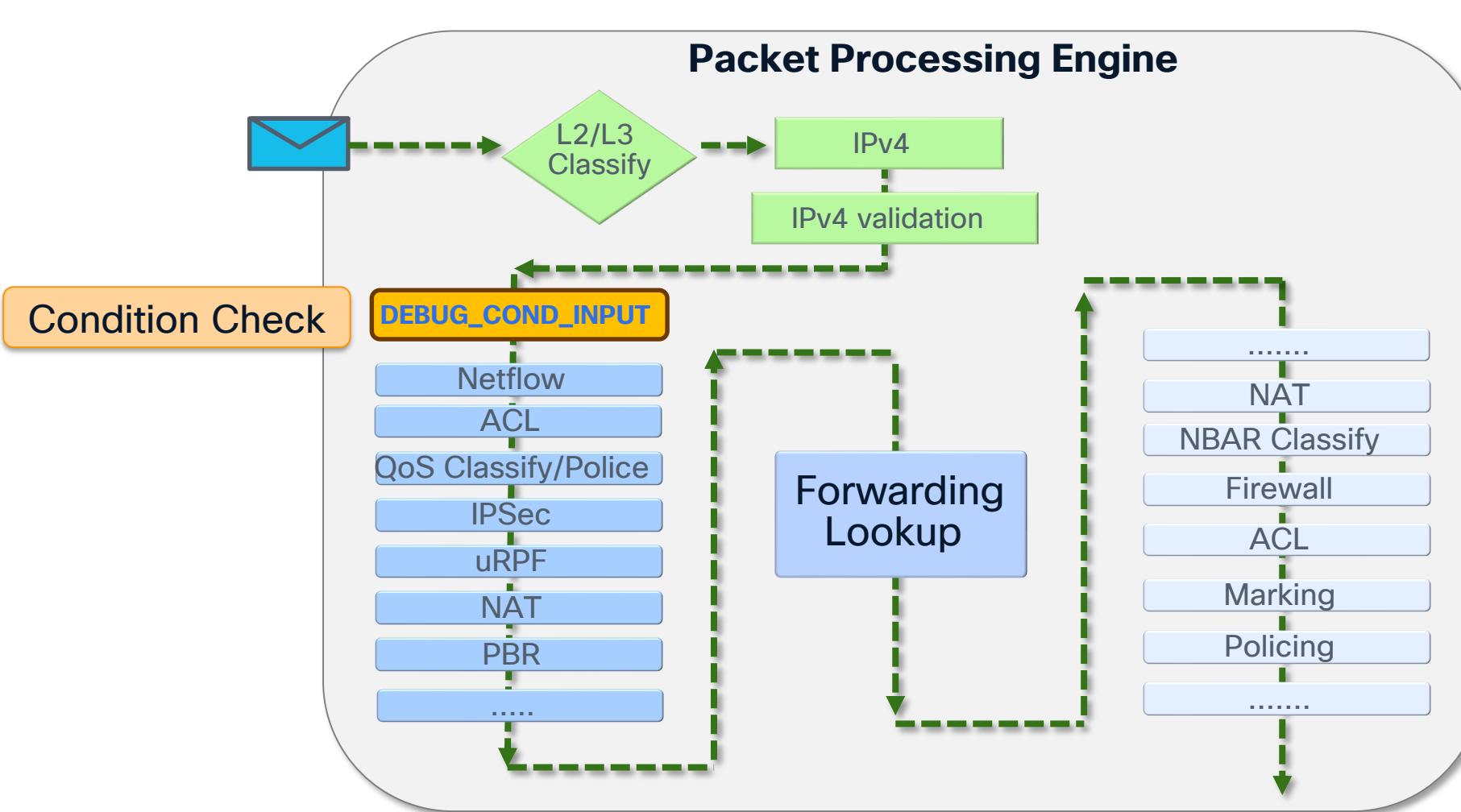



# Troubleshooting Overruns

**QFP-Based Platforms**  
x86 SoC Platforms

# Troubleshooting Overruns on QFP Based platforms

- All PPE threads are busy processing packets
- New packets need to wait for Dispatcher to find available PPE thread
- Often times, QFP usage is very high (90%+)


```
C8500#show plat hard qfp active datapath util summary
  CPP 0: Subdev 0          5 secs      1 min    ...
  Input:  Total (pps)      108837      111107
          ...
          (bps)      711833352      713699424    ...
  Output: Total (pps)      108332      109962
          (bps)      722352024      723511272    ...
  Processing: Load (pct)    99          95
```



- Are PPEs taking more time than usual to handle packets?
- **Next step:** QFP Profiling using **Packet Trace**

# Packet Trace and FIA Debugging

BRKTRS-3475



## Packet Trace Buffer



# Packet Trace

- True inspection of IOS-XE packet forwarding flow
- Designed to be used in production, even in scaled setup
- Conditions define what the filters are and when the filters are applied to a packet
- Detailed report of what each configured feature did to packets matching the filter
- Can be used to trace dropped and punted packets as well

# FIA Trace Example

Packet: 0                    CBUG ID: 0

Summary

  Input : Port-channel1  
  Output : BD-VIF5086  
  Timestamp  
    Start : 4423148105825975 ns (12/07/2020 11:00:46.156544 UTC)  
    Stop : 4423148105904766 ns (12/07/2020 11:00:46.156622 UTC)

Path Trace

  Feature: IPV4(Input)

    Input : Port-channel1  
    Output : <unknown>  
    Source : 10.250.0.2  
    Destination : 142.250.71.110  
    Protocol : 6 (TCP)  
      SrcPort : 41510  
      DstPort : 443

  Feature: DEBUG\_COND\_INPUT\_PKT

    Entry : Input - 0x800164e8  
    Input : Port-channel1  
    Output : <unknown>  
    Lapsed time : 2336 ns

  Feature: LAYER2\_INPUT\_VLAN\_TAG\_MANIPULATION

    Entry : Input - 0x8001677c  
    Input : Port-channel1.EFP2115  
    Output : <unknown>  
    Lapsed time : 2640 ns

...

Total time spent in PPE

Packet details

Feature: IPV4\_INPUT\_VFR  
  Entry : Input - 0x80016a74  
  Input : BD-VIF7509  
  Output : <unknown>  
  Lapsed time : 224 ns

Feature: Policy Based Routing  
  PBR feature  
  Route-map name: pbr-9297  
  Seq number: 15  
  Set precedence: 0  
  Stats\_addr: 0x424bf940

Feature: IPV4\_INPUT\_PBR

  Entry : Input - 0x80016adc  
  Input : BD-VIF7509  
  Output : <unknown>  
  Lapsed time : 8640 ns

Feature: IPV4\_INPUT\_LOOKUP\_PROCESS

  Entry : Input - 0x8001645c  
  Input : BD-VIF7509  
  Output : BD-VIF5086  
  Lapsed time : 1232 ns

Feature: IPV4\_INPUT\_IPOPTIONS\_PROCESS

  Entry : Input - 0x80016b38  
  Input : BD-VIF7509  
  Output : BD-VIF5086  
  Lapsed time : 224 ns

Feature: IPV4\_INPUT\_GOTO\_OUTPUT\_FEATURE

  Entry : Input - 0x80016b5c  
  Input : BD-VIF7509  
  Output : BD-VIF5086  
  Lapsed time : 736 ns

...

Feature applied

Time spent on this feature

# Enabling Packet-Trace

## Packet Trace Configuration

```
Cat8k# debug platform condition ipv4 [interface] | [access-list] | [ip_address] ingress  
Cat8k# debug platform packet-trace packet <number of packets> fia-trace  
Cat8k# debug platform condition start
```

For production use,  
also in scaled  
deployments.

Optionally:

```
Cat8k# debug platform packet-trace copy packet both size <...>
```

To dump L2/L3/L4 packet  
headers on ingress and egress

Packet Trace buffer:

```
Cat8k# show platform packet-trace summary  
0      Gi0/0/2.25      Gi0/0/3      FWD  
1      Gi0/0/2.25      Gi0/0/3      FWD  
2      Tu1             Gi0/0/2.35   FWD  
3      Gi0/0/2.21      Gi0/0/3      DROP   20  (QosPolicing)  
4      Tu1             Gi0/0/2.35   FWD
```

```
Cat8k# show platform packet-trace packet <packet number>
```

Detailed information of  
specific packet handling  
within QFP

# Case Study: Overruns with Low Traffic Rate

- QFP usage exceeds 80% threshold, overruns are reported in "show interface"

```
%IOSXE_QFP-2-LOAD_EXCEED: Slot: 0, QFP:0, Load 96% exceeds the setting threshold 80%.
5 secs traffic rate on QFP: Total Input: 100768 pps (100.8 kpps), 637917984 bps (637.9 mbps), Total Output:
99780 pps (99.8 kpps), 643689256 bps (643.7 mbps).
```

```
254829 input errors, 0 CRC, 0 frame, 254829 overrun, 0 ignored
```

- Next step: Use Packet Trace to collect a sample of traffic for analysis

```
C8k-Edge1#debug platform condition ingress
```

Match all incoming traffic

```
C8k-Edge1#debug platform packet-trace packet 8192 data-size 4096 fia-trace
```

```
C8k-Edge1#debug platform condition start
```

```
C8k-Edge1#show platform packet-trace statistics
```

Capture entire FIA

|                |                                    |
|----------------|------------------------------------|
| Matched 134220 | Up to 8192 packets can be analyzed |
| Traced 8192    |                                    |

# QFP Profiling Using Packet Trace

Sample packet:

```
Feature: IPV4_NAT_INPUT_FIA
  Entry      : Input - 0x80018204
  Input      : TenGigabitEthernet0/0/0
  Output     : <unknown>
  Lapsed time : 21468880 ns
```

Packet spent 21ms  
processed by NAT Input

| Feature                   | Count | Min(ns) | Max(ns)  | Avg(ns) |
|---------------------------|-------|---------|----------|---------|
| IPV4_NAT_INPUT_FIA        | 17    | 19408   | 27833968 | 8195994 |
| IPV4_NAT_OUTPUT_FIA       | 85    | 17920   | 85824    | 35082   |
| IPV4_INPUT_QOS            | 9     | 6448    | 22592    | 15320   |
| ESI_BAF_TRANSMIT_PKT      | 136   | 10160   | 33200    | 13867   |
| RELOOKUP_NOTIFY           | 9     | 3376    | 4672     | 3909    |
| IPV4_OUTPUT_DROP_POLICY   | 136   | 2192    | 3088     | 2731    |
| IPV4_INPUT_LOOKUP_PROCESS | 102   | 1920    | 2752     | 2354    |
| <snip>                    |       |         |          |         |

New CLI  
in IOS-XE 17.11

Ingress NAT consuming  
significant amount of  
CPU time

*Observation:* There's a lot of non-NATed traffic received on NAT-enabled interface.

*Solution:* Increase NAT gatekeeper cache size to avoid having such traffic being processed by NAT.

```
ip nat settings gatekeeper-size 65536
```

# Overruns on C8500-12X or C8500-12X4QC

- Slow increase of overruns might be observed in micro-bursty conditions
- Adjustments to ingress buffers allocations applied in newer software
- These changes were implemented in IOS-XE versions:
  - 17.9.6 and newer
  - 17.12.4 and newer
  - 17.15.1 and newer

# Mitigating Overruns

- Make sure output flow control is enabled:

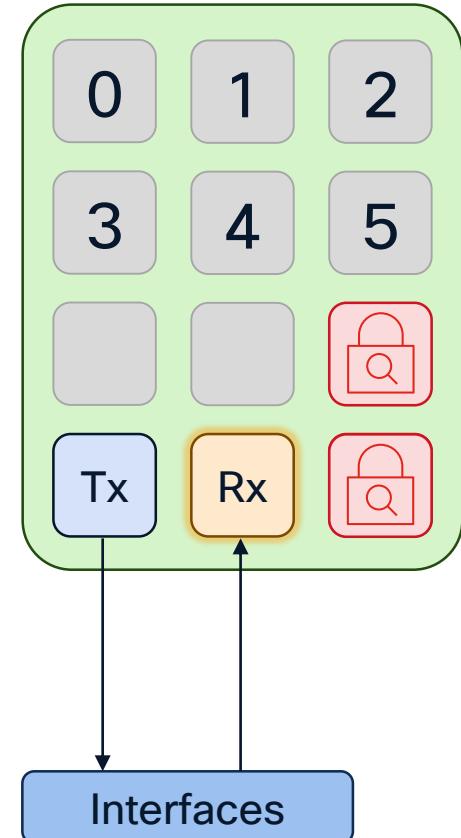
```
(config-if)# plim qos input queue 0 pause enable
```

- PAUSE frame will be sent to the peer, this is a request to slow down with sending further traffic
- If flow control is working properly on **both** ends of the link the PAUSE frames should stop the overruns (other end could start tail dropping if the backpressure lasts long enough).
- If both PAUSE output and overrun counters increase, make sure that the connected device is properly respecting and responding to flow control.

# Troubleshooting Overruns

QFP-Based Platforms  
**x86 SoC Platforms**

# Troubleshooting Overruns on x86 Based Platforms


- Rx thread unable to distribute incoming packets to the relevant PP thread and ingress buffers are already full.

C8200/8300:

- All PP threads busy
- Rx thread is congested

C8500L:

- PP thread handling this traffic flow is busy
- Rx thread is congested



# Case Study: Overruns on C8500L

Customer migrated to C8500L and started to observe overruns on TenGigabit0/1/0

```
C8500L# show int Te0/1/0 | i overrun
254829303 input errors, 0 CRC, 0 frame, 254829303 overrun, 0 ignored
```

General troubleshooting steps:

- 1 Verify the core allocation template in use
- 2 Determine if any CPU core/thread is reporting high utilization
- 3 Confirm which Rx thread/worker is assigned to the interface reporting overruns
- 4 Check Credit Errors

# Dynamic Core Allocation (x86 based platforms)

## 1 Determine CPU allocation scheme:

```
C8500L# show platform software cpu alloc
```

CPU alloc information:

Control plane cpu alloc: 0-1,12-13

Data plane cpu alloc: 2-11,14-19

Service plane cpu alloc: 0

HyperThreading enabled  
on some CPU cores  
1 core = 2 threads

Slow control plane cpu alloc:

Template used: default-data\_plane\_heavy

The default mapping can be adjusted, if needed:

```
C8500L(config)# platform resource ?
```

app-heavy Use App Heavy template

data-plane-heavy Use Data Plane Heavy template

service-plane-heavy Use Service Plane Heavy template

**System default template**  
**default-data\_plane\_heavy**

**User configured template**  
**CLI-service\_plane\_heavy**

# Datapath CPU core/thread utilization

- 2 Determine % of CPU cycles spent on feature processing/Rx/Tx/Crypto.

Goal: identify potential bottleneck.

This command needs to be  
executed at least twice!

```
C8500L-8S4X# show platform hardware qfp active datapath infra sw-cio
```

<snip>

Core Utilization over preceding 1.5205 seconds

Time since the last execution  
of this command

| ID:       | 0     | 1     | 2     | 3     | ... | 11    | 12    | 13    | 14    | 15    | CPU Thread/Worker IDs          |
|-----------|-------|-------|-------|-------|-----|-------|-------|-------|-------|-------|--------------------------------|
| % PPE-RX: | 1.50  | 1.71  | 1.29  | 5.43  | ... | 1.44  | 0.00  | 0.00  | 0.00  | 0.00  | Hashing/Distribution (C8500L)  |
| % PP:     | 17.03 | 17.55 | 18.42 | 93.89 | ... | 17.56 | 0.00  | 0.00  | 0.00  | 0.00  | Feature Processing             |
| % RX:     | 0.00  | 0.00  | 0.00  | 0.00  | ... | 0.00  | 70.90 | 51.09 | 0.00  | 0.00  | Rx functions                   |
| % TM:     | 0.00  | 0.00  | 0.00  | 0.00  | ... | 0.00  | 13.37 | 15.16 | 0.00  | 0.00  | Traffic Manager (Tx functions) |
| % COFF:   | 0.00  | 0.00  | 0.00  | 0.00  | ... | 0.00  | 0.00  | 0.00  | 7.45  | 9.06  | Crypto functions               |
| % IDLE:   | 81.47 | 80.74 | 80.29 | 0.68  | ... | 81.00 | 15.74 | 33.75 | 92.55 | 90.94 |                                |

# Rx/Tx Thread Mapping Per Interface

- 3 Confirm Rx thread ID assigned to the interface reporting overruns:

```
C8500L-8S4X# show platform hardware qfp active datapath infra binding
Port Instance Bindings:
```

| ID | Port      | IOS Port                | WRKR12 | WRKR13 |
|----|-----------|-------------------------|--------|--------|
| 1  | rcl0      | rcl0                    | Rx     | Tx     |
| 2  | ipc       | ipc                     | Tx     | Rx     |
| 3  | vxe_punti | vxe_puntif              | Tx     | Rx     |
| 4  | fpe0      | GigabitEthernet0/0/0    | Tx     | Rx     |
|    |           | .....                   |        |        |
|    |           | .....                   |        |        |
| 8  | fpe4      | GigabitEthernet0/0/4    | Rx     | Tx     |
| 9  | fpe5      | GigabitEthernet0/0/5    | Tx     | Rx     |
| 10 | fpe6      | GigabitEthernet0/0/6    | Rx     | Tx     |
| 11 | fpe7      | GigabitEthernet0/0/7    | Tx     | Rx     |
| 12 | fpe8      | TenGigabitEthernet0/1/0 | Rx     | Tx     |
| 13 | fpe9      | TenGigabitEthernet0/1/1 | Tx     | Rx     |
| 14 | fpe10     | TenGigabitEthernet0/1/2 | Rx     | Tx     |
| 15 | fpe11     | TenGigabitEthernet0/1/3 | Tx     | Rx     |

Rx/Tx mapping may vary across IOS-XE versions/platforms.

# Credits System

- Each interface gets assigned a limited pool of credits (prevents a busy interface overloading the system resources).
- Each time a new packet arrives into the dataplane a credit is required.
- When packet processing is done, the credit is returned so Rx thread can use it again.



```
C8500L-8S4X# show platform hardware qfp active datapath infrastructure sw-cio
```

Credits Usage:

| ID | Port  | Wght | Global | WRKR0 | WRKR1 | WRKR2 | ... | WRKR10 | WRKR11 | WRKR12 | WRKR13 | WRKR14 | WRKR15 | Total |
|----|-------|------|--------|-------|-------|-------|-----|--------|--------|--------|--------|--------|--------|-------|
| 1  | rcl0  | 1:   | 5849   | 0     | 0     | 0     | ... | 0      | 0      | 96     | 56     | 0      | 0      | 6029  |
| 1  | rcl0  | 128: | 6048   | 0     | 0     | 0     | ... | 0      | 0      | 96     | 0      | 0      | 0      | 6144  |
| 2  | ipc   | 1:   | 0      | 0     | 0     | 0     | ... | 0      | 0      | 0      | 0      | 0      | 0      | 0     |
|    |       | ...  |        | ...   |       |       |     |        |        |        |        |        |        |       |
| 11 | fpe7  | 1:   | 1952   | 0     | 0     | 0     | ... | 0      | 0      | 0      | 96     | 0      | 0      | 2048  |
| 11 | fpe7  | 2:   | 1952   | 0     | 0     | 0     | ... | 0      | 0      | 0      | 96     | 0      | 0      | 2048  |
| 12 | fpe8  | 1:   | 0      | 0     | 0     | 0     | ... | 0      | 0      | 0      | 0      | 0      | 0      | 0     |
| 12 | fpe8  | 2:   | 1952   | 0     | 0     | 0     | ... | 0      | 0      | 96     | 0      | 0      | 0      | 2048  |
| 13 | fpe9  | 1:   | 1952   | 0     | 0     | 0     | ... | 0      | 0      | 0      | 96     | 0      | 0      | 2048  |
| 13 | fpe9  | 2:   | 1952   | 0     | 0     | 0     | ... | 0      | 0      | 0      | 96     | 0      | 0      | 2048  |
| 14 | fpe10 | 1:   | 0      | 0     | 0     | 0     | ... | 0      | 0      | 37     | 0      | 0      | 0      | 43    |
| 14 | fpe10 | 2:   | 1952   | 0     | 0     | 0     | ... | 0      | 0      | 96     | 0      | 0      | 0      | 2048  |
| 15 | fpe11 | 1:   | 1952   | 0     | 0     | 0     | ... | 0      | 0      | 0      | 96     | 0      | 0      | 2048  |
| 15 | fpe11 | 2:   | 1952   | 0     | 0     | 0     | ... | 0      | 0      | 0      | 96     | 0      | 0      | 2048  |

fpe8 ran out  
of credits

# Credit Err Counter

4

## Check Credit Errors

If there's no available credit for the interface the packet will need to wait in the interface Rx ring and Credit Err counter is incremented.

```
C8500L-2#show platform hardware qfp active datapath infrastructure sw-distrib
<snip>

Port 12, fpe8/TenGigabitEthernet0/1/0: Classifier: L4TUPLE, uidb:1015, Credit Err: 153838010
      Flushes      Flushed      SW Hash      Total
PP 0:      17998      25879      25879      25879
PP 1:      592718     602277     602277     602277
PP 2:      34366      44057      44057      44057
PP 3:      211671     222721     222721     222721
PP 4:      22707      34099      34099      34099
.....
PP 10:     16657      27015      27015      27015
PP 11:     209707     216012     216012     216012
COFF 0:    -          -          9043333    9043333
```

- Rx is being blocked from pulling new packets into the system.
- If it is blocked long enough, the interface Rx rings will overflow resulting in input **overruns**.

# Are We Dealing with Elephant Flows?

Collecting outputs periodically:

```
show interface
show plat hard qfp active datapath infra sw-distrib
show plat hard qfp active datapath infra sw-cio
```

254829303 input errors, 0 CRC, 0 frame, 254829303 overrun, 0 ignored

Port 12, fpe8/TenGigabitEthernet0/1/0: Classifier: L4TUPLE, uidb:1015, Credit Err: 5451656

| ID:    | 0     | 1     | 2     | 3    | 4     | 5    | 6     | 7     | 8     | 9     | 10    | 11    | 12    | 13    | 14    | 15    |
|--------|-------|-------|-------|------|-------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| %IDLE: | 26.23 | 15.27 | 13.21 | 0.00 | 10.02 | 7.99 | 15.51 | 14.47 | 16.80 | 16.49 | 16.60 | 16.81 | 74.18 | 92.05 | 99.75 | 99.76 |

462946846 input errors, 0 CRC, 0 frame, 462946846 overrun, 0 ignored

Port 12, fpe8/TenGigabitEthernet0/1/0: Classifier: L4TUPLE, uidb:1015, Credit Err: 9457268

| ID:    | 0     | 1     | 2     | 3    | 4     | 5    | 6     | 7     | 8     | 9     | 10    | 11    | 12    | 13    | 14    | 15    |
|--------|-------|-------|-------|------|-------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| %IDLE: | 26.02 | 15.24 | 13.63 | 0.00 | 10.10 | 6.94 | 15.61 | 14.70 | 16.26 | 16.02 | 16.11 | 16.16 | 74.23 | 91.95 | 99.75 | 99.76 |

565131966 input errors, 0 CRC, 0 frame, 565131966 overrun, 0 ignored

Port 12, fpe8/TenGigabitEthernet0/1/0: Classifier: L4TUPLE, uidb:1015, Credit Err: 11576871

| ID:    | 0     | 1     | 2     | 3    | 4     | 5    | 6     | 7     | 8     | 9     | 10    | 11    | 12    | 13    | 14    | 15    |
|--------|-------|-------|-------|------|-------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| %IDLE: | 26.46 | 14.92 | 13.16 | 0.00 | 10.52 | 5.42 | 15.56 | 15.01 | 17.04 | 16.38 | 16.82 | 16.64 | 74.20 | 91.92 | 99.75 | 99.76 |

# Are We Dealing with Elephant Flows?

Collecting outputs periodically:

```
show interface
show plat hard qfp active datapath infra sw-distrib
show plat hard qfp active datapath infra sw-cio
```

254829303 input errors, 0 CRC, 0 frame, 254829303 overrun, 0 ignored

Port 12, fpe8/TenGigabitEthernet0/1/0: Classifier: L4TUPLE, uidb:1015, **Credit Err: 5451656**

| ID:    | 0     | 1     | 2     | 3    | 4     | 5    | 6     | 7     | 8     | 9     | 10    | 11    | 12    | 13    | 14    | 15    |
|--------|-------|-------|-------|------|-------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| %IDLE: | 26.23 | 15.27 | 13.21 | 0.00 | 10.02 | 7.99 | 15.51 | 14.47 | 16.80 | 16.49 | 16.60 | 16.81 | 74.18 | 92.05 | 99.75 | 99.76 |

462946846 input errors, 0 CRC, 0 frame, 462946846 overrun, 0 ignored

Port 12, fpe8/TenGigabitEthernet0/1/0: Classifier: L4TUPLE, uidb:1015, **Credit Err: 9457268**

| ID:    | 0     | 1     | 2     | 3    | 4     | 5    | 6     | 7     | 8     | 9     | 10    | 11    | 12    | 13    | 14    | 15    |
|--------|-------|-------|-------|------|-------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| %IDLE: | 26.02 | 15.24 | 13.63 | 0.00 | 10.10 | 6.94 | 15.61 | 14.70 | 16.26 | 16.02 | 16.11 | 16.16 | 74.23 | 91.95 | 99.75 | 99.76 |

565131966 input errors, 0 CRC, 0 frame, 565131966 overrun, 0 ignored

Port 12, fpe8/TenGigabitEthernet0/1/0: Classifier: L4TUPLE, uidb:1015, **Credit Err: 11576871**

| ID:    | 0     | 1     | 2     | 3    | 4     | 5    | 6     | 7     | 8     | 9     | 10    | 11    | 12    | 13    | 14    | 15    |
|--------|-------|-------|-------|------|-------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| %IDLE: | 26.46 | 14.92 | 13.16 | 0.00 | 10.52 | 5.42 | 15.56 | 15.01 | 17.04 | 16.38 | 16.82 | 16.64 | 74.20 | 91.92 | 99.75 | 99.76 |

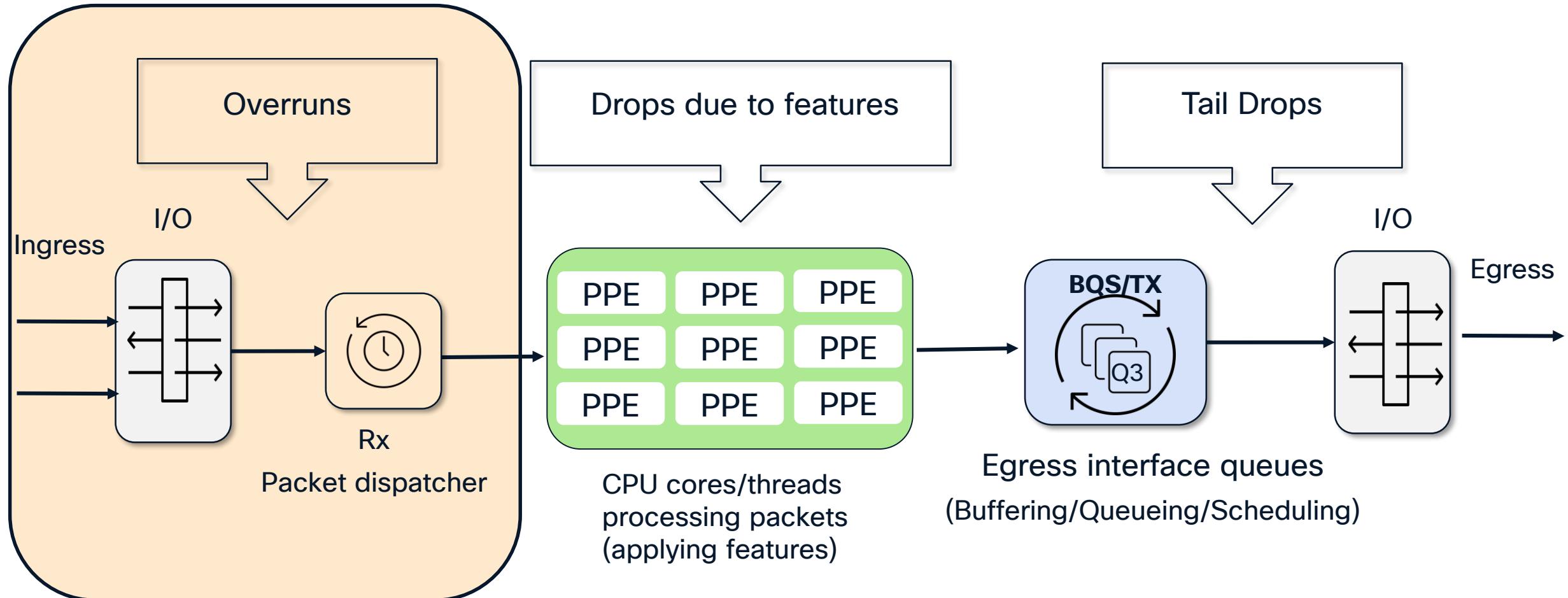
**Observations:** **Credit Err** counter increases along with overruns, PP #3 constantly fully utilized (Idle = 0%)

# C8500L Placement Guidance

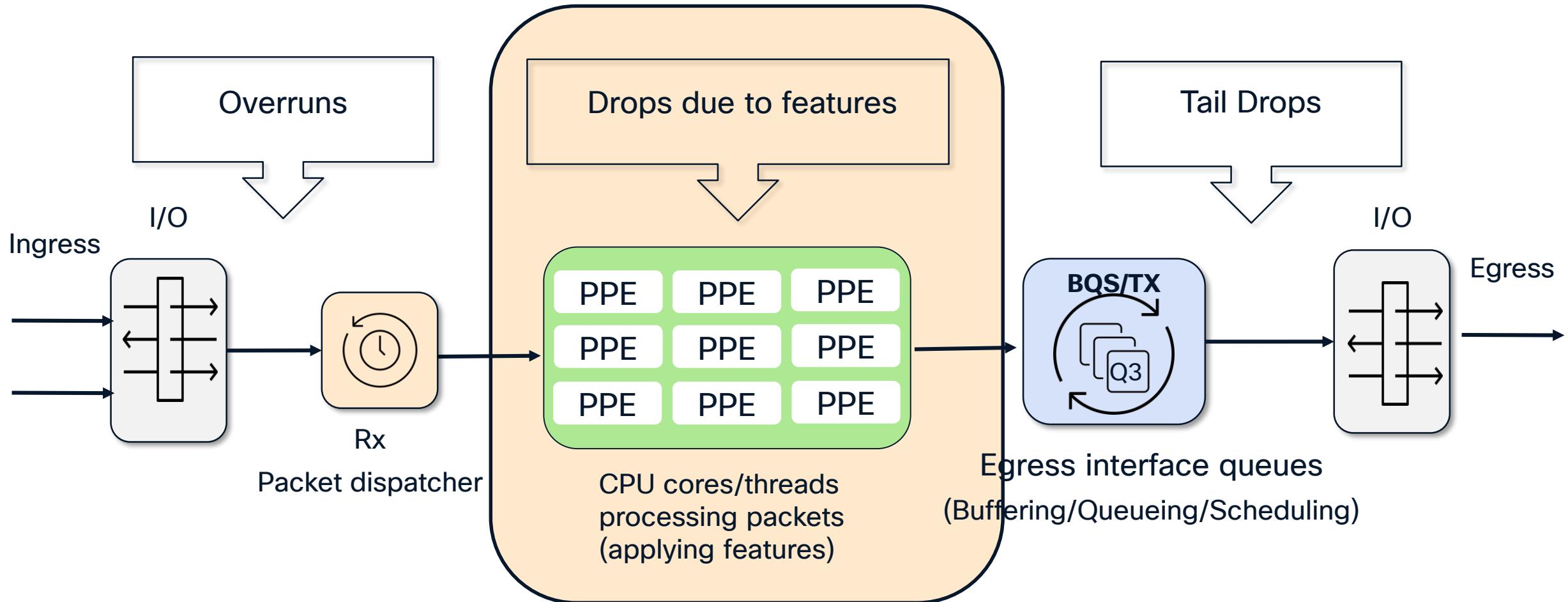
- C8500L is best suited for deployments where the system is exposed to **high flow count**.
- The PPE-Rx function performs hashing based on internal header (2nd pass)

```
C8500L-8S4X#show platform hardware qfp active fbd-flowdb balance distribution
```

## PP Flow Distribution


|    |     | Flows |
|----|-----|-------|
| PP | 0:  | 19010 |
| PP | 1:  | 21085 |
| PP | 2:  | 21043 |
| PP | 3:  | 21337 |
| PP | 4:  | 21495 |
| PP | 5:  | 21051 |
| PP | 6:  | 20242 |
| PP | 7:  | 20298 |
| PP | 8:  | 20216 |
| PP | 9:  | 20330 |
| PP | 10: | 20180 |
| PP | 11: | 20065 |

Most optimal performance with even distribution of traffic amongst all PP threads


This command is available on C8500L only.

# Troubleshooting Packet Drops in PPE

# Packet Drops – Most Common Scenarios



# Packet Drops – Most Common Scenarios

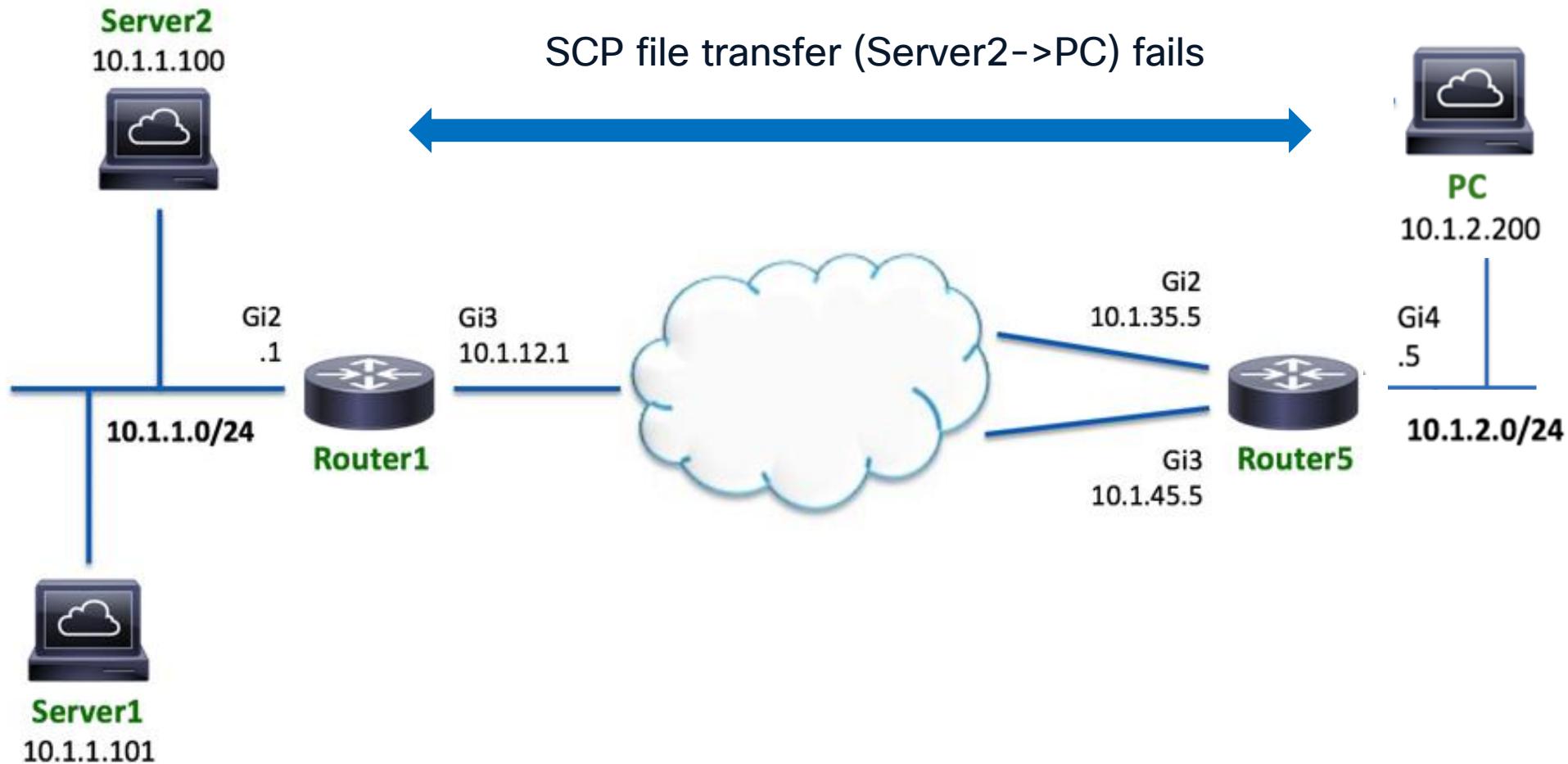


# Packet Drops in PPEs

- Packets that arrive to the PPE may be dropped with specific QFP drop reason.

```
C8500#show platform hardware qfp active statistics drop
Last clearing of QFP drops statistics : never
```

| Global Drop Stats | packets | Octets |
|-------------------|---------|--------|
| QosPolicing       | 4230    | 177792 |
| IpsecInput        | 5       | 790    |
| Ipv4NoRoute       | 334     | 58502  |


- Clear the accumulated drop counters to begin with:

```
C8500#show platform hardware qfp active statistics drop clear
```

- In IOS-XE 17.9 a simplified CLI is available:

```
C8500#show drops [options]
```

# Case Study: File Transfer Getting Stuck



# Troubleshooting QFP Drops with Packet Trace

- 1 Define condition, tracing level and buffer size on Cat8k router

```
Cat8k# debug platform condition ipv4 access-list ACL_SCP ingress
Cat8k# debug platform packet-trace packet 512 fia-trace
Cat8k# debug platform condition start
```

Trace packets matching this ACL

Trace 512 packets and stop, capture FIA details

- 2 Review the packet-trace summary

```
Cat8k# show platform packet-trace statistics
Cat8k# show platform packet-trace summary
```

- 3 Inspect individual packets

```
Cat8k# show platform packet-trace packet <packet#>
```

# Packet Trace Outputs

```
# show platform packet-trace statistics
```

packets Summary

Matched 18

Traced 18

packets Received

Ingress 18

Inject 0

packets Processed

Forward 6

Punt 0

Drop 12

Count

Code

12

187

Cause

FirewallPolicy

```
# show platform packet-trace summary
```

0 Gi4 Gi3 FWD

1 Gi3 Gi4 DROP 187 (FirewallPolicy)

2 Gi4 Gi3 FWD

3 Gi3 Gi4 DROP 187 (FirewallPolicy)

4 Gi3 Gi4 DROP 187 (FirewallPolicy)

```
# show platform packet-trace packet 1
```

Path Trace

Feature: IPV4(Input)

Input : GigabitEthernet3

Output : <unknown>

Source : 10.1.1.100

Destination : 10.1.2.200

Protocol : 6 (TCP)

SrcPort : 22

DstPort : 60202

<...>

This config needs to be verified

Feature: ZBFW

Action : Drop

Reason : Policy drop: classify result

Zone-pair name : WAN2\_Inside

Class-map name : class-default

Input interface : GigabitEthernet3

Egress interface : GigabitEthernet4

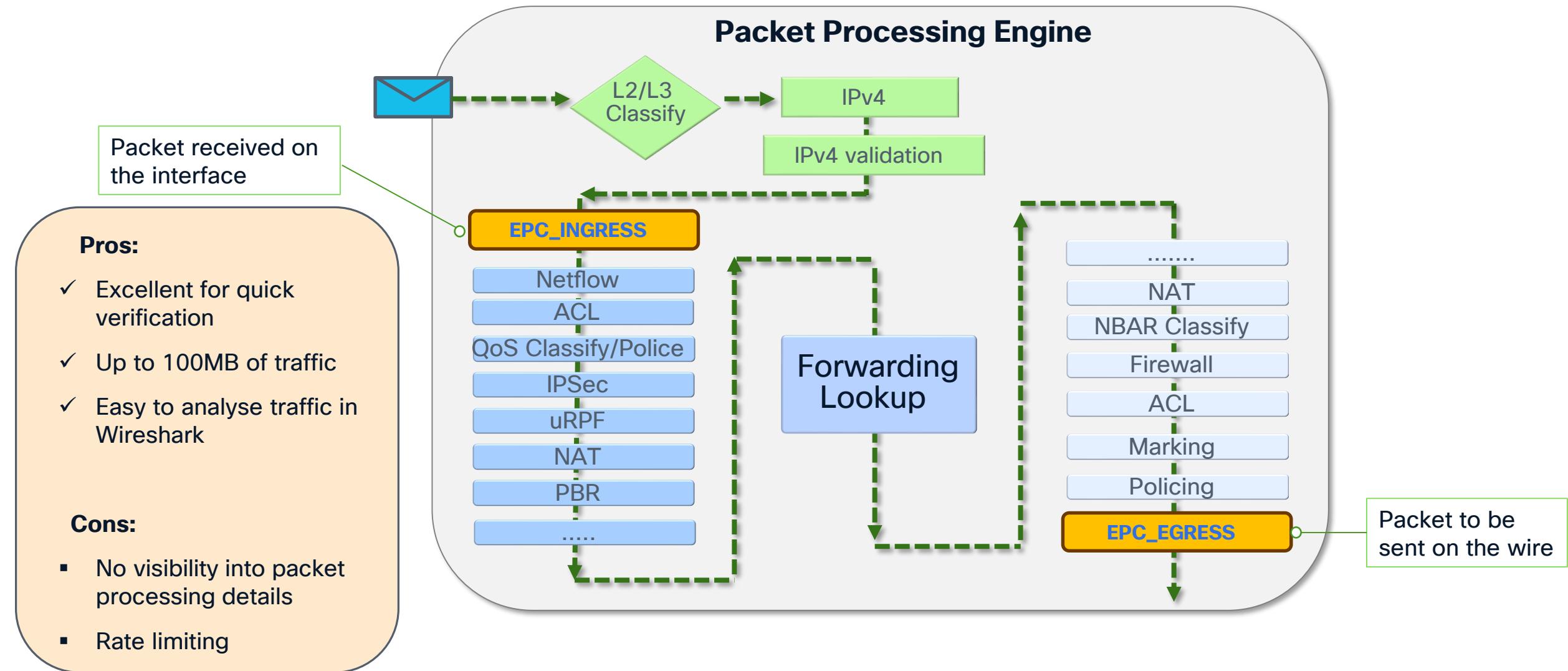
# Packet Trace – additional features

- A **copy of each packet** can be collected on ingress and/or egress of the QFP processing path

```
Cat8k# debug platform packet-trace copy packet [ingress|egress|both]
```

```
Cat8k# show platform packet-trace packet [pak_number] decode
```

- Trace only packets getting dropped in QFP (with an optional filter for specific numeric drop code)


```
Cat8k# debug platform packet-trace drop [code <drop code>]
```

- Trace packets on the inject/punt path from/to the main CPU

```
Cat8k# debug platform packet-trace punt|inject [code <punt|inject code>]
```

# Embedded Packet Capture

Sufficient when tracing is not required



# Embedded Packet Capture



## Configuration example

```
Device# monitor capture mycap start
Device# monitor capture mycap access-list [ACL-for-EPC]
Device# monitor capture mycap limit duration 1000
Device# monitor capture mycap interface TenGigabitEthernet 1/0/1 both
Device# monitor capture mycap buffer circular size 10
Device# monitor capture mycap start
Device# monitor capture mycap export tftp://10.10.21.31/epc_cap.pcap
Device# monitor capture mycap stop
```

Define traffic to be captured

Activate capture on an interface

Export to PCAP

```
Device# show monitor capture mycap buffer dump
```

```
0
0000: 01005E00 00020000 0C07AC1D 080045C0 ..^.....E.
0010: 00300000 00000111 CFDC091D 0002E000 .0.....
0020: 000207C1 07C1001C 802A0000 10030AFA .....*.....
0030: 1D006369 73636F00 0000091D 0001 ..example.....
```

Display capture buffer contents

```
1
0000: 01005E00 0002001B 2BF69280 080046C0 ..^....+....F.
0010: 00200000 00000102 44170000 0000E000 . ....D.....
0020: 00019404 00001700 E8FF0000 0000 .. .....
```

```
2
0000: 01005E00 0002001B 2BF68680 080045C0 ..^....+....E.
0010: 00300000 00000111 CFDB091D 0003E000 .0.....
0020: 000207C1 07C1001C 88B50000 08030A6E .....n
0030: 1D006369 73636F00 0000091D 0001 ..example.....
```

# Embedded Packet Capture

## Under the hood

- EPC added to FIA
  - Beginning of ingress FIA
  - End of egress FIA
- Matched packets are copied
- Copied packets get punted to RP
- Original packets processed as usual
- Capture exported to .pcap
- Capture limitations
  - EPC rate limit
  - Punt policer



```
Router#monitor capture test limit ?
  duration      Limit total duration of capture in seconds
  every        Limit capture to one in every nth packet
  packet-len   Limit the packet length to capture
  packets      Limit number of packets to capture
  pps          Limit number of packets per second to capture

Router#show platform software punt-policer | include EPC
```

# Serviceability Enhancements: QFP Drops History

Tracking QFP drops every 1 minute to determine trends:

```
Cat8000-1# show drops history
```

or

```
Cat8000-1# show platform hardware qfp active statistics drop history
```

New CLI  
in IOS-XE 17.13

```
Last clearing of QFP drops statistics : never
Last history counters update : Mon Jan 15 18:52:41 2025
(47s ago)
```

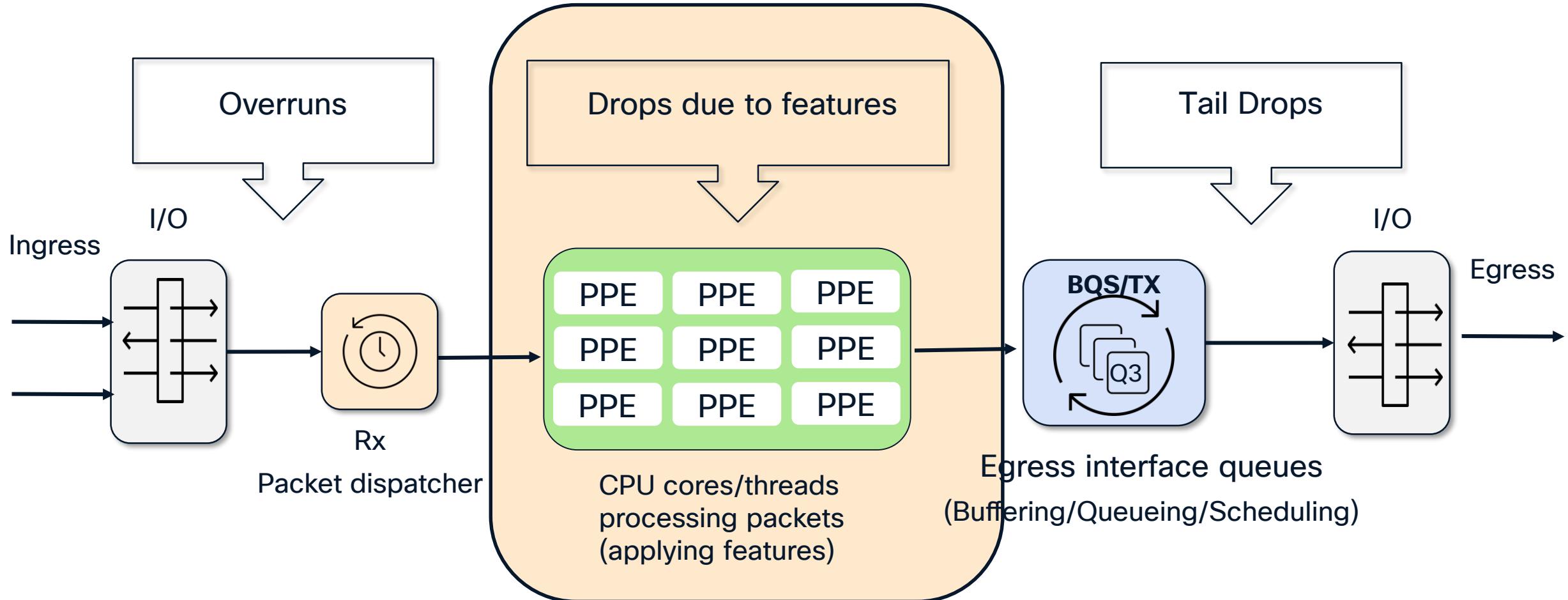
| Global Drop Stats | 1-Min | 5-Min | 30-Min | All     |
|-------------------|-------|-------|--------|---------|
| TailDrops         | 254   | 2441  | 532422 | 2552143 |
| IpTtlExceeded     | 1     | 1     | 4      | 509     |
| Ipv4Null0         | 433   | 2171  | 13007  | 2129165 |

# Serviceability Enhancements: QFP Drops Thresholds

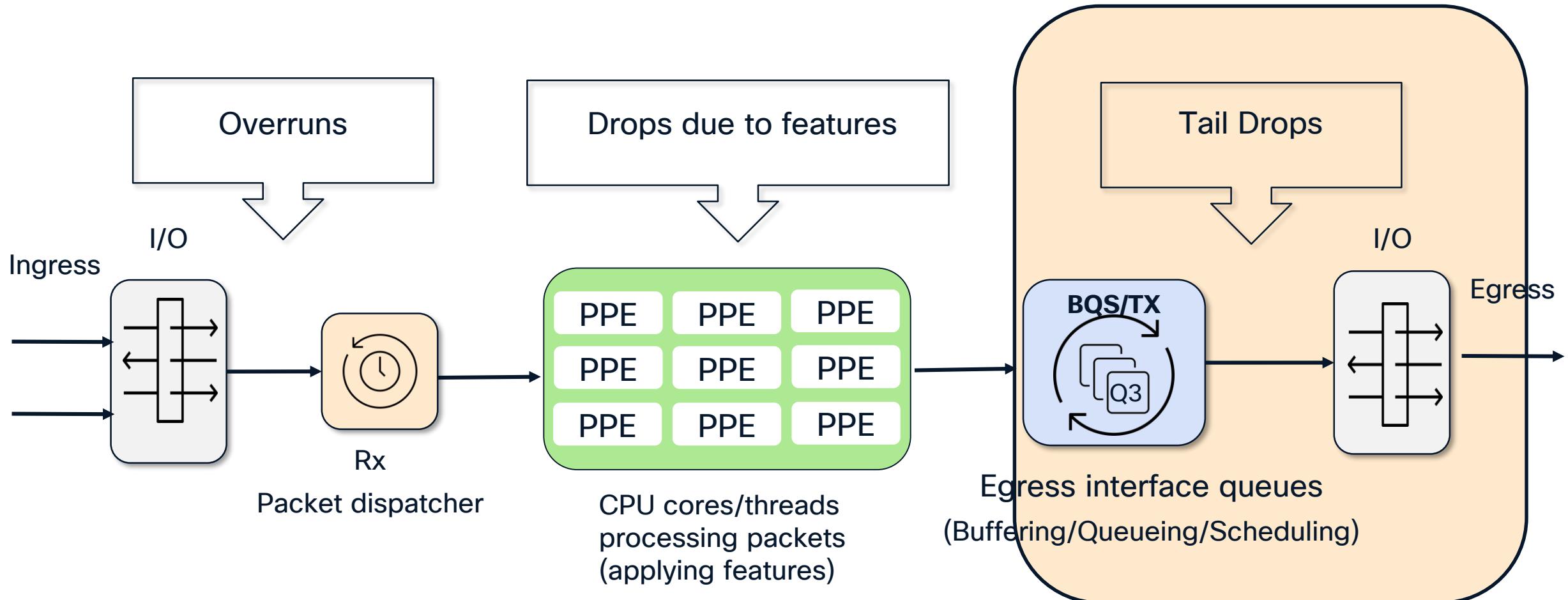
Syslog alert triggered when QFP drops threshold exceeded

```
 Cat8000-1(config)# platform qfp drops threshold ?
    per-cause  Set threshold for per-cause QFP drops
    total      Set threshold for total QFP drops
```

New CLI  
in IOS-XE 17.14


```
 Cat8000-1# show platform hardware qfp active statistics drop threshold
```

```
%CPP_GIC_SVR-3-PERCAUSE_DROP_EXCEEDED: F0/0: cpp_cp_svr: Exceeded the drop threshold of 100 pps for
Ipv4Null0 (drop code: 95) during the last 60-second measurement period. Packets dropped due to
Ipv4Null0 in last 1 minute: 439, last 5 minutes: 2171, last 30 minutes: 13007.
```


```
%CPP_GIC_SVR-3-TOTAL_DROP_EXCEEDED: F0/0: cpp_cp_svr: Exceeded the total drop threshold of 2500 pps
during the last 60-second measurement period. Top 3 drop causes: Ipv4Null0, QoS Policing,
IpTtlExceeded. Packets dropped in last 1 minute: 439, last 5 minutes: 2171, last 30 minutes: 13019.
```

# Troubleshooting Tail Drops

# Packet Drops – Most Common Scenarios



# Packet drops – most common scenarios



# Tail Drops Reasons

**Tail drops** indicate **congestion** on egress datapath

```
C8500#show platform hardware qfp active statistics drop
Last clearing of QFP drops statistics : never

-----
Global Drop Stats          Packets          Octets
-----
TailDrop                  14230            1277792
```

Congestion may occur due to:

- oversubscribing a shaper (e.g. class-default shaper setting)
- oversubscribing a physical interface
- backpressure (e.g. pause frames) sent by a peer device

# Tail Drops Due to Oversubscribed Interface

- Tail drops occur when the internal queue limit for the egress interface is exceeded.

```
C8500L#show platform hardware qfp active infrastructure bqs interface GigabitEthernet 0/0/0 detail
Interface: GigabitEthernet0/0/0 QFP: 0.0 if_h: 10 Num Queues/Schedules: 1
Queue specifics:
  Index 0 (Queue ID:0x70, Name: GigabitEthernet0/0/0)
  PARQ Software Control Info:
    (cache) queue id: 0x00000070, wred: 0xc6f6ebc0, qlimit (pkts ): 4210
    <snip>
  Statistics:
    tail drops (bytes): 770040065195
    total enqs (bytes): 20039977313838
    queue_depth (pkts ): 939
    (packets): 520842994
    (packets): 13713020916
```

Size of the egress queue

Couldn't fit within the queue limit

Packets currently in the queue

- The default queue limit depends on the bandwidth of an interface - can be overridden in configuration to reduce tail drops during brief periods of congestion.
- Increased queue limit will also increase latency of transmitted packets during periods of congestion.

# Tail Drops Due to Backpressure From Peer

- The **pause inputs** indicate the physical interface congestion is the result of back pressure from the directly connected peer device:

```
C8500L#show interface GigabitEthernet 0/0/0
GigabitEthernet0/0/0 is up, line protocol is up
<snip>
  output flow-control is on, input flow-control is on
<snip>
  Input queue: 0/375/0/0 (size/max/drops/flushes); Total output drops: 428856328
  Queueing strategy: fifo
  Output queue: 0/40 (size/max)
  30 second input rate 17000 bits/sec, 12 packets/sec
  30 second output rate 406106000 bits/sec, 214854 packets/sec
    651119 packets input, 117161693 bytes, 0 no buffer
    Received 1 broadcasts (0 IP multicasts)
    0 runts, 0 giants, 0 throttles
    0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored
    0 watchdog, 2663 multicast, 1602256 pause input
```

Pause frames from directly connected peer device

# Traffic Manager (TM) Utilization

```
C8500L# show platform hardware qfp active datapath infrastructure sw-cio | begin Core
```

Core Utilization over preceding 7.1235 seconds

| ID:       | 0     | 1     | 2     | ..... | 10    | 11    | 12     | 13    | 14    | 15    |
|-----------|-------|-------|-------|-------|-------|-------|--------|-------|-------|-------|
| % PPE-RX: | 0.00  | 0.00  | 0.00  | ..... | 0.00  | 0.00  | 0.00   | 0.00  | 0.00  | 0.00  |
| % PP:     | 0.28  | 0.54  | 0.57  | ..... | 0.00  | 0.00  | 0.00   | 0.00  | 0.00  | 0.00  |
| % RX:     | 0.00  | 0.00  | 0.00  | ..... | 0.00  | 0.00  | 0.00   | 0.78  | 0.00  | 0.00  |
| % TM:     | 0.00  | 0.00  | 0.00  | ..... | 0.00  | 0.00  | 100.00 | 9.71  | 0.00  | 0.00  |
| % COFF:   | 0.00  | 0.00  | 0.00  | ..... | 0.00  | 0.00  | 0.00   | 0.00  | 0.00  | 0.23  |
| % IDLE:   | 99.72 | 99.46 | 99.43 | ..... | 99.85 | 99.85 | 0.00   | 89.51 | 99.75 | 99.77 |

```
C8500L# show platform hardware qfp active datapath infrastructure sw-hqf
```

Name : Pri1 Pri2 None / **Inflight pkts**

GigabitEthernet0/0/0 : XON XON XOFF / **4175**

Packets accumulated in egress buffer

HQF[0] IPC: send 14648 fc 0 congested\_cnt 0

HQF[0] pkt: send hi 0 send lo 2761440507

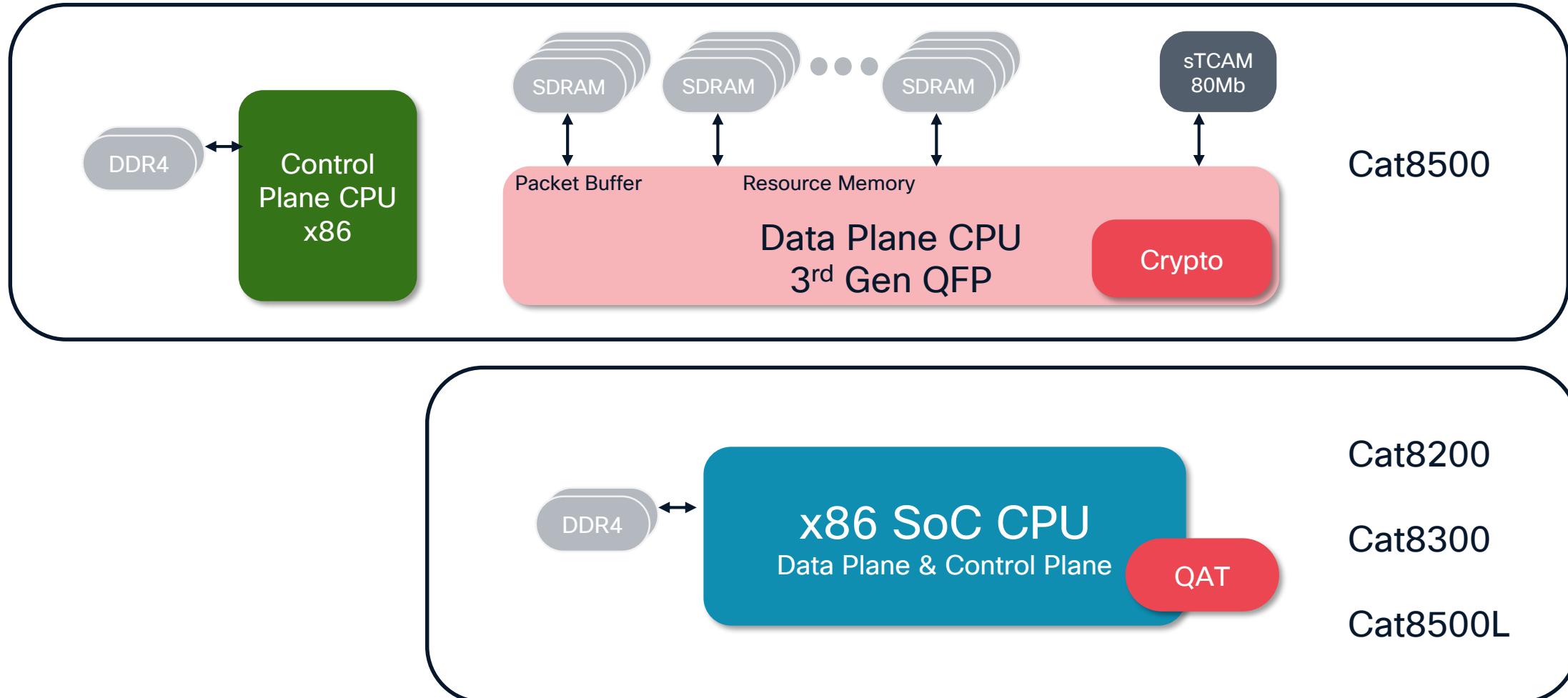
fc/full hi 0 fc/full lo 2758656

cong\_hi 0 **cong\_lo 1396909120**

Congestion observed

# How to Interpret TM Utilization of 100%

Up until IOS-XE 17.16.x the TM thread utilization includes the cycles spent by TM polling the congested network interface until the congestion clears.


- 100% TM utilization indicates congestion on the physical network port.  
After servicing other ports the TM is dedicating the remaining cycles to polling the congested port to empty the queue.
- In this case it's "normal" for TM to reach 100%

In IOS-XE 17.17.1 onwards, the TM CPU utilization calculation excludes the cycles spent on polling a congested network port.

- In this case if TM reaches 100% it indicates the TM got overwhelmed with work.

# Platform Resources Verification

# Control Plane vs Data Plane Resources



# Resource Utilization

## **Control Plane CPU**

Control Plane Memory

Data Plane CPU

Data Plane Memory

# CPU Utilization: IOS vs IOS-XE

## IOSd Perspective

High CPU usage

```
C8200# show process cpu sorted
CPU utilization for five seconds: 90%/0%; one minute: 83%; five minutes: 83%
  PID Runtime(ms)      Invoked      uSecs   5Sec  1Min  5Min TTY Process
  157  923258205    10334812    89335  67.48% 57.06% 47.96%  0 SAUtilReport
  600  363305945    9705428    37433  21.74% 24.25% 32.42%  0 SAGetRUMIDs
  494  52879277    64516466    819   0.31% 0.27% 0.26%  0 Skinny Msg Serve
    9  134793256    8352642    16137  0.31% 0.23% 0.31%  0 Check heaps
   96  372971       326659    1141   0.07% 0.01% 0.00%  0 Crimson flush tr
   15  19125986    139727025   136   0.07% 0.04% 0.05%  0 ARP Input
```

SNMP OID: .1.3.6.1.4.1.9.2.1.56

Processes consuming most IOSd CPU cycles

(5Sec)

- Collect “show process cpu sorted” output periodically to identify the IOS process(es) consuming most CPU cycles during high CPU periods
- Look for patterns in historical CPU usage stats

# CPU Utilization: IOS vs IOS-XE

## IOSd Perspective

```
C8200#show process cpu history
```

| CPU% per second | last 60 seconds |
|-----------------|-----------------|
| 0               | 0               |
| 5               | 5               |
| 1               | 0               |
| 1               | 5               |
| 2               | 0               |
| 2               | 5               |
| 3               | 0               |
| 3               | 5               |
| 4               | 0               |
| 4               | 5               |
| 5               | 0               |
| 5               | 5               |
| 6               | 0               |

Max CPU usage captured in 1-second intervals

80% of CPU cycles for IOS constantly consumed

# CPU Utilization: IOS vs IOS-XE

## IOSd Perspective

Max CPU usage within each 1-minute interval

Over past 60 minutes the average CPU usage on IOS side remained at 80%

# CPU Utilization: IOS vs IOS-XE

## IOSd Perspective

In this period the average CPU usage remains low (~20%), occasional CPU spikes (up to 90+) are not a concern

# CPU Utilization: IOS vs IOS-XE

## IOSd Perspective

In this period the average CPU usage remains low (~20%), occasional CPU spikes (up to 90+) are not a concern

```
C8200# show process cpu history
```

< . . >

For the past **8 hours** iOS was consuming 80% CPU cycles (on average)

# High CPU Utilization (IOS) Investigation

- Define CPU threshold to produce syslog alert, for example:

```
(config)# process cpu threshold type total rising 80 interval 5
```

Example alert:

```
Jul 25 22:43:52: %SYS-1-CPURISINGTHRESHOLD: Threshold: Total CPU Utilization(Total/Intr):  
93%/2%, Top 3 processes(Pid/Util): 747/76%, 325/3%, 573/2%
```



Top 3 IOS processes  
consuming most CPU cycles

| CPU utilization for five seconds: 93%/2%; one minute: 27%; five minutes: 22% |             |           |       |        |       |       |
|------------------------------------------------------------------------------|-------------|-----------|-------|--------|-------|-------|
| PID                                                                          | Runtime(ms) | Invoked   | uSecs | 5Sec   | 1Min  | 5Min  |
| 747                                                                          | 19467984    | 13889967  | 1401  | 76.33% | 7.33% | 1.64% |
| 325                                                                          | 3623133     | 6540482   | 553   | 3.86%  | 1.69% | 0.41% |
| 573                                                                          | 38913959    | 622896760 | 62    | 2.41%  | 1.71% | 1.44% |

TTY Process

0 BGP Task

0 IP RIB Update

0 BGP Router

# High CPU Utilization (IOS) Investigation

## General Procedure

- During the high CPU usage period:
  - Identify processes (features) that consume most CPU cycles
  - Collect IOS tracelogs and feature-specific debugs/outputs
  - **show stack <ProcessID>** will capture the call trace of PCs (functions) executed at that moment

```
#show stack <ProcessID>

Process 761:  SNMP ENGINE
Tracekey : 1#4c4803d2767f5c964caa60fc63d5a3
Stack segment 0x7FA50FDBA000 - 0x7FA50FDD1700
    RSP: 0x7FA50FDD0F80, PC: :5584BCAB1000+9FB7810
    RSP: 0x7FA50FDD0FC0, PC: :5584BCAB1000+8C15D9D
    RSP: 0x7FA50FDD1090, PC: :5584BCAB1000+6C46949
    RSP: 0x7FA50FDD1340, PC: :5584BCAB1000+6C46635
    RSP: 0x7FA50FDD1410, PC: :5584BCAB1000+87B0514
    RSP: 0x7FA50FDD14D0, PC: :5584BCAB1000+876C5AA
    RSP: 0x7FA50FDD15A0, PC: :5584BCAB1000+8753022
```

Collect a few instances of this output for better accuracy

# High CPU Utilization (IOS) Investigation

## Automated Data Collection Via EEM

- Embedded Event Manager (EEM) applet can be triggered by:
  - Syslog message (after applying "process cpu threshold..." config)

```
event manager applet CPUMON authorization bypass
  event syslog pattern "%SYS-1-CPURISINGTHRESHOLD" ratelimit 300
  action 1.0 syslog msg "Collecting Diagnostics Data for High CPU usage"
  action 1.1 cli command "enable"
  action 1.2 cli command "terminal exec prompt timestamp"
  action 1.3 cli command "show process cpu sorted | append bootflash:cpumon.txt"
  ...
...
```

- SNMP OID

```
event manager applet CPUMON_OID authorization bypass
  event snmp oid 1.3.6.1.4.1.9.2.1.56 get-type exact entry-op ge entry val 85 poll-interval 10
  action 1.1 cli command ...
```

# CPU Utilization: IOS vs IOS-XE

IOS-XE Perspective - SoC Platforms

SoC Platforms

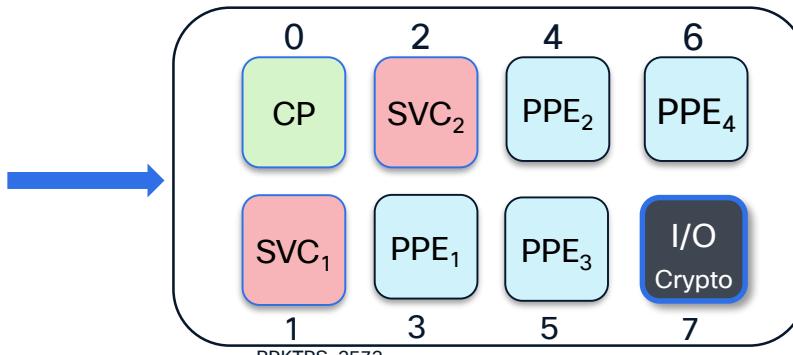
```
C8200# show process cpu platform sorted
```

```
CPU utilization for five seconds: 5%, one minute: 5%, five minutes: 10%
Core 0: CPU utilization for five seconds: 7%, one minute: 10%, five minutes: 10%
Core 1: CPU utilization for five seconds: 0%, one minute: 0%, five minutes: 0%
Core 2: CPU utilization for five seconds: 0%, one minute: 0%, five minutes: 0%
Core 3: CPU utilization for five seconds: 2%, one minute: 2%, five minutes: 2%
Core 4: CPU utilization for five seconds: 3%, one minute: 3%, five minutes: 4%
Core 5: CPU utilization for five seconds: 11%, one minute: 11%, five minutes: 12%
Core 6: CPU utilization for five seconds: 2%, one minute: 2%, five minutes: 2%
Core 7: CPU utilization for five seconds: 16%, one minute: 15%, five minutes: 53%
```

| Pid | PPid | 5Sec | 1Min | 5Min | Status | Size | Name |
|-----|------|------|------|------|--------|------|------|
|-----|------|------|------|------|--------|------|------|

|       |       |     |     |     |   |        |                 |
|-------|-------|-----|-----|-----|---|--------|-----------------|
| 19113 | 19100 | 67% | 67% | 67% | S | 205272 | ucode_pkt_PPE0  |
| 3861  | 3845  | 3%  | 2%  | 2%  | S | 659528 | linux_iosd-imag |
| <...> |       |     |     |     |   |        |                 |

Control Plane on Core 0 (used by IOSd)


Service Plane cores remain idle

Data Plane cores will be polling for new work

```
C8200# show platform software cpu alloc
```

CPU alloc information:

Control plane cpu alloc: 0  
Data plane cpu alloc: 3-7  
Service plane cpu alloc: 1-2



# CPU Utilization: IOS vs IOS-XE

IOS-XE Perspective – SoC Platforms

SoC Platforms

```
C8200# show process cpu platform sorted
CPU utilization for five seconds: 5%, one minute: 5%, five minutes: 10%
```

Control Plane on  
Core 0 (used by  
IOSd)

On SoC platforms the “show process cpu platform sorted” command is not really useful for CPU usage monitoring, due to DPDK characteristics.

| Pid   | PPid  | 5Sec | 1Min | 5Min | Status | Size   | Name           |
|-------|-------|------|------|------|--------|--------|----------------|
| 19113 | 19100 | 67%  | 67%  | 67%  | S      | 205272 | ucode_pkt_PPE0 |
| 3841  | 3845  | 2%   | 2%   | 2%   | S      | 659528 | linux_jiffies  |

The underlying Linux OS cannot distinguish between CPU core being busy due to polling with active or idle results.

Control plane cpu alloc: 0  
Data plane cpu alloc: 3-7  
Service plane cpu alloc: 1-2



# DPDK (Data Plane Development Kit) Overview



- Set of libraries and drivers to accelerate packet processing on general purpose CPUs.
- Packet processing is pushed to user space of the operating system
- Applications can directly access network interface cards (NICs)
- Polling Mode Drivers (PMDs) constantly check for new packets (CPU doesn't wait for interrupt signals)
- Core Affinity – specific CPU cores assigned to handle packet processing

# CPU Utilization: IOS vs IOS-XE

## Confusing CPU Usage Statistics

SoC Platforms

Your monitoring tool  
may be reporting  
this value

```
C8500L# show process cpu platform sorted
```

CPU utilization for five seconds: 86%, one minute: 76%, five minutes: 74%  
Core 0: CPU utilization for five seconds: 23%, one minute: 19%, five minutes: 13%  
Core 1: CPU utilization for five seconds: 64%, one minute: 27%, five minutes: 16%  
Core 2: CPU utilization for five seconds: 94%, one minute: 90%, five minutes: 91%  
Core 3: CPU utilization for five seconds: 93%, one minute: 91%, five minutes: 91%  
Core 4: CPU utilization for five seconds: 91%, one minute: 92%, five minutes: 91%  
Core 5: CPU utilization for five seconds: 83%, one minute: 81%, five minutes: 83%  
Core 6: CPU utilization for five seconds: 86%, one minute: 85%, five minutes: 88%  
Core 7: CPU utilization for five seconds: 91%, one minute: 86%, five minutes: 83%  
Core 8: CPU utilization for five seconds: 100%, one minute: 99%, five minutes: 99%  
Core 9: CPU utilization for five seconds: 100%, one minute: 100%, five minutes: 100%  
Core 10: CPU utilization for five seconds: 100%, one minute: 99%, five minutes: 99%  
Core 11: CPU utilization for five seconds: 100%, one minute: 99%, five minutes: 99%  
Core 12: CPU utilization for five seconds: 49%, one minute: 20%, five minutes: 14%  
Core 13: CPU utilization for five seconds: 20%, one minute: 18%, five minutes: 13%  
Core 14: CPU utilization for five seconds: 86%, one minute: 83%, five minutes: 82%  
Core 15: CPU utilization for five seconds: 83%, one minute: 86%, five minutes: 82%  
Core 16: CPU utilization for five seconds: 88%, one minute: 86%, five minutes: 86%  
Core 17: CPU utilization for five seconds: 89%, one minute: 80%, five minutes: 79%  
Core 18: CPU utilization for five seconds: 89%, one minute: 86%, five minutes: 83%  
Core 19: CPU utilization for five seconds: 95%, one minute: 92%, five minutes: 92%

| Pid   | PPid  | 5Sec  | 1Min  | 5Min  | Status | Size    | Name           |
|-------|-------|-------|-------|-------|--------|---------|----------------|
| 16220 | 16213 | 1479% | 1447% | 1436% | R      | 1309972 | ucode_pkt_PPE0 |

Should we trust this  
value?



This dataplane process  
consumes CPU cycles  
polling for packets,  
it's expected to see  
high CPU usage here

# CPU Utilization: IOS vs IOS-XE

## IOS-XE Perspective – SoC Platforms

SoC Platforms

- In **IOS-XE 17.13.1** onwards – enhanced CLI to avoid confusion when monitoring CPU usage

```
C8200# show process cpu platform sorted profile ?  
  CP  Show CPU usage for Control Plane  
  DP  Show CPU usage for Data Plane  
  SP  Show CPU usage for Service Plane
```



New CLI  
in IOS-XE 17.13

```
C8200# show process cpu platform sorted profile cp  
CPU utilization for five seconds: 6%, one minute: 13%, five minutes: 12%  
Core 0: CPU utilization for five seconds: 6%, one minute: 13%, five minutes: 12%  
Control plane process utilization for five seconds: 8%, one minute: 15%, five  
minutes: 14%
```

| Pid   | PPid  | 5Sec | 1Min | 5Min | Status | Size   | Name            |
|-------|-------|------|------|------|--------|--------|-----------------|
| 3972  | 3960  | 2%   | 3%   | 2%   | R      | 730220 | linux_iosd-imag |
| 18439 | 18417 | 1%   | 1%   | 1%   | S      | 178256 | fman_fp_image   |
| ...   |       |      |      |      |        |        |                 |

Only CPU core(s)  
involved in control plane  
processing are displayed

- For dataplane CPU utilization there are better ways to monitor performance (will be covered in the next section ).

# CPU Utilization: IOS vs IOS-XE

IOS-XE Perspective - SoC Platforms

SoC Platforms

Additional improvements implemented in IOS XE 17.13.1:

- *cpmCPUEntry* from *CISCO-PROCESS-MIB* now represents the CPU usage for **control plane functions only**

SNMP OIDs: 1.3.6.1.4.1.9.9.109.1.1.1.6 (5sec average)

- Updates in **show platform resources**

| Resource          | Usage  | Max | Warning | Critical |
|-------------------|--------|-----|---------|----------|
| RP0 (ok, active)  |        |     |         |          |
| Control Processor | 46.30% |     |         |          |
| <...>             |        |     |         |          |
| ESP0(ok, active)  |        |     |         |          |
| QFP               |        |     |         |          |
| CPU Utilization   | 12.00% |     |         |          |
| <...>             |        |     |         |          |
| SP0 (ok, active)  |        |     |         |          |
| Service Processor | 0.00%  |     |         |          |

**Control Plane only** is highlighted for the Control Processor usage.

**Data Plane only** is highlighted for the CPU Utilization usage.

**Service Plane only (new entry)** is highlighted for the Service Processor usage.

# CPU Utilization: IOS vs IOS-XE

## IOS-XE Perspective – QFP Based Platforms

QFP-Based Platforms

```
C8500-1# show process cpu platform sorted
```

```
CPU utilization for five seconds: 3%, one minute: 3%, five minutes: 4%
Core 0: CPU utilization for five seconds: 12%, one minute: 4%, five minutes: 2%
Core 1: CPU utilization for five seconds: 11%, one minute: 2%, five minutes: 11%
Core 2: CPU utilization for five seconds: 8%, one minute: 16%, five minutes: 7%
Core 3: CPU utilization for five seconds: 8%, one minute: 1%, five minutes: 18%
Core 4: CPU utilization for five seconds: 5%, one minute: 5%, five minutes: 6%
Core 5: CPU utilization for five seconds: 3%, one minute: 2%, five minutes: 1%
Core 6: CPU utilization for five seconds: 8%, one minute: 2%, five minutes: 2%
Core 7: CPU utilization for five seconds: 6%, one minute: 5%, five minutes: 5%
Core 8: CPU utilization for five seconds: 7%, one minute: 3%, five minutes: 1%
Core 9: CPU utilization for five seconds: 47%, one minute: 4%, five minutes: 1%
Core 10: CPU utilization for five seconds: 2%, one minute: 0%, five minutes: 0%
Core 11: CPU utilization for five seconds: 8%, one minute: 1%, five minutes: 3%
Core 12: CPU utilization for five seconds: 3%, one minute: 3%, five minutes: 3%
Core 13: CPU utilization for five seconds: 7%, one minute: 1%, five minutes: 1%
Core 14: CPU utilization for five seconds: 3%, one minute: 0%, five minutes: 0%
Core 15: CPU utilization for five seconds: 20%, one minute: 9%, five minutes: 2%
```

| Pid   | PPid  | 5Sec | 1Min | 5Min | Status | Size    | Name            |
|-------|-------|------|------|------|--------|---------|-----------------|
| 4490  | 4447  | 69%  | 37%  | 47%  | S      | 3120392 | linux_iosd-imag |
| 23472 | 23465 | 15%  | 9%   | 9%   | S      | 154132  | mcpcc-lc-ms     |
| 19746 | 19734 | 10%  | 3%   | 3%   | S      | 973448  | fman_fp_image   |



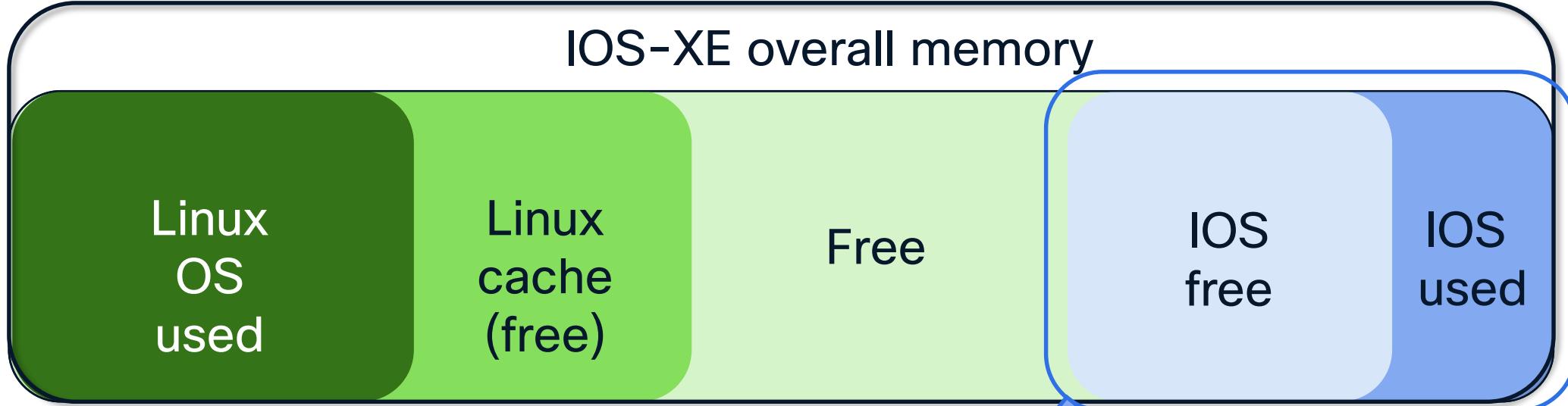
OK to use on C8500/ASR1000

None of these CPU cores is involved in datapath/forwarding functions (packet processing handled by QFP).

SNMP OID: .1.3.6.1.4.1.9.9.109.1.1.2.1.3

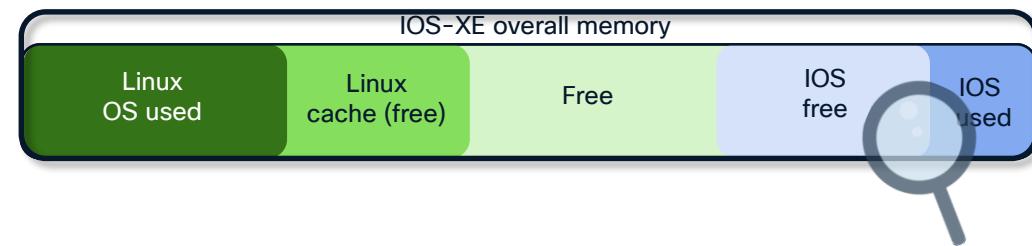
# Resource Utilization

Control Plane CPU


**Control Plane Memory**

Data Plane CPU

Data Plane Memory


# IOS-XE vs IOS Memory Usage

Control Plane + Management Plane



```
#show version
...
cisco C8500-12X4QC (1GD) processor (revision 1GD) with 6755559K/6147K bytes of memory.
...
16777216K bytes of physical memory.
```

# IOS Memory Usage



```
#show memory statistics
```

Tracekey : 1#cc3dd7de68a09bce3a76a3e96c1758af

|           | Head         | Total(b)   | Used(b)   | Free(b)    | Lowest(b)  | Largest(b) |
|-----------|--------------|------------|-----------|------------|------------|------------|
| Processor | 76D24DB72048 | 6917553548 | 499355388 | 6418198160 | 5416976620 | 6417925616 |
| reserve P | 76D24DB720A0 | 102404     | 92        | 102312     | 102312     | 102312     |
| lsmpi_io  | 76D23726B1A8 | 6295128    | 6294304   | 824        | 824        | 412        |

Lowest free memory since last boot

Largest available free memory block

```
#show process memory sorted
```

Processor Pool Total: 6917553548 Used: 499414136 Free: 6418139412

reserve P Pool Total: 102404 Used: 88 Free: 102316

lsmpi\_io Pool Total: 6295128 Used: 6294296 Free: 832

| PID | TTY | Allocated | Freed    | Holding   | Getbufs | Retbufs | Process          |
|-----|-----|-----------|----------|-----------|---------|---------|------------------|
| 0   | 0   | 375993784 | 40532056 | 309544720 | 0       | 0       | *Init*           |
| 735 | 0   | 51421976  | 592      | 51343568  | 0       | 0       | PPPoE Background |
| 699 | 0   | 33989568  | 51720    | 34313848  | 0       | 0       | SBC main process |

IOS processes only

# IOS Memory Usage

## Top Memory Allocators



```
#show memory allocating totals
```

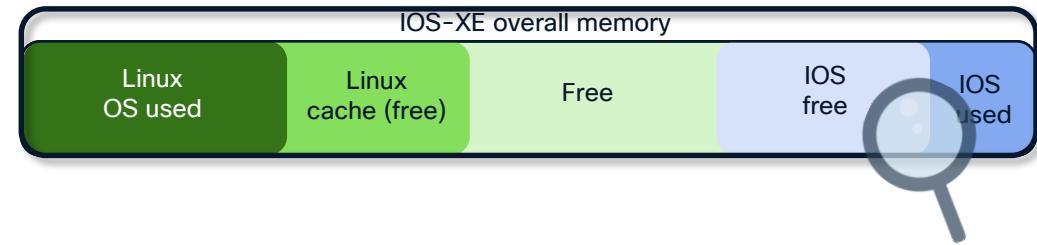
Tracekey : 1#cc3dd7de68a09bce3a76a3e96c1758af

“Tracekey” encodes the IOS-XE process and IOS-XE version

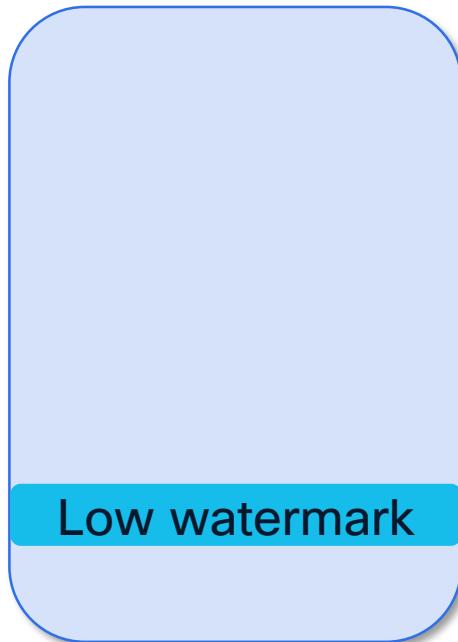
Allocator PC Summary for: Processor

| Total    | Count | Name            | PC                    |
|----------|-------|-----------------|-----------------------|
| 33554528 | 1     | Init            | :5ACE3CFFA000+9AA7431 |
| 29691840 | 751   | *Init*          | :5ACE3CFFA000+9A43778 |
| 29069568 | 9768  | *Packet Header* | :5ACE3CFFA000+CE54937 |
| 28063240 | 9528  | *Packet Data*   | :5ACE3CFFA000+CE5498E |
| ...      |       |                 |                       |

Total amount of memory allocated by given PC


“Name” might give us a clue about top IOS memory consumer

Alloc PC represents a specific function in the source code. It can be decoded by Cisco TAC




# IOS Memory Usage

Low Memory Watermark

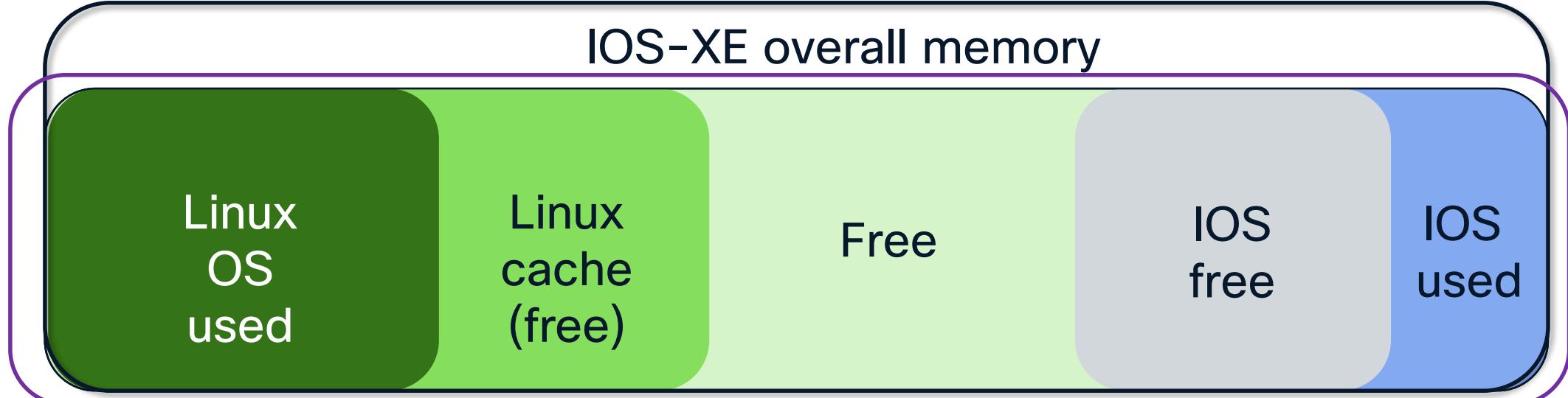


IOS Processor Pool



- IOS syslog generated when IOS free memory drops below the pre-configured low memory watermark

```
%SYS-4-THRESHOLD_TK: Free Memory has dropped below low watermark.  
Pool: Processor Free: 52181492 Threshold: 134870705 Tracekey:  
1#09f7811786f1de5ddfa0f5542a69f593
```


```
%SYS-4-FREEMEMLOW: Top Allocator Name: HTTP CORE, PC:  
:55B1DF50A000+B6BE3ED, Size: 346275328, Count: 789749
```

- IOS memory usage outputs stored in:

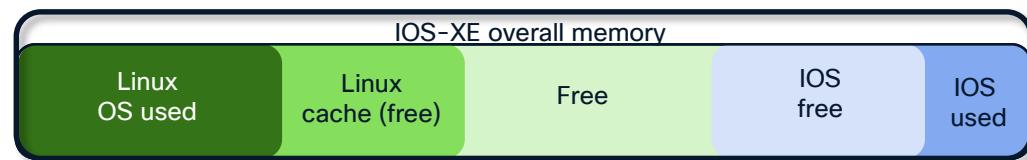
*bootflash:threshold\_lowmem\_info\_<timestamp>*

# IOS-XE Memory Usage

Control Plane + Management Plane



```
# show platform resources
```


\*\*State Acronym: H - Healthy, W - Warning, C - Critical

| Resource          | Usage       | Max     | Warning | Critical | State |
|-------------------|-------------|---------|---------|----------|-------|
| <hr/>             |             |         |         |          |       |
| RP0 (ok, active)  |             |         |         |          | H     |
| Control Processor | 4.13%       | 100%    | 80%     | 90%      | H     |
| DRAM              | 4321MB(27%) | 15449MB | 88%     | 93%      | H     |

IOS-XE (RP) usage

# IOS-XE Memory Usage

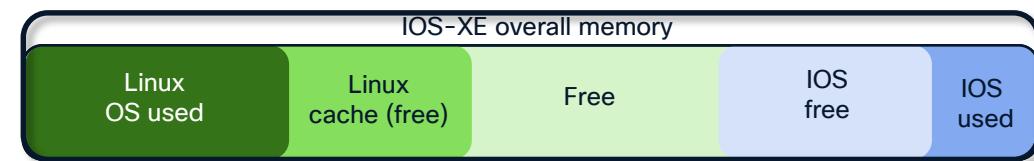
## Top Memory Consumer Processes



```
#show process memory platform sorted
```

```
System memory: 15820156K total, 4424620K used, 11395536K free,
```

```
Lowest: 11349604K
```


| Pid   | Text   | Data    | Stack | Dynamic | RSS     | Name            |
|-------|--------|---------|-------|---------|---------|-----------------|
| <hr/> |        |         |       |         |         |                 |
| 3406  | 403647 | 1182620 | 136   | 456     | 1182620 | linux_iosd-imag |
| 23366 | 3389   | 262000  | 136   | 1372    | 262000  | confd.smp       |
| 18841 | 280    | 242584  | 132   | 1448    | 242584  | cpp_cp_svr      |
| 19055 | 11767  | 209060  | 136   | 3216    | 209060  | fman_fp_image   |
| 22437 | 40710  | 147708  | 136   | 392     | 147708  | mcpcc-lc-ms     |

IOS-XE processes

All counters in kilobytes

# IOS-XE Memory Usage (3/3)

Memory Allocation Tracking Mechanism Based On Tags (Callsites)



```
#show process memory platform accounting
```

Hourly Stats

| process        | callsite_ID(bytes) | max_diff_bytes | callsite_ID(calls) | max_diff_calls |
|----------------|--------------------|----------------|--------------------|----------------|
| fman_rp_rp_0   | 2085458948         | 3607550816     | 2085458948         | 1943922        |
| sessmgrd_rp_0  | 1824349186         | 6428784        | 1823428608         | 12260          |
| cli_agent_rp_0 | 2085458948         | 1268440        | 2427634691         | 3050           |
| smand_rp_0     | 2083290122         | 1205064        | 3427598337         | 156            |
| ...            |                    |                |                    |                |

Callsite ID can be  
decoded by Cisco TAC

For each IOS-XE process the top memory allocator (represented by callsite ID) is displayed based on:

- the number of bytes allocated but not freed
- the number of memory allocations without corresponding memory free request



# IOS-XE Memory Usage Warnings

- Syslog alerts when warning/critical IOS-XE memory usage threshold is reached.

```
Mar 13 17:12:47.422 UTC: %PLATFORM-4-ELEMENT_WARNING: R0/0: smand: RP/0: Used Memory value 89% exceeds warning level 88%. Top memory allocators are: Process: fman_fp_image_fp_0. Tracekey: 1#41501ff8e9f8c5348c0d01317ac6e775 Callsite ID: 1952442373 (diff_call: 1033957). Process: sessmgrd_rp_0. Tracekey: 1#da8dfbbe9dfb910b99693a33a0353a58 Callsite ID: 1950538752 (diff_call: 12260). Process: linux_iosd-imag_rp_0. Tracekey: 1#71c88d7e1b9cf87e65b91ce4dcbb60d6 Callsite ID: 1956637699 (diff_call: 4444)
```

Pay attention to **timestamps** of consecutive alerts (rapid memory spike vs slow increase).

Top 3 memory allocators are displayed, based on the memory accounting analysis.

# Memory/CPU Usage Captured In Tracelogs

- The Host Manager (HMAN) will periodically (hourly) capture the per-process CPU and memory utilization. This information is captured in HMAN tracelogs.
  - overall memory usage
  - per process RSS/top callsite memory usage
  - per process cpu usage

```
#show logging process hman internal start last boot

2020/05/18 07:54:45.205759 {hman_R0-0}{1}: [ov-mem] [24289]: UUID: 0, ra: 0, TID: 0 (note): Memory summary
- Total: 65251644, Used: 4597820, Available: 60653824, Low free: 60542820
<snip>
2020/05/18 07:54:45.208414 {hman_R0-0}{1}: [proc_data] [24289]: UUID: 0, ra: 0, TID: 0 (note): FRU: CC,
Proc: ezman, RSS: 29237, VSS: 539713536, CPU utilization for 5 sec: 1%, 1 min: 1%, 5 min: 1%, Num of open
file descriptors: 20
<snip>
2020/05/18 07:54:45.386709 {hman_R0-0}{1}: [maroon_malloc] [18302]: UUID: 0, ra: 0, TID: 0 (note): Proc:
pubd_rp_0, CS calls: 1748560898, Diff calls: 18446740u, CS bytes: 1612103692, Diff bytes: 353930
```

# Memory Monitoring Service & Logs



```
/bootflash/tracelogs/memmon_log_20241128_153115_JST_1732775475.tar.gz  
/bootflash/tracelogs/memmon_log_20250116_090614_JST_1736985974.tar.gz  
/bootflash/tracelogs/memmon_log_20241029_153114_JST_1730183474.tar.gz  
/bootflash/tracelogs/memmon_log_20250117_090614_JST_1737072374.tar.gz
```

- Memory usage data is captured periodically into memmon\_log files stored in tracelogs folder
- Each tar.gz includes:
  - Memauditlog.txt – stores Linux outputs (IOS-XE system memory)
  - Meminfo.txt – stores IOS memory outputs
  - Ts.txt – stores Linux epoch time
- Implemented on:
  - Catalyst 8200/8200L/8300/8500L – all releases
  - Catalyst 8500 – in IOS-XE 17.8 onwards

# Show Tech Memory



- Contains relevant outputs to be collected in a single shot

```
Router#show tech memory | include -- show
----- show clock -----
----- show version -----
----- show running-config -----
----- show platform -----
----- show platform software status control-processor brief -----
----- show platform resources -----
----- show memory statistics history -----
----- show memory allocating-process total -----
----- show process memory sorted -----
----- show process memory platform sorted -----
----- show memory lite-chunks totals -----
----- show buffer -----
----- show buffer usage -----
----- show region -----
----- show memory dead totals -----
----- show chunk brief -----
<snip>
----- show platform software memory backplaneswitch-manager rp active brief -----
----- show platform software memory messaging backplaneswitch-manager rp active -----
----- show processes memory platform accounting -----
```

# Resource Utilization

Control Plane CPU

Control Plane Memory

**Data Plane CPU**

Data Plane Memory

# Dataplane CPU Utilization

## Overall Processing Load

```
C8500# show platform resources
```

\*\*State Acronym: H - Healthy, W - Warning, C - Critical

| Resource         | Usage  | Max  | Warning | Critical | State |
|------------------|--------|------|---------|----------|-------|
| <hr/>            |        |      |         |          |       |
| .....            |        |      |         |          |       |
| ESP0(ok, active) |        |      |         |          | H     |
| QFP              |        |      |         |          | H     |
| ...              |        |      |         |          |       |
| CPU Utilization  | 46.00% | 100% | 90%     | 95%      | H     |

```
C8500# show platform hardware qfp active datapath utilization summary
```

|                        |            |            |            |            |
|------------------------|------------|------------|------------|------------|
| CPP 0: Subdev 0        | 5 secs     | 1 min      | 5 min      | 60 min     |
| Input: Total (pps)     | 1178722    | 1231063    | 1232043    | 1214378    |
| (bps)                  | 6293516608 | 6690041264 | 6714960600 | 6634462072 |
| Output: Total (pps)    | 1169061    | 1220916    | 1220224    | 1203170    |
| (bps)                  | 6450486808 | 6853071560 | 6874761352 | 6794245080 |
| Processing: Load (pct) | 46         | 36         | 33         | 36         |

Total amount of traffic received by QFP

Total amount of traffic leaving QFP

QFP utilization in %

SNMP OID: .1.3.6.1.4.1.9.9.715.1.1.6.1.14

# Dataplane CPU utilization

Priority vs Non-Priority Traffic

QFP-Based Platforms

| C8500-1#show platform resources datapath |            |            |            |            |
|------------------------------------------|------------|------------|------------|------------|
| CPP 0: Subdev 0                          | 5 secs     | 1 min      | 5 min      | 60 min     |
| Input: Priority (pps)                    | 0          | 0          | 0          | 0          |
| (bps)                                    | 0          | 0          | 0          | 0          |
| Non-Priority (pps)                       | 1178722    | 1231063    | 1232043    | 1214378    |
| (bps)                                    | 6293516608 | 6690041264 | 6714960600 | 6634462072 |
| Total (pps)                              | 1178722    | 1231063    | 1232043    | 1214378    |
| (bps)                                    | 6293516608 | 6690041264 | 6714960600 | 6634462072 |
| Output: Priority (pps)                   | 8          | 8          | 8          | 8          |
| (bps)                                    | 15512      | 13440      | 15064      | 15840      |
| Non-Priority (pps)                       | 1169053    | 1220908    | 1220216    | 1203162    |
| (bps)                                    | 6450471296 | 6853058120 | 6874746288 | 6794229240 |
| Total (pps)                              | 1169061    | 1220916    | 1220224    | 1203170    |
| (bps)                                    | 6450486808 | 6853071560 | 6874761352 | 6794245080 |
| Processing: Load (pct)                   | 46         | 36         | 33         | 36         |

Total amount of traffic received by QFP

Total amount of traffic leaving QFP

QFP utilization in %



# Dataplane CPU Utilization

## High QFP Utilization Alerts

```
%IOSXE_QFP-2-LOAD_EXCEED: Slot: 0, QFP:0, Load 88% exceeds the setting threshold 80%.
5 secs traffic rate on QFP: Total Input: 2940667 pps (2940.7 kpps), 9039935768 bps (9039.9 mbps),
Total Output: 2943211 pps (2943.2 kpps), 9365649048 bps (9365.6 mbps).
```

Syslog alerts in newer code versions include the traffic rate information.

- Potential causes of high QFP utilization:
  - Amount of traffic received by the router exceeds the platform limits
  - Low traffic rate but CPU-intensive features configured
  - Sub-optimal router configuration
- **Next step:** Perform **QFP Profiling** with **Packet Trace** (see: Overruns troubleshooting section)

# Catalyst 8000 Throughput Considerations



- On physical Catalyst 8000 platforms:
  - Max CEF throughput not restricted (up to platform dataplane limits)
  - Max crypto throughput enforced by licensing (DNA Tier + HSEC)
    - Aggregate throughput throttling, no restrictions to input/output ratio
  - The highest DNA Tier unlocks the max platform performance (e.g. Tier 3 on C8500L-8S4X, C8500-12X, C8500-12X4QC)
- On Catalyst 8000v:
  - Max CEF and crypto throughput (combined) enforced by licensing

[Cisco DNA Subscription Software for SD-WAN and Routing FAQ](#)

# Datapath CPU Core/Thread utilization

SoC Platforms

- On x86 based platforms the “show process cpu platform” will not be very useful (in IOSXE 17.12 or older)

```
#show process cpu platform sorted
CPU utilization for five seconds: 54%, one minute: 51%, five minutes: 48%
```

- It is recommended to issue "sw-cio" command multiple times to verify dataplane CPU cores usage.
- Monitor % IDLE counter to identify CPU cores that experience congestion.

```
#show platform hardware qfp active datapath infrastructure sw-cio
```

```
<...>
```

```
Core Utilization over preceding 8.9039 seconds
```

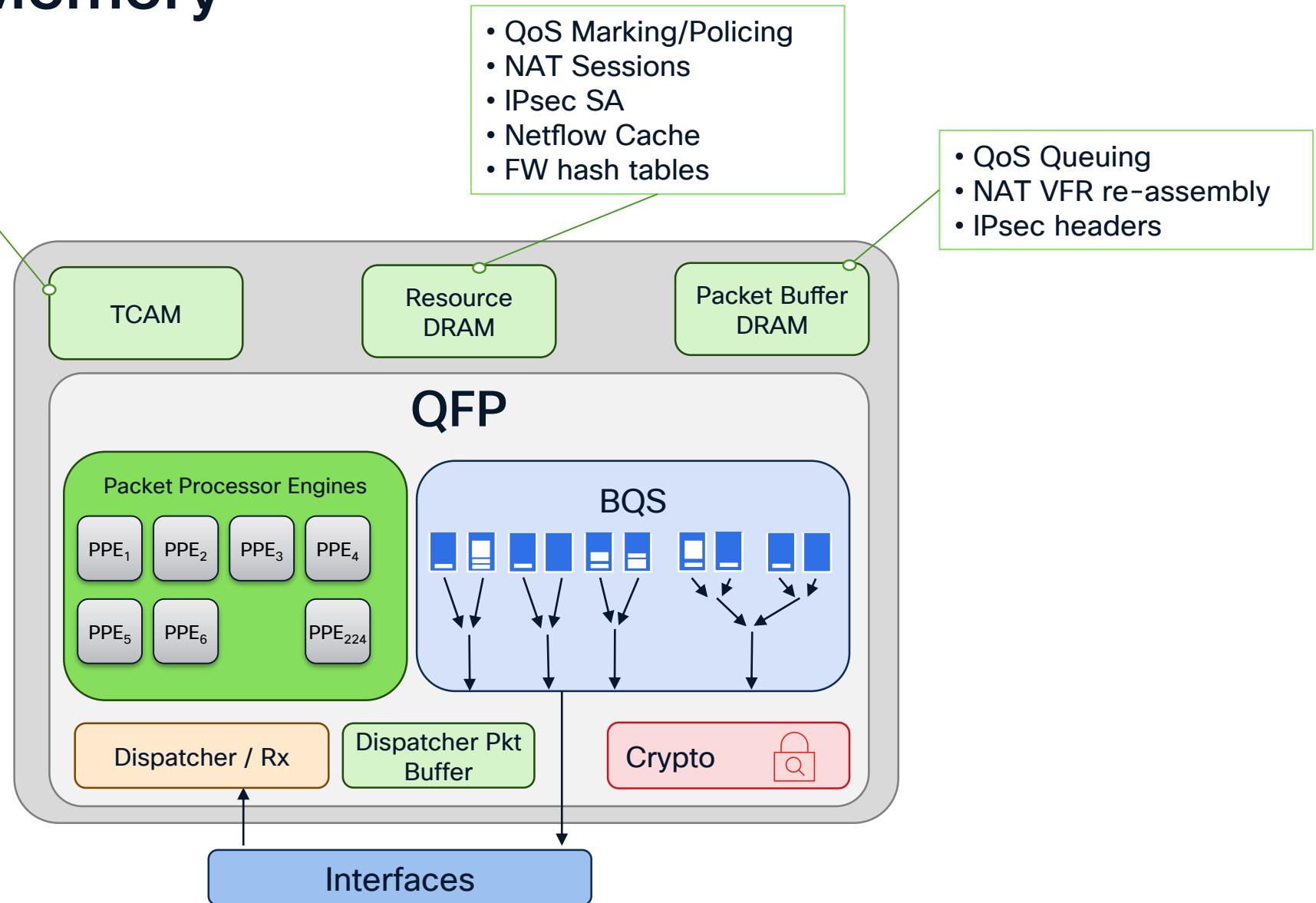
| ID:       | 0     | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    | 13    | 14    | 15    |
|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| % PPE-RX: | 1.50  | 1.71  | 1.29  | 1.43  | 1.24  | 1.48  | 0.98  | 1.17  | 1.21  | 1.45  | 1.19  | 1.44  | 0.00  | 0.00  | 0.00  | 0.00  |
| % PP:     | 17.03 | 17.55 | 18.42 | 14.89 | 17.36 | 16.95 | 12.37 | 13.08 | 13.76 | 15.41 | 13.39 | 17.56 | 0.00  | 0.00  | 0.00  | 0.00  |
| % RX:     | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.90  | 1.09  | 0.00  | 0.00  |
| % TM:     | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 13.37 | 15.16 | 0.00  | 0.00  |
| % COFF:   | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 7.45  | 9.06  |
| % IDLE:   | 81.47 | 80.74 | 80.29 | 83.68 | 81.40 | 81.57 | 86.65 | 85.75 | 85.04 | 83.14 | 85.42 | 81.00 | 85.74 | 83.75 | 92.55 | 90.94 |

# Resource Utilization

Control Plane CPU

Control Plane Memory

Data Plane CPU


**Data Plane Memory**

# QFP Dataplane Memory

- Class/Policy Maps: QoS, DPI, FW
- ACL/ACE, Route-maps
- IPsec Security Association class groups, classes, rules

- QoS Marking/Policing
- NAT Sessions
- IPsec SA
- Netflow Cache
- FW hash tables

- QoS Queuing
- NAT VFR re-assembly
- IPsec headers



# QFP Resources Monitoring

```
C8200# show platform resources
```

\*\*State Acronym: H - Healthy, W - Warning, C - Critical

| Resource         | Usage       | Max      | Warning | Critical | State |
|------------------|-------------|----------|---------|----------|-------|
| <hr/>            |             |          |         |          |       |
| <snip>           |             |          |         |          |       |
| ESP0(ok, active) |             |          |         |          |       |
| QFP              |             |          |         |          |       |
| DRAM             | 25225KB(3%) | 786432KB | 85%     | 95%      | H     |
| IRAM             | 207KB(10%)  | 2048KB   | 85%     | 95%      | H     |
| CPU Utilization  | 12.00%      | 100%     | 90%     | 95%      | H     |
| ...              |             |          |         |          |       |

```
C8200# show plat hard qfp active infra exmem statistics user
```

<snip>

Type: Name: GLOBAL, QFP: 0

| Allocations | Bytes-Alloc | Bytes-Total | User-Name |
|-------------|-------------|-------------|-----------|
| <hr/>       |             |             |           |
| 8           | 57236       | 61440       | P/I       |
| 1           | 65536       | 65536       | EPBR      |
| 1           | 4384        | 5120        | DPSS      |
| 1           | 544         | 1024        | CONF_SW   |
| 1           | 16384       | 16384       | FHS       |
| ...         |             |             |           |

# QFP EXMEM Usage Monitoring



Dynamic memory that allows the actual packet handling and features to scale.

1

```
C8200-2#show plat hard qfp active infra exmem stat  
QFP exmem statistics
```

```
Type: Name: DRAM, QFP: 0  
Total: 805306368  
InUse: 25830400  
Free: 779475968  
Lowest free water mark: 779466752
```

```
Type: Name: IRAM, QFP: 0  
Total: 2097152  
InUse: 211968  
Free: 1885184  
Lowest free water mark: 1885184
```

```
Type: Name: SRAM, QFP: 0  
Total: 0  
InUse: 0  
Free: 0  
Lowest free water mark: 0
```

2

```
C8200-2#show plat hard qfp active infra exmem stat user  
<snip>
```

| Type: Name: GLOBAL, QFP: 0 | Allocations | Bytes-Alloc | Bytes-Total | User-Name |
|----------------------------|-------------|-------------|-------------|-----------|
| 8                          | 57236       | 61440       | P/I         |           |
| 1                          | 65536       | 65536       | EPBR        |           |
| 1                          | 4384        | 5120        | DPSS        |           |
| 1                          | 544         | 1024        | CONF_SW     |           |
| 1                          | 16384       | 16384       | FHS         |           |
| 1                          | 4384        | 5120        | EPC         |           |
| 1                          | 4384        | 5120        | SBC         |           |
| 1                          | 512         | 1024        | FME         |           |
| 1                          | 8192        | 8192        | MMA         |           |

```
<snip>
```

Features consuming QFP memory

# QFP EXMEM Monitoring Alerts

- EXMEM usage exceeds a warning (85%) or critical (95%) threshold:

```
%QFPOOR-4-LOWRSRC_PERCENT_WARN: R0/0: cpp_ha_top_level_server: QFP 0 DRAM (EXMEM) at 86 percent, exceeds warning level 85
%QFPOOR-4-TOP_EXMEM_USER: R0/0: cpp_ha_top_level_server: User: FNF, Allocations: 16, Bytes-Alloc: 96606508, Bytes-Total: 96617472
%QFPOOR-4-TOP_EXMEM_USER: R0/0: cpp_ha_top_level_server: User: NAT, Allocations: 50, Bytes-Alloc: 82027184, Bytes-Total: 82048000
```

- Not enough QFP EXMEM available to download/update some dataplane structures:

```
%CPPEXMEM-3-NOMEM: R0/0: cpp_cp_svr: QFP: 0, GLOBAL memory allocation of 7130624 bytes by NAT failed
%CPPEXMEM-3-TOPUSER: R0/0: cpp_cp_svr: QFP: 0, Top User: NAT, Allocations: 52, Type: GLOBAL
%CPPEXMEM-3-TOPUSER: R0/0: cpp_cp_svr: QFP: 0, Top User: NAT, Bytes Allocated: 96310272, Type: GLOBAL
```

In both scenarios **top 2 EXMEM users** along with the **amount of memory** they consume are displayed.

# TCAM usage monitoring

QFP-Based Platforms

- Display the top 25 class-groups based on the TCAM usage

```
C8500-12X#show platform hardware qfp active classification feature tcam-usage sort
```

## TCAM Usage Information

Total cells in TCAM: 131072  
Free cells in TCAM: 130766

| CG-Id        | Name       | Client | 160bitVMR | 320bitVMR | Total Cell | Total% | Label |
|--------------|------------|--------|-----------|-----------|------------|--------|-------|
| cce:14851952 | hardlimit  | QOS    | 51        | 0         | 102        | 0      | 5     |
| cce:5793328  | hardlimit2 | QOS    | 34        | 0         | 68         | 0      | 11    |
| acl:2        | ACL_MERGE  | ACL    | 23        | 0         | 46         | 0      | 12    |
| cce:5793312  | hardlimit1 | QOS    | 20        | 0         | 40         | 0      | 10    |
| cce:5631984  | test_merge | QOS    | 11        | 0         | 22         | 0      | 3     |

Name of the config object

Type of the classification object

TCAM cells consumed

# TCAM Limit Exceeded Alert

QFP-Based Platforms

- When configuration update involves adding/modifying the classification object (e.g. ACL, Class-map, etc.) the structure in TCAM needs to be reprogrammed.

```
%CPP_FM-3-CPP_FM_TCAM_WARNING: R0/0: cpp_sp_svr: TCAM limit exceeded: HW TCAM cannot hold class group [acl:7] test1. Fail to allocate 160006 TCAM cell entries. Free TCAM cell: 131040 Total TCAM cell: 131072. Use SW TCAM instead.
```

```
%CPP_FM-4-CPP_FM_TCAM_MORE_INFO_WARNING: R0/0: cpp_sp_svr: TCAM limit exceeded:  
Top TCAM users: [acl:2 ACL_MERGE 46] [cce:5631984 test_merge 22] [cce:5551168 test_match_all 2]
```

## How to interpret the alert:

- TCAM utilization at the time of error
- Class-group NAME and ID**
- Number of TCAM entries that were needed to add the class-group
- Dumps 3 top TCAM using CGs (format: CG-ID, CG-NAME , total VMR entries)**

# SW TCAM (CACE) Limit Exceeded Alert

SoC Platforms

- On x86-based platforms there is no physical TCAM present.
- For classification objects the QFP EXMEM is utilized by CACE (Common Adaptive Classification Engine), also referred as SW TCAM, with the limit of 64k entries per object.
- When new/updated classification object can't be installed into dataplane due to CACE limit exceeded the syslog alert will be displayed:

```
%CPP_FM-3-CPP_FM_TCAM_WARNING: R0/0: cpp_sp_svr: TCAM limit exceeded: The size of [acl:7] FLR_ND41 config (80003) exceeds the CACE limit (65535 entries).
```

Max number of entries supported in SW TCAM (i.e. 64K) for a single object.


Config object that was getting installed at the time of failure

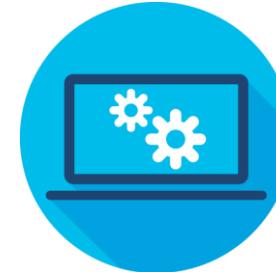
# Conclusions

# Key Takeaways



Recognize the importance of platform architecture




Understand traffic distribution model



Utilize the power of Packet Trace



Know where it hurts: Control Plane vs Data Plane



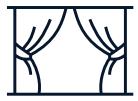
# Complete Your Session Evaluations



**Complete** a minimum of 4 session surveys and the Overall Event Survey to be entered in a drawing to win 1 of 5 full conference passes to Cisco Live 2026.



**Earn** 100 points per survey completed and compete on the Cisco Live Challenge leaderboard.




**Level up** and earn exclusive prizes!



**Complete your surveys** in the Cisco Live mobile app.

# Continue your education



**Visit** the Cisco Showcase for related demos



**Book** your one-on-one Meet the Engineer meeting



**Attend** the interactive education with DevNet, Capture the Flag, and Walk-in Labs



**Visit** the On-Demand Library for more sessions at [www.CiscoLive.com/on-demand](http://www.CiscoLive.com/on-demand)

Contact me at: [mstanczy@cisco.com](mailto:mstanczy@cisco.com)

# Related Sessions

- **BRKARC-3475** Automation and In-Depth Troubleshooting of Cisco Catalyst 8000, ASR1000, ISR and SD-WAN Edge **[Monday 8:00 – 9:30 AM]**
- **LTRTRS-2293** Cisco IOS-XE Routing Platform Troubleshooting Hands-on Lab **[Tuesday 1:00 – 5:00 PM]**
- **LABTRS-2048** Packet Trace and Conditional Debugging on IOS-XE Routers
- **LABTRS-2456** Packet Capturing Tools in IOS-XE Devices **[Monday – Thursday, Walk in Labs]**

Thank you

**CISCO** Live !

