



# 5G Packet Based Fronthaul

Waris Sagheer, Principal Product Manager @mwaris BRKSPG-2065

cisco ive!

#CiscoLive



### Agenda

- RAN Architecture
- Centralized RAN Transport Requirement
- Fronthaul Overview
- Packet based Fronthaul
- Customer Case Study
- Conclusion

cisco

# 5G RAN Transformation

Architectural shifts impacting the evolution of RAN transport



### RAN Decomposition and Virtualization



Functional Decomposition Functions Separated to Allow Flexible Placement and Optimization



**Disaggregation into SW + HW** Software-Centric Solutions Leveraging COTS Hardware

**Open** Modular, More Op

Open Modular, ORAN, Open, Multi-vendor, More Options = Flexibility and Lower Cost

**Multi-Use Case** 

5GNR, LTE, Small Cell, Indoor/Outdoor, mMIMO, Multi-band, mmWave, Private/Public, Enterprise/Consumer, etc.

€

**Optimize for Lower Cost Operations** Agility, Lower TCO, Increased Automation



Enable New Services Increased Service Flexibility, Velocity





#### "Modular" System Integration

### **RAN Transport Architecture Options**



#CiscoLive BRKSPG-2065 © 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public

#### Benefits of Centralized & Cloud RAN Architectures

Functional & economic advantages



**cisco** 

### C-RAN Transport Architecture Components





- Baseband Hotel Router depending on the size of BBU Hotel
  - Fixed
  - Modular
- Low latency L2 switch in case of solution like Ericsson's Elastic RAN
  - Cisco solution combines above two functionalities into single node (NCS portfolio) cost saving
  - Tested and validated in multiple customer engagements
- 1588/SyncE Phase & Frequency clocking support
- Scalable Cloud-RAN Fabric Architecture
  - Interface Flexibility 1/10/25G/100G
  - Horizontal Scaling for large sites
  - Redundancy
- Platforms:NCS5700/NCS5500/NCS540

# Fronthaul



cisco Live!

#### **Radio Standards**

| Proprietary   | CORRI<br>Common Public Radio Interface<br>ERICSSON S SUM                                                                                       | Internal interface of radio base stations<br>between the Radio Equipment Control<br>(REC) and the Radio Equipment (RE)<br>http://www.cpri.info/spec.html                                                                                                                                                                                                                                   | <b>CPRI Specification version 7.0</b> -<br>October 9, 2015<br>(in addition to 1.4, 2.1, 3.0 , 4.0, 4.1,<br>4.2, 5.0, 6.0, 6.1)                                                                                                                                                                      |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | <b>eCPRI</b><br>Evolution of CPRI                                                                                                              | To enable efficient and flexible radio data<br>transmission via a <b>packet based fronthaul</b><br><b>transport network like IP or Ethernet</b><br><u>http://www.cpri.info/spec.html</u>                                                                                                                                                                                                   | eCPRI 2.0 [ CPRI and eCPRI<br>interworking] - May 10, 2019<br>eCPRI 1.2 - June 25, 2018<br>eCPRI 1.1 - January 31, 2018<br>eCPRI 1.0 - August 31, 2017                                                                                                                                              |
| Standard      | Advancing Technology<br>Median Brown Standard for Radio over Ethernet<br>Encapsulations and Mappings                                           | Encapsulation and mapping of radio<br>protocols for transport over Ethernet<br>frames, using <b>radio over Ethernet (RoE)</b><br>https://standards.ieee.org/standard/1914_3-2018.html                                                                                                                                                                                                      | Structure-agnostic - any digitized radio data<br>Structure-aware - CPRI<br>Native mode - digitized radio in-phase and<br>quadrature (I/Q) payload                                                                                                                                                   |
|               | TSG Radio Access<br>Network (TSG RAN)                                                                                                          | TSG RAN WG1       Radio Layer 1 specification         TSG RAN WG2       Radio Layer 2 and Radio Layer 3 specification         TSG RAN WG3       O&M requirements         TSG RAN WG4       Radio performance and protocol aspects         (system)       TSG RAN WG5         TSG RAN WG5       Mobile terminal conformance testing         TSG RAN WG6       Legacy RAN radio and protocol |                                                                                                                                                                                                                                                                                                     |
| Open RAN      | O-RAN Alliance leading the industry towards<br>open, interoperable interfaces and RAN<br>virtualization<br>https://www.o-ran.org/              | WG4: The Open Fronthaul Interfaces Workgroup<br>O-RAN Fronthaul Interoperability Test (IOT) Version 1.0 - October 2019<br>O-RAN Fronthaul Control, User and Synchronization Plane Version 2.0 - July<br>2019<br>O-RAN Fronthaul Management Plane Version 2.0 - July 2019<br>O-RAN Fronthaul Yang Models Version 2.0 - July 2019                                                            | WG1: Use Cases and Overall Architecture Workgroup<br>WG2: The Non-real-time RAN Intelligent Controller and A1<br>Interface Workgroup<br>WG5: The Open F1/W1/E1/X2/Xn Interface Workgroup<br>WG6: The Cloudification and Orchestration Workgroup<br>WG8: Stack Reference Design Workgroup, WG7 & WG9 |
| Miscellaneous | IEEE Std 802.1CM <sup>™</sup> -2018<br>Time-Sensitive Networking for Fronthaul<br>https://ieeexplore.ieee.org/stamp/stamp.isp?arnumber=8376066 | The OCP Telco Project                                                                                                                                                                                                                                                                                                                                                                      | <b>Telecom Infra Project (TIP)</b><br>Accelerate the pace of innovation in the telecom industry by<br>designing, building, and deploying technologies that are<br>more flexible and efficient                                                                                                       |

cisco Ve!

### **RAN Functional Split Consideration**

CU Centralized Unit DU Distributed Unit BBU Baseband Unit RRH Remote Radio Head

Transport costs minimized with higher splits



cisco Live!

#### Packet-Based Fronthaul



### Comparing TCO for fronthaul

#### Packet vs optical fronthaul solutions



### **Cisco Fronthaul Strategy**

#### Fronthaul Optimal Transport

 Enable optimal transport for converged packet-based fronthaul supporting resilient and programmable architecture to support RAN innovation

Open vRAN Ecosystem

 Accelerate the viability and adoption of open virtualized RAN (vRAN) solutions

# eCPRI/ORAN Fronthaul



cisco live!

### RAN and Mobile Core Interfaces





#### Packet Based Fronthaul



#### eCPRI/ORAN is fully supported on shipping NCS540 portfolio



#### eCPRI Trials with NCS540

#### NOW in PRODUCTION



- Supported radio: Samsung, Ericsson, Nokia, Huawei and all ORAN vendors
- eCPRI Trials with NCS540
- Stat-mux
- TI LFA Failover tests performed
- No cells went down/No call drops during failover tests / VoIP Call ran for 37 mins
- With 80 MHz Channel Bandwidth, 686 Mbps Download Speed was achieved
- Fiber path between NCS540 and BBH is approx. 14 km

cisco /

## Converged Packet based Fronthaul



cisco ive!

#### **Cisco Converged Packet-based Fronthaul**

Extending to meet the needs of Fronthaul, Midhaul, & Backhaul



BENEFITS



Service Convergence
Wireless (4G,5G) and Wireline
Fronthaul, midhaul & backhaul



Monetization Enterprise Services High-Speed and Ultra-Low
 Latency
 Forwarding Procise timing an

 Forwarding Precise timing and synchronization



End to end IP/MPLS based network for a simplified architecture



BRKSPG-2065

### **Converged Fronthaul Router Highlights**



cisco / ila

#### Cisco Fronthaul Router Models NCS 540 family

|                                       |                                                |                                                                                                                                                         | -              | (         | NEW)     |
|---------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------|----------|
|                                       | N540-FH-CSR-SYS<br>(Cell Site Router)          |                                                                                                                                                         |                | Z E EFERE |          |
|                                       | N540-FH-AGG-SYS<br>(Aggregation)               |                                                                                                                                                         | <b>111111</b>  |           |          |
| Fronthaul Router                      | Use Case                                       | Port Config                                                                                                                                             | RU             | Capacity  | Software |
| N540-FH-CSR-SYS<br>(Cell Site Router) | Cell Site Router<br>[Packet + CPRI +TSN]       | <ul> <li>8xCPRI (Option 3-8)</li> <li>+*4x1/10G/CPRI (Option</li> <li>8x1/10G</li> <li>4x10/25G</li> <li>2x10/25G (802.1Qbu)</li> <li>2x100G</li> </ul> | 1 RU<br>1 3-8) | 300Gbps   | IOS XR   |
| N540-FH-AGG-SYS<br>(Aggregation)      | Aggregate Site Router<br>[Packet + CPRI + TSN] | <ul> <li>24x10G/25G*</li> <li>(802.1Qbu, CPRI 3-8)</li> <li>4x100G</li> </ul>                                                                           | 1 RU           | 900Gbps   | IOS XR   |

\*Universal Port = Port can be used for CPRI or eCPRI or Ethernet (1/10/25GE) BRKSPG-2065

# CPRI over Radio over Ethernet (RoE)

cisco live!



#### Optimized for CPRI Transport Over Ethernet Fronthaul RoE Structure Agnostic Modes (Type 0 & Type 1)



Optimized to enable CPRI "RoE Structure-Agnostic Tunneling Mode (Type 0)"

- Compatible with all RAN suppliers' equipment
- RAN vendor CPRI protocol implementation awareness is NOT required
- RoE Tunneling mode does not provide any fronthaul bandwidth reduction (Tested with Ericsson & Huawei)

#### Extensible to support CPRI "RoE Structure-Agnostic Line Code Aware Mode (Type 1)"

- Solution MUST be tested with every RAN vendor to validate the functionality
- Requires some awareness of CPRI protocol at mapper/demapper
- Fronthaul bandwidth of reduction of 20% by removing 8b10b line coding (Tested with Huawei)

#### NCS540-FH

#### Radio Interop



- ✓ Packet Fronthaul Router operates seamlessly with:
  - o Ericsson Radio Units, 4G and 5G BBUs
  - o Huawei Radio Units, 4G BBUs
- ✓ With Ericsson RU and BBU, Packet Fronthaul Router successfully implements:
  - RoE Structure Agnostic Mapper Type-0
- ✓ With Huawei RU and BBU, Packet Fronthaul Router successfully implements:
  - RoE Structure Agnostic Mapper Type-0 between Huawei RU and BBU
  - $_{\odot}$  RoE Structure Agnostic Mapper Type-1 between Huawei RU and BBU
  - o Operates seamlessly with RU Chain Implementation (with Huawei RUs)
  - Operates seamlessly with RU-BBU Load-Balancing Implementation (with Huawei BBUs)





#### Cisco Packetized Fronthaul Demo https://www.ciscolive.com/global/on-demandlibrary.html?search.event=ciscoliveus2020&showM yInterest=true#/video/1592347697861001FJMB

### Timing and Synch – Fronthaul Options



#CiscoLive BRKSPG-2065 ©

### Streaming Telemetry from Router



cisco ive

### **Converged SDN Transport Solution**



# Fronthaul Design





#### Fronthaul Network Design Options



#### Fronthaul/Midhaul/Backhaul Calculation

#### Single Cell Site/3 Sector 6 Carriers

PRB=Physical Resource Block Statistical Multiplexing (Statmux)=1Max+2 Average

| Band<br>Number    | Band       | Bandwidth<br>[MHz] | MIMO/MIMO<br>Layers | Fronthaul Data Rate<br>(Single Sector Peak)<br>CPRI/ORAN Gbps | FH Data Rate<br>("3" Sectors)<br>CPRI/ORAN Gbps        | Midhaul<br>Gbps | Backhaul<br>Gbps |
|-------------------|------------|--------------------|---------------------|---------------------------------------------------------------|--------------------------------------------------------|-----------------|------------------|
| 5                 | 850<br>MHz | 10                 | 4T4R                | 2.45 (CPRI option 3)/0.70                                     | 7.35/1.40                                              | 0.30            | 0.25             |
| 8                 | 900<br>MHz | 10                 | 4T4R                | 2.45 (CPRI option 3)/0.70                                     | 7.35/1.40                                              | 0.30            | 0.25             |
| 9                 | 1.8GH<br>z | 20                 | 4T4R                | 4.9 (CPRI option 5)/1.40                                      | 14.7/2.80                                              | 0.59            | 0.50             |
| 41                | 2.6GH<br>z | 20                 | 4T4R                | 9.8 (CPRI option 7)/1.40                                      | 29.4/2.80                                              | 0.59            | 0.50             |
| n78               | 3.5GH<br>z | 100                | 64T64R/8 layers     | 15.29                                                         | 30.59                                                  | 4.44            | 3.78             |
| n257 (Split<br>2) | 28GHz      | 400                | 128T128R/4 layers   |                                                               | NA                                                     | 6.14            | 5.22             |
| Total             |            |                    |                     |                                                               | FH=LTE CPRI+NR=89.39<br>Gbps<br>FH=LTE ORAN+NR=39 Gbps | 12.36 Gbps      | 10.5 Gbps        |

Fronthaul Interface Required=100G/50

Midhaul Interface Required=25G

Backhaul Interface Required=25G

cisco ile

# Customer Case Study





### Customer existing CRAN Topology



- Complete Ericsson RAN network
- C-RAN & ERAN in production using passive DWDM solution
- Drawbacks of existing CRAN fronthaul
  - Passive infrastructure static
    - No dynamic fault recovery
    - Limited topology options (hub spoke today)
  - Coloured optics
    - operationally challenging (if not using tuneable)
  - Little to no OAM of fronthaul links
  - Dedicated E-RAN switch

#### Motivation for Packetized Fronthaul

- Packetized fronthaul enables Flexible and programmable architecture to support RAN innovation e.g. Stats-mux, converged services (45/5G/Enterprise)
- Leverage IP protection mechanisms (Segment Routing) for improved resiliency and failover in fronthaul network
  - Ring/mesh FH topologies
  - N+1 BBU use case using NSO
  - Cell management with reduced capacity
- Operational simplicity visibility of fronthaul network with Telemetry, ZTP, topology visualization and automation

#### NOW in PRODUCTION

### **Converged Fronthaul**



- 5G NR Split 7, eCPRI Ethernet
- NCS540 validated with Ericsson 5G NR
  - Ericsson BBU 6630
  - Ericsson RU 5G AIR6488
- Phase 1 Lab Trials
  - EVPN-VPWS over SR (MPLS) + TI-LFA
  - Dynamic latency measurement of fronthaul link with SR-PM
  - Telemetry for OAM of fronthaul links
- Completed with 100% Success

- 4G Split 8, CPRI "RoE Structure Agnostic Type 0"
- NCS540-FH CSR validated with Ericsson 4G radio
  - Ericsson BBU 6630
  - Ericsson RU 4415
- Phase 1 Lab Trials
  - EVPN VPWS for CPRI over SR (MPLS) + TI-LFA
- Baseline Testing Completed with 100% Success
  - 4G Cell is up and running. MBB and VoLTE tests were successful

**CISCO** 

Convergence of backhaul & fronthaul traffic

#CiscoLive BRKSPG-2065
#### Why Cisco for Fronthaul?

Packet-based solution with high-speed, Ultra-Low Latency Forwarding to meet and exceed fronthaul requirements



Converges services while optimizing fronthaul resources



Flexible and programmable architecture to support RAN innovation



Simplifies and improves reliability of network operations by extending IP through RAN transport

Supporting Sessions

# BRKSPM-20015G Converged SDN TransportBRKSPM-20005G Access and DC EdgeBRKSPG-20605G Transport: Design Strategies

#### Resources

- Cisco NCS 540 Fronthaul Router Portfolio Collateral:
  - At-A-Glance: <u>https://www.cisco.com/c/en/us/products/collateral/routers/network-</u> <u>convergence-system-540-series-routers/at-a-glance-c45-743315.html</u>
  - Data Sheet: <u>https://www.cisco.com/c/en/us/products/collateral/routers/network-</u> <u>convergence-system-500-series-routers/datasheet-c78-740296.html</u>
  - ACG Research: An Economic Comparison of Fronthaul Architectures: <u>https://www.cisco.com/c/dam/en/us/solutions/collateral/service-provider/mobile-</u> internet/acg-fronthaul-architectures-for-5g-networks.pdf?dtid=osscdc000283
- The Deep Edge Podcast "Segment Routing and 5G with Simon Spraggs from Cisco"
  - <u>https://www.buzzsprout.com/1010419/3956699</u>
- 5G transport page
  - www.cisco.com/go/5g-transport

#### Additional Resources contd..

- "5G Transport" session Cisco Live Barcelona 2020
  - <u>https://www.ciscolive.com/global/on-demand-</u> library.html?search=waris&search.event=ciscoliveemea2020#/session/1564528251037001eg4o
- "Clocking" sessions Cisco Live Barcelona 2020
  - <u>https://www.ciscolive.com/global/on-demand-</u> library.html?search=Shahid&search.event=ciscoliveemea2020#/session/1564610726804001cUPp
  - <u>https://www.ciscolive.com/global/on-demand-</u> library.html?search=Dennis&search.event=ciscoliveemea2020#/session/15632796220300016AGI
- Radio and Band info
  - https://www.sharetechnote.com/ (Radio tutorial)
  - Simple lookup for LTE bands
  - <u>https://www.sqimway.com/lte\_band.php</u>(Simple lookup for LTE bands )
  - Simple lookup for 5G (new radio) bands
  - <u>https://www.sqimway.com/nr\_band.php</u> (Simple lookup for 5G (new radio) bands)

#### Cisco Validated Design Document

Converged SDN Transport High Level Design

- <u>https://xrdocs.io/design/blogs/latest-converged-sdn-transport-hld</u>
- <u>https://xrdocs.io/design/blogs/latest-converged-sdn-transport-ig</u>

5G Features covered:

- Clocking & Synchronization
- 5G Transport SR MPLS/BGP VPN
- Fronthaul will be covered in future release



## Thank you





#CiscoLive



### **Bonus Material**





#### Mobile Network Spectrum



5G

### 5G NR Channel Capacity (& Throughput)



Network

Planning

| Spectral efficiency                     | bps/Hz (Downlink)                               | LTE | example<br>20MHz<br>FDD | LTE-A<br>3x20MHz<br>FDD | 5G NR | example<br>Sub 6GHz<br>100MHz BW | mmWave<br>800MHz |
|-----------------------------------------|-------------------------------------------------|-----|-------------------------|-------------------------|-------|----------------------------------|------------------|
| Peak/Max Rate                           | Theoretical max coded rate                      | 15  | 300Mbps                 | 900Mbps                 | 23    | 2.3Gbps                          | 18.4Gbps         |
| Cell Centre                             | Minimum rate achieved by top 5% of users        | 9   | 180Mbps                 | 540Mbps                 | 13    | 1.3Gbps                          | 10.4Gbps         |
| Typical                                 | Typical median rate                             | 2.0 | 40Mbps                  | 120Mbps                 | 2.9   | 290Mbps                          | 2.32Gbps         |
| Edge                                    | Minimum rate achieved by 95% of users           | 0.1 | 2Mbps                   | 6Mbps                   | 0.12  | 120Mbps                          | 96Mbps           |
| Aggregate cell<br>(multi-user) capacity | Average rate plus multi-user<br>scheduling gain | 2.2 | 44Mbps                  | 132Mbps                 | 3.3   | 330Mbps                          | 2.64Gbps         |

\* Design caveat: RF Channel capacity depends on many factors, like MIMO schedule deployed, UE capabilities, network loading, mobility, etc. <u>Always consult customer for RAN design guidelines</u>

Access Transport Bandwidth: 1G→10G→25G Edge/IP Core Transport Bandwidth: 10G→100G→400G sco / i/e / #CiscoLive BRKSPG-2065 © 2021 Cisco and/o

#### RAN Decomposition and Virtualization



Functional Decomposition Functions Separated to Allow Flexible Placement and Optimization



**Disaggregation into SW + HW** Software-Centric Solutions Leveraging COTS Hardware

8

**Open** Modular, ORAN, Open, Multi-vendor, More Options = Flexibility and Lower Cost

**Multi-Use Case** 

5GNR, LTE, Small Cell, Indoor/Outdoor, mMIMO, Multi-band, mmWave, Private/Public, Enterprise/Consumer, etc.



**Optimize for Lower Cost Operations** Agility, Lower TCO, Increased Automation



Enable New Services Increased Service Flexibility, Velocity





#### "Modular" System Integration



### O-RAN Alliance – Transforming the RAN

Driving the RAN towards being:
Open

Intelligent

Virtualized

Fully Interoperable

 WG9→ Open Xhaul transport architecture Fronthaul, Midhaul and backhaul

Working on transport requirements, WDM FH and packet switched xhaul and timing and sync

Cisco is editor of packet switched xhaul architecture

#### Filling today's functional and interface gap





### ORAN & IEEE 1914.3 Contribution

- WG4 Open Fronthaul Interfaces Workgroup
- WG9 Open X-haul Transport Workgroup
- WG7 White-box Hardware Workgroup
- IEEE1914.3a: RoE Enhancements

### 5G Network Transport Evolution



cisco live!

#### Transition to the Telco Edge



cisco live!

#### Customer Disruption Software Defined 5G: O-RAN/vRAN Architecture



#### Elastic RAN Transport Requirement



- ERAN is being used to connect BBUs
- ERAN requires L2 connectivity using Ericsson proprietary Inter Digital Link Ethernet (IDLe) cable
- Strict low latency transport requirement
- ERAN can be used in CRAN & D-RAN

#### **CRAN Hub Site Selection Flow Chart**



#### Scalable Cloud-RAN Fabric Architecture

- Deployment Flexibility
- Network Scale •
- Horizontal Scalability
- Smaller Failure Domain
- Traffic Patterns (east and west)





Large CRAN Hub Sites





#### **C-RAN Fabric Portfolio**

| Fixed Platform                     | Space<br>(RU) | Capacity          | Port Density                                                               | Timing<br>1588/Sync-E |
|------------------------------------|---------------|-------------------|----------------------------------------------------------------------------|-----------------------|
| NCS 5501 (SE)                      | 1             | 800 Gbps          | Base: 48x 1/10G + 6x 100G<br>Scale: 40x 1/10G + 4x 100G                    | Scale<br>only         |
| NCS-55A1-36H-S/SE                  | 1             | 3.6 Tbps          | 36 x QSFP28 or QSFP+                                                       | Υ                     |
| NCS-55A1-24H                       | 1             | 1.8 Tbps          | 24 x QSFP28                                                                | Υ                     |
| NCS-55A1-48Q6H<br>NCS-55A1-24Q6H-S | 1             | 1.8 Tbps<br>900 G | 48 x SFP28 + 6x100G QSFP28<br>24x1G/10G SFP+ +24x1G/10G/25G SFP28 & 6x100G | Y                     |
| NCS 540                            | 1             | 300 Gbps          | 24x 10GE SFP+ + 8x 25GE SFP28 + 2x 100GE QSFP28                            | Y                     |
| NCS-55A2-MOD (SE)                  | 2             | 900 Gbps          | Fixed Ports: 24 x 1/10G & 16 x 1/10/25G 2 x MPAs of 400 Gbps each:         | Υ                     |
| Modular Platform                   |               |                   |                                                                            |                       |
|                                    | 7 slot        | 800 Gbps          | Modular. 4 x 100G QSFP28, 40 x 10G SFP+, 96 x 1G<br>CSFP                   | Y                     |
| NCS560                             | 4 slot        | 800 Gbps          | Modular. 4 x 100G QSFP28, 32 x 10G SFP+ or 72 x 1G CSFP                    | Y                     |
| cisco ive                          | 1             |                   | #CiscoLive BRKSPG-2065                                                     | © 2021 Cis            |

#CiscoLive BRKSPG-2065 © 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public 56

### eCPRI Standard Overview







- The internal radio base station interface establishing a connection between "eCPRI Radio Equipment" Control" (eREC) and "eCPRI Radio Equipment" (eRE) via a packet based transport network is specified.
- eCPRI Ethertype (AEFE16)
- eCPRI can be transported using standard IP/Ethernet routers and switches & it supports Stat-mux
- eCPRI radio may have 10G/25G interfaces
- The specification defines a new eCPRI Layer above the Transport Network Layer. Existing standards are used for the transport network layer, C&M and Synchronization. BRKSPG-2065

#### eCPRI 2.0 contd..

Source: eCPRI 2.0



The major difference between Split ID and IID is that the data in Split ID is bit oriented and the data in split IID and IU is IQ oriented.



#### eCPRI 2.0 contd..

#### Source: eCPRI 2.0



#### Table 4: eCPRI Message Types

| Message Type # | Name                      | Section  |
|----------------|---------------------------|----------|
| 0              | IQ Data                   | 3.2.4.1  |
| 1              | Bit Sequence              | 3.2.4.2  |
| 2              | Real-Time Control Data    | 3.2.4.3  |
| 3              | Generic Data Transfer     | 3.2.4.4  |
| 4              | Remote Memory Access      | 3.2.4.5  |
| 5              | One-way Delay Measurement | 3.2.4.6  |
| 6              | Remote Reset              | 3.2.4.7  |
| 7              | Event Indication          | 3.2.4.8  |
| 8              | IWF Start-Up              | 3.2.4.9  |
| 9              | IWF Operation             | 3.2.4.10 |
| 10             | IWF Mapping               | 3.2.4.11 |
| 11             | IWF Delay Control         | 3.2.4.12 |
| 12 - 63        | Reserved                  | 3.2.4.13 |
| 64 - 255       | Vendor Specific           | 3.2.4.14 |

cisco Live!

Byte

Source: eCPRI 2.0



Figure 8: eCPRI Common Header format

#### eCPRI Protocol Revision

Table 15: Specification release version and protocol revision numbering

| Specification<br>release version | Available eCPRI protocol<br>revision values | Comment                                                                                                                                        |
|----------------------------------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.0, 1.1, 1.2, 2.0               | 0001b                                       | The interpretation of the eCPRI message shall follow eCPRI specification versions up to 2.0.                                                   |
|                                  | 0010b-1111b; 0000b                          | Reserved for future eCPRI protocol revisions.<br>Unallocated values can temporarily be used for<br>vendor specific extensions until allocated. |

cisco ile

## eCPRI Transport



cisco live!

#### eCPRI Fronthaul Packet Capture



#### Does eCPRI support Statistical Multiplexing?

- Based on eCPRI radio testing, eCPRI does support stat-mux
- Stat-mux enables optimal transport bandwidth utilization

| Idle state                           | Channel Width | BBU to Radio<br>(Mb/s) | Radio to BBU<br>(Mb/s) |  |
|--------------------------------------|---------------|------------------------|------------------------|--|
|                                      | 20Mhz         | 109.2                  | 4.0032                 |  |
|                                      | 40Mhz         | 197.68                 | 5.2696                 |  |
|                                      | 60Mhz         | 287.76                 | 6.5520                 |  |
|                                      | 80Mhz         | 376.24                 | 7.8192                 |  |
|                                      | 100Mhz        | 466.24                 | 9.1040                 |  |
| Single UE<br>downloading<br>10G file | Channel Width | BBU to Radio<br>(Mb/s) | Radio to BBU<br>(Mb/s) |  |
|                                      | 20Mhz         | 224.8                  | 144.88                 |  |
|                                      |               |                        |                        |  |

#### NCS 540 Family

**Cell Site Router** 

| NCS 540 Family                      | Interfaces                                                 | Throughput                   | Timing                                       |
|-------------------------------------|------------------------------------------------------------|------------------------------|----------------------------------------------|
| N540-24Z8Q2C-SYS<br>N540(X)-ACC-SYS | 2x 100/40GE<br>8x 25/10/1GE<br>24x 10/1GE                  | 300G<br>Max Interfaces: 640G | GNSS<br>Class B<br>1pps/10MHz/ToD            |
|                                     | 2x 100/40GE<br>8x 25/10/1GE<br>16x 10/1GE<br>4x 1GE Copper | 300G<br>Max Interfaces: 564G | GNSS<br>Class C<br>1pps/10MHz/ToD<br>BITS    |
| N540-28Z4C-SYS-A/D                  | 4x 100/40GE<br>28x 10/1GE                                  | 300G<br>Max Interfaces: 680G | Class B<br><sub>1pps/10MHz/ToD</sub><br>BITS |
| N540X-12Z16G-SYS-A/D                | 12x 10/1GE<br>12x 1GE<br>4x 1GE Copper                     | 140G<br>Max Interfaces: 136G | GNSS<br>Class C<br>1pps/10MHz/ToD<br>BITS    |
| N540-12Z20G-SYS-A/D                 | 12x 10/1GE<br>20x 1GE                                      | 140G<br>Max Interfaces: 140G | Class B<br>1pps/10MHz/ToD<br>BITS            |

cisco live!

#### Cisco and Telstra Complete World's First 5G Call over Packetized Fronthaul Network https://newsroom.cisco.com/press-releasecontent?type=webcontent&articleId=2058724&dti d=osscdc000283

cisco ile

## **CPRI** Tutorial





#### CPRI v7.0



- A digitized and serial internal radio base station interface that establishes a connection between 'Radio Equipment' Control' (REC) and 'Radio Equipment' (RE)
- Three different information flows (User Plane data, Control and Management Plane data, and Synchronization Plane data) are multiplexed over the interface.
- The specification covers layers 1 and 2
- The user plane data is transported in the form of IQ data
- Each IQ data flow reflects the data of one antenna for one carrier, the so-called antenna-carrier (AxC)

#### CPRI v7.0 contd..

- The radio base station system is composed of two basic subsystems, the radio equipment control and the radio equipment
- The subsystems REC and RE are also called nodes
- Several IQ data flows are sent via one physical CPRI link.
- Antenna-carrier (AxC):
  - One antenna-carrier is the amount of digital baseband (IQ) U-plane data necessary for either reception or transmission of only one carrier at one independent antenna element

#### CPRI v7.0 contd..

- Between REC and RE, working link consists of a master port, a bidirectional cable, and a slave port.
  - The master port in the REC and the slave port in the RE.
- Downlink:
  - Direction from REC to RE for a logical connection.
- Uplink:
  - Direction from RE to REC for a logical connection.

#### CPRI v7.0 contd..

- Layer 1 defines:
  - Electrical characteristics
  - Optical characteristics
  - Time division multiplexing of the different data flows
  - Low level signaling
- Layer 2 defines:
  - Media access control
  - Flow control
  - Data protection of the control and management information flow
Source: CPRI 7.0

Table 1AA: Functional decomposition between REC and RE (valid for the GSM standard)

| Function                                                         | ns of REC                                                     | Functions of RE                    |                         |  |
|------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------|-------------------------|--|
| Downlink Uplink                                                  |                                                               | Downlink                           | Uplink                  |  |
| Radio base station c                                             | ontrol & management                                           |                                    |                         |  |
| Channe                                                           | I Filtering                                                   | Channel                            | Filtering               |  |
| Abis tr                                                          | ansport                                                       | D/A conversion                     | A/D conversion          |  |
| Abis Fram                                                        | e protocols                                                   | Up Conversion                      | Down Conversion         |  |
| Channel Coding                                                   | Channel De-Coding                                             | ON/OFF control for each<br>carrier | Automatic Gain Control  |  |
| Interleaving                                                     | De-Interleaving                                               | Carrier Multiplexing               | Carrier De-multiplexing |  |
| Modulation                                                       | De-Modulation                                                 | Power amplification                | Low Noise Amplification |  |
| Frequency h                                                      | opping control                                                | Frequency hopping                  |                         |  |
| Signal aggregation from<br>signal processing units               | Signal distribution to<br>signal processing units             | Antenna supervision                |                         |  |
| Transmit Power Control<br>of each physical channel               | Transmit Power Control &<br>Feedback Information<br>detection | RF filtering                       | RF filtering            |  |
| Frame and slot signal generation (including clock stabilization) |                                                               |                                    |                         |  |
| Measu                                                            | rements                                                       | Measur                             | ements                  |  |

cisco live!

#### Source: CPRI 7.0

### CPRI v7.0 contd..

- IQ Data
  - User plane information in the form of in-phase and quadrature modulation data (digital baseband signals).
- Synchronization
  - Synchronization data used for frame and time alignment.
- L1 Inband Protocol
  - Signaling information that is related to the link and is directly transported by the physical layer. This information is required, e.g. for system start-up, layer 1 link maintenance and the transfer of time critical information that has a direct time relationship to layer 1 user data.
- C&M data
  - Control and management information exchanged between the control and management entities within the REC and the RE. This information flow is given to the higher protocol layers.
- Protocol Extensions
  - This information flow is reserved for future protocol extensions. It may be used to support, e.g., more complex interconnection topologies or other radio standards.
- Vendor Specific Information
  - · This information flow is reserved for vendor specific information.



#### Source: CPRI 7.0

Byte per

word

2

4

8

16

20

Line code

8b10b

8b10b

8b10b

8b10b

64b66b

Line rate (Gbps)

1.2288

2.4576

4.9152

9.8304

10.1376

5. 6. 7. 8. 9. 10. 11.12.13.14.15

1 chip = 1/3.84MHz

W-

8=0: A

B=1: B

0, 1, 2, 3, 4,

Bit per

word

16

32

64

128

160

### **CPRI Frame Structure**

- Frame structure
  - 1 Basic Frame (BF) = 16 words (W) = 256 bytes ; BF=260.42ns; X= BF Number .
  - W = word number in Basic Frame
  - Y = byte number within a word
  - In each BF, word 0 is used as control word (CW)
  - 1 Hyperframe (HF) = 256 BF (basic frame); 1HF=66.67us; Z=HF Number .
  - BFN (Node B Frame Number) = 150 HF =10ms .
  - BFN is Synchronization Signal every 10msec .
  - 256BF/HF\*150HF/0.01s=3.84M BF/s .
  - 16W/BF\*3.84M BF/s=61.44M W/s. So a word width is 1/2 BBCLK cycle. .
  - BBCLK = 30.74 MHZ SYSCLK, Link Speed multiple of BBCLK



#Ciscol ive BRKSPG-2065

## CPRI Line Bit Rate Options

Source: CPRI 7.0

| CPRI line bit rate option 1  | 614.4 Mbit/s    | 8B/10B line coding (1 x 491.52 x 10/8 Mbit/s)    |
|------------------------------|-----------------|--------------------------------------------------|
| CPRI line bit rate option 2  | 1228.8 Mbit/s   | 8B/10B line coding (2 x 491.52 x 10/8 Mbit/s)    |
| CPRI line bit rate option 3  | 2457.6 Mbit/s   | 8B/10B line coding (4 x 491.52 x 10/8 Mbit/s)    |
| CPRI line bit rate option 4  | 3072.0 Mbit/s   | 8B/10B line coding (5 x 491.52 x 10/8 Mbit/s)    |
| CPRI line bit rate option 5  | 4915.2 Mbit/s   | 8B/10B line coding (8 x 491.52 x 10/8 Mbit/s)    |
| CPRI line bit rate option 6  | 6144.0 Mbit/s   | 8B/10B line coding (10 x 491.52 x 10/8 Mbit/s)   |
| CPRI line bit rate option 7  | 9830.4 Mbit/s   | 8B/10B line coding (16 x 491.52 x 10/8 Mbit/s)   |
| CPRI line bit rate option 7A | 8110.08 Mbit/s  | 64B/66B line coding (16 x 491.52 x 66/64 Mbit/s) |
| CPRI line bit rate option 8  | 10137.6 Mbit/s  | 64B/66B line coding (20 x 491.52 x 66/64 Mbit/s) |
| CPRI line bit rate option 9  | 12165.12 Mbit/s | 64B/66B line coding (24 x 491.52 x 66/64 Mbit/s) |
| CPRI line bit rate option 10 | 24330.24 Mbit/s | 64B/66B line coding (48 x 491.52 x 66/64 Mbit/s) |

cisco ive!

## Converged Fronthaul



cisco live!

# Traditional Fronthaul Deployment Options are Sub-Optimal for 5G



#### Dark Fiber

- Passive Optical
- Very expensive solution
- Difficult to scale
- Fiber may not be available everywhere

- Limited lambda ( $\lambda$ ) scale
- Manual deployments that are time consuming and error prone
- No visibility of the service making it difficult to troubleshoot
- No redundancy

#### Active WDM

- Expensive due to colored optics
- Active tunable optics have challenge with I-TEMP
- No Statistical Mux
- Topology dependent (Requires ROADM for ring architecture)

cisco / ille

### What is Converged Fronthaul?



- Converged fronthaul implies transporting radio traffic, CPRI, eCPRI and enterprise traffic at the same time
- Major challenge: Radio traffic requires low latency and enterprise traffic can induce additional latency impacting mobile user experience
- Existing optical fronthaul technologies cannot deliver cost-effective solution

#CiscoLive 79 BRKSPG-2065 © 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public

#### **Universal Port Configuration**

| PID                 | Port Configuration                                                                                                                                                                                                                                                       |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| N540-FH-CSR-<br>SYS | 8xCPRI (Option 3-8) + 4x1/10G Eth/CPRI (Option 3-8) + 2x10/25G TSN + 8x1/10G Eth + 4x1/10/25G + 2x100G                                                                                                                                                                   |
| N540-FH-AGG-<br>SYS | Port Configuration<br>• 24xCPRI (Option 3-8) + 4x100G<br>• 24x1/10/25G Eth (TSN) + 4x100G<br>• 18xCPRI (Option 3-8) + 6x1/10/25G Eth (TSN) + 4x100G<br>• 12xCPRI (Option 3-8) + 12x1/10/25G Eth (TSN) + 4x100G<br>• 6xCPRI (Option 3-8) + 18x1/10/25G Eth (TSN) + 4x100G |

cisco live!

#### Flexible & Fully Programmable Architecture

To support evolving radio standards



Field Programmable Gate Array (FPGA) for evolving RAN

- Flexible platform to address both short term and long-term requirement for CPRI, eCPRI and RoE
- Optimized for RoE type 0 and type 1
- Future proofed to allow operators to add new RAN functions and interworking scenarios



#### IOS-XR Based - Open APIs

- Common operating system software across the physical and virtual platforms
- Optimized performance for advanced features: SR, EVPN, security
- Improved service visibility with telemetry

#### Adaptable platform to address emerging requirements

### Field Upgradeable FPGA



- FPGA is a programmable Phy/Optical front end in Cisco fronthaul router. Hence the same part can be reprogrammed into one of the following modes
- To change the personality of the device, router software will load the appropriate bit file to the config flash and perform a reload of the product

### Radio over Ethernet (RoE)

#### RoE Mappers - To carry Radio Traffic over Packet Network



cisco live!



#### Figure 7—RoE encapsulation in Ethernet frames



cisco live!

| Table | 3-Ro | E subTyp | e values |
|-------|------|----------|----------|

| <b>Binary value</b> | Function                                 | Description                                                                                                                                                             |
|---------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0000 0000b          | RoE control subtype                      | RoE message that contains control or management information.                                                                                                            |
| 0000 0001b          | Reserved1                                | Reserved for future use by IEEE Std 1914.3.<br>Reserved subType values shall not be transmitted.<br>RoE messages with Reserved subTypes<br>shall be ignored on receipt. |
| 0000 0010b          | RoE structure-agnostic data subtype      | Data payload packet with RoE common frame header and structure-agnostic payload.                                                                                        |
| 0000 0011b          | RoE structure-aware<br>CPRI data subtype | Data payload packet with RoE common frame header and structure-aware CPRI I/Q data.                                                                                     |

cisco live!

#### **CPRI RoE Type 0 Capture**

[Length: 2582]

|                                                                | 24 0.000085133                         | Cisco_43:b4:19       | Cisco_ff:be:1c         | MPLS        | 2604 MPLS Label Switched Pack   | et    |   |
|----------------------------------------------------------------|----------------------------------------|----------------------|------------------------|-------------|---------------------------------|-------|---|
|                                                                | 25 0.000087244                         | Cisco_ff:be:1c       | Cisco_43:b4:19         | MPLS        | 2608 MPLS Label Switched Pack   | et    |   |
|                                                                | > Frame 24: 2604 byt                   | es on wire (20832 b  | its), 2604 bytes captu | ured (20832 | bits) on interface ens192, id @ | 3     |   |
|                                                                | > Ethernet II, Src:                    | Cisco_43:b4:19 (d4:  | 5a:35:43:b4:19), Dst:  | Cisco_ff:b  | e:1c (4c:71:0d:ff:be:1c)        |       |   |
|                                                                | ✓ MultiProtocol Labe                   | l Switching Header,  | Label: 24003, Exp: 0,  | S: 1, TTL   | : 255                           | VC La | 5 |
| Source: IEEE 1914.3                                            | 0000 0101 1101 :                       | 1100 0011            | = MPLS Label: 24       | 003         |                                 |       |   |
| Full Ref. Instantor                                            |                                        | 000                  | = MPLS Experimen       | tal Bits:   | 0                               |       |   |
| teratiya                                                       |                                        | 1                    | = MPLS Bottom Of       | Label Sta   | ck: 1                           |       |   |
| DA 54 34/C3D kul/tue fuelt length osterlefs Rult Particul 1/C5 |                                        | 1111                 | 1111 = MPLS TTL: 255   |             |                                 |       |   |
| Figure 7—RoE encapsulation in Ethernet trames                  | <ul> <li>PW Associated Chan</li> </ul> | nel Header           |                        |             |                                 | L     |   |
|                                                                | 0010 = Cha                             | nnel Version: 2      |                        |             |                                 |       |   |
| ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,                       | > Reserved: 0x34                       |                      |                        |             |                                 |       |   |
|                                                                | Channel Type: U                        | nknown (0x5678)      |                        |             |                                 |       |   |
| usinge used user                                               | ✓ Data (2582 bytes)                    |                      |                        |             |                                 |       |   |
|                                                                | Data: abcdaaaabl                       | obbccccfc3d027b0a000 | 00008395200053ef3667   |             |                                 |       |   |

24 0.000085133 Cisco 43:b4:19 Cisco tt:be:lc MPLS 2604 MPLS Label Switched Packet 25 0.000087244 Cisco ff:be:1c Cisco 43:b4:19 MPLS 2608 MPLS Label Switched Packet > Frame 25: 2608 bytes on wire (20864 bits), 2608 bytes captured (20864 bits) on interface ens192, id 0 > Ethernet II, Src: Cisco ff:be:1c (4c:71:0d:ff:be:1c), Dst: Cisco 43:b4:19 (d4:6a:35:43:b4:19) MultiProtocol Label Switching Header, Label: 100004, Exp: 0, S: 0, TTL: 255 0001 1000 0110 1010 0100 .... = MPLS Label: 100004 **IGP+VC** Label .... .... .... 000. .... = MPLS Experimental Bits: 0 .... = MPLS Bottom Of Label Stack: 0 .... 1111 1111 = MPLS TTL: 255 MultiProtocol Label Switching Header, Label: 24006, Exp: 0, S: 1, TTL: 255 0000 0101 1101 1100 0110 .... = MPLS Label: 24006 .... .... .... 000. .... = MPLS Experimental Bits: 0 .... = MPLS Bottom Of Label Stack: 1 .... 1111 1111 = MPLS TTL: 255 ✓ Data (2586 bytes) Data: aaaabbbbcccc12345678abcdfc3d02 b0a000000c3062000... [Length: 2586] **RoE Header &** RoE Ethertype Pavload 0x02 RoE OxFC3D structure-agnostic



. . . . . . .

#### Type0/Type1 RoE Packetization Overhead Comparison

|                                                                    | Туре-0                    | Type-1                           |  |  |  |
|--------------------------------------------------------------------|---------------------------|----------------------------------|--|--|--|
| Real CPRI data (CPRI<br>data+linecoding) from RU<br>or BBU         | 2560                      | 2560                             |  |  |  |
| Packet size after CPRI<br>frame at Ingress FH Router               | 2560 B                    | 2048 (8b10b Line coding removed) |  |  |  |
| RoE Ethernet Header                                                | 14B                       | 14B                              |  |  |  |
| RoE Header                                                         | 8B                        | 8B                               |  |  |  |
| Cisco Custom Header                                                | 4B                        | 4B                               |  |  |  |
| MPLS+PW label + CW                                                 | 4B+4B +4B                 | 4B +4B+48                        |  |  |  |
| Outer Ethernet Header                                              | 18B                       | 18B                              |  |  |  |
| Total Ethernet Packet Size at NNI                                  | 56B+2560=2616 B           | 56B+2048B=2104 B                 |  |  |  |
| RoE Packetization<br>Overhead                                      | (2616-2560)*100/2560=2.2% | (2104 - 2048)*100/2048= 2.73%    |  |  |  |
| RoE packetization overhead is SAME regardless of Type 0 and Type 1 |                           |                                  |  |  |  |

cisco

## Type0/Type1 NNI egress Interface Traffic Rate Comparison



|                                                          | Type-0<br>NNI Interface Bandwidth | Type-1<br>NNI Interface Bandwidth |
|----------------------------------------------------------|-----------------------------------|-----------------------------------|
| CPRI Option 7 = 9.83 Gbps<br>RoE Packet size =1024 bytes | 10.32 Gbps                        | 8.26 Gbps                         |
| Type1 en                                                 | ables 20% Fronthaul Bandwidth     | n Reduction                       |

### CPRI RoE Structure Type 0 Enhancements

- Auto negotiation feature
  - Detection of CPRI stream, then enable RoE Transmission
- LOS/LOF propagation to remote packet based fronthaul router
  - Packet transport situation awareness
- Delay measurement and Windowing Function
  - Retiming
  - Packet impairment
- Cisco 1914.3 a contribution (planned to be published later this year)
- RoE Yang models

### Cisco 5G Converged SDN Transport



### L3 and L2 Network Efficiencies Are Almost Same!

| Data                                            | Packet<br>Overhead | 1500 Bytes Packet     | 2000 Bytes Packet                       | 9000 Bytes Packet                |
|-------------------------------------------------|--------------------|-----------------------|-----------------------------------------|----------------------------------|
| L2 Only                                         | 42                 | 1542                  | 2042                                    | 9042                             |
| (IFG+Preamble+Ethernet+Dot1<br>Q+CRC)           |                    |                       |                                         |                                  |
| L2VPN                                           | 64                 | 1564                  | 2064                                    | 9064                             |
| IFG+Preamble+Ethernet+MPLS<br>2 Labels+Ethernet |                    |                       |                                         |                                  |
| L3VPN                                           | 66                 | 1566                  | 2066                                    | 9066                             |
| IFG+Preamble+Ethernet+MPLS<br>2 Labels+IP       |                    |                       |                                         |                                  |
|                                                 |                    |                       |                                         |                                  |
| Network Efficiency                              |                    |                       |                                         |                                  |
| L2 Only                                         |                    | 97.28                 | 97.94                                   | 99.53                            |
| L2VPN                                           |                    | 95.91                 | 96.89                                   | 99.29                            |
| L3VPN                                           |                    | 95.79                 | 96.80                                   | 99.27                            |
| cisco live!                                     |                    | #CiscoLive BRKSPG-200 | © 2021 Cisco and/or its affiliates. All | rights reserved. Cisco Public 91 |

#CiscoLive BRKSPG-2065 © 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public



#### Timing and Synch – Fronthaul Options contd..



#### Time Synchronization for RAN Use Cases



Transmission Diversity ±32.5ns Phase Accuracy Improves error performance Data Rate or Capacity



Carrier Aggregation ±65ns Phase Accuracy Higher Pick Date Rate Better Load Balancing



Coordinated Multi Point ±130ns Phase Accuracy Higher Pick Date Rate Better Load Balancing

Case 1 = T-TSC is integrated in eRE

- Case 1.1 = integrated T-TSC requirements to T-TSC Class B
- Case 1.2 = enhanced integrated T-TSC requirement is total max |TE| is 15 ns
- Case 2 = T-TSC is not integrated in eREs

```
* 3GPP TS 38.104, 38.133
```

|          | Time Er                            |                   |                     |                 |  |
|----------|------------------------------------|-------------------|---------------------|-----------------|--|
| Category | Cas                                | se 1              | Case 2              | requirements at |  |
|          | Case 1.1                           | Case 1.2          |                     | antenna ports   |  |
| A+       | N.A. N.A.                          |                   | 20 ns<br>Relative   | 65 ns           |  |
| А        | N.A.                               | 60 ns<br>Relative | 70 ns<br>Relative   | 130 ns          |  |
| В        | 100 ns 190 ns<br>Relative Relative |                   | 200 ns<br>Relative  | 260 ns          |  |
| С        | 110<br>Abso                        | 0 ns<br>olute     | 1100 ns<br>Absolute | 3 µs            |  |

### Low PHY Function in Cisco Fronthaul router





- Passive DWDM topology is static, failure of a baseband unit requires a site visit to recover the cell
- Using NSO customer can dynamically reconfigure a redundant BBU at the hotel site and rehome the VPWS to recover cell if primary BBU fails
- N+1 BBU deployed at BBH site, with only management config (IP, credentials etc.)
- NSO models and syncs the config of all the baseband units
- In the event of BBU failure, NSO will push failed BBU config at N+1 BBU and migrate VPWS to N+1 BBU

#### **Ring/Partial Ring CRAN topologies**



- Enable redundant routed path for fronthaul sites for TI-LFA when Fronthaul link fails
- Use SR-TE + SR-PM to ensure latency constraint met over redundant path
- Enable Capacity management if insufficient fronthaul bandwidth to support both sites, option to disable a band (i.e., disable VPWS) at non-failed site to free up capacity for that same band at failed site

#### Transport redundancy



- Primary and backup paths might have different transport latencies
- During a failure there will be traffic outage up to 50ms
- Idle CPRI frames are sent during packet outage
- If backup path's latency within +/- 5usec of primary path's latency, CPRI stream can be gracefully restarted
- If the backup path's latency is outside that window, in this case the HFN/BFN order can not be maintained and CPRI reset needs to be asserted
- CPRI will undergo reset and re-establish with updated parameters.



#### **Retimer Buffer**

 RoE to CPRI demapper in Cisco fronthaul router has re-timer buffer to cleanup jitter and reordering in the packet transport network



cisco

### Fronthaul Technologies Support Summary

Supported in hardware (FPGA) and Software

Hardware (FPGA) capable of functionality, FPGA firmware & software are in roadmap





### **Converged Services**

#### Optimizing transport performance for fronthaul applications



- Converge services onto a single transport network.
- Segment Routing provides traffic steering and policing capabilities to optimize traffic path based on static and/or dynamic computations including latency.
- Frame preemption with 802.1Qbu/TSN assures that Fronthaul and Midhaul traffic can be prioritized over less latency sensitive flows.

#### Time Sensitive Networking 802.1CM Ethernet for Fronthaul

- Profile A: Strict priority queuing (no frame pre-emption)
  - IQ data traffic belongs to strict priority traffic class strict priority algorithm
  - C&M data assigned to lower priority than IQ data
- Profile B: 802.1Qbu Frame Pre-emption
  - Strict Priority Queuing + Frame Pre-emption
  - IQ data traffic configured (frame pre-emption status) as "express"
  - C&M data assigned to lower priority than IQ data and set "pre-emptable"
  - Frame Preemption up to 25G links

#### 802.1Qbu (TSN)

- Converged platform will have mix of fronthaul and enterprise traffic towards NNI.
  - FH radio traffic can get behind jumbo-packets of enterprise flows (9600 bytes) leading to additional latency
- 802.1Qbu should only be supported on uplink interfaces only and will be supported on 10G/25G interfaces
- Strict Priority + Preemption Offers lowest fronthaul latency and greatest BW utilization
- 802.1Qbu is NOT required on 100G interface
- Frame Preemption is a book-ended solution
- Requires hardware implementation

CISCO / Ne!

| Port Rate | Without Frame Preemption delay (1500 bytes delay) | Without Frame Preemption delay (9600 bytes delay) | With Frame Preemption<br>(123 bytes delay) | Frame Preemption<br>Advantage (compared to<br>9600 bytes delay) |
|-----------|---------------------------------------------------|---------------------------------------------------|--------------------------------------------|-----------------------------------------------------------------|
| 1G        | 12,000 nsec                                       | 76,800 nsec                                       | 984 nsec                                   | ~ 75 usec                                                       |
| 10G       | 1,200 nsec                                        | 7,680 nsec                                        | 98.4 nsec                                  | ~ 7.5 usec                                                      |
| 25G       | 480 nsec                                          | 3,072 nsec                                        | 39.36 nsec                                 | ~3 usec                                                         |
| 100G      | 120 nsec                                          | 768 nsec                                          | 9.84 nsec                                  | 758 nsec                                                        |
|           | 1                                                 |                                                   |                                            |                                                                 |

### Supported Features (Partial List)

- RoE Structure-Agnostic Tunneling Mode (Type 0)
- RoE Structure-Agnostic Line Code Aware Mode (Type 1)
- TSN 802.1Qbu 10/25G
- Class C Clocking
- SR MPLS/SRv6
- BGP VPN (EVPN/L3VPN)
- Clocking Class C, G.8275.1
- GTP load balancing
- Y1564 (Service Activation)
- Zero Touch Provisioning
- Microwave Adaptive Bandwidth "Ethernet bandwidth notification (ETH-BN) / G.8013 Bandwidth Notification Messages"
- Telemetry

## Fronthaul Design





### **CPRI / eCPRI Bandwidth Calculation Factors**

CPRI

- "Number of antennas" has an impact on the bit rate for split E (Split 8)
- eCPRI (Split 7)
  - Factors that will have an impact on the final needed bit rate of the link between eREC and eRE.
    - Throughput (closely related to the available and used air bandwidth)
    - Number of MIMO-layers
    - MU-MIMO support (y/n)
    - Code rate
    - Modulation scheme
    - Beamforming algorithm
    - Number of antennas

# Fronthaul/Midhaul/Backhaul Transport Bandwidth Calculation

| LTE CPRI                 |                      |      |                                            |                 |             |                              |                                                        |
|--------------------------|----------------------|------|--------------------------------------------|-----------------|-------------|------------------------------|--------------------------------------------------------|
| Carrier<br>(Band Number) | Number of<br>Sectors | Band | Sub Carrier<br>Spacing (SCS)<br>Numerology | Bandwidth [MHz] | CPRI Option | MIMO (Number of<br>Antennas) | CPRI Mux (if any)<br>CPRI mux configuration<br>details |
|                          |                      |      | 15kHz                                      |                 |             |                              |                                                        |

• For CPRI fronthaul bandwidth calculation, there is no stat-mux in fronthul since CPRI is TDM traffic.

- This means if there is CPRI option 7 between REC and RE
  - Packet based fronthaul must support "10G+RoE overhead" bandwidth to carry CPRI option 7 traffic
- Midhaul & backhaul calculation will take into account stat-mux

| 4G/5G eCPRI/ORAN         |                         |       |      |                                                         |                    |                |                                                                          |                                   |  |  |  |
|--------------------------|-------------------------|-------|------|---------------------------------------------------------|--------------------|----------------|--------------------------------------------------------------------------|-----------------------------------|--|--|--|
| Carrier<br>(Band Number) | Number<br>of<br>Sectors | 4G/5G | Band | Sub Carrier Spacing (SCS)<br>Numerology                 | Bandwidth<br>[MHz] | MIMO<br>Layers | MIMO (Number of<br>Antennas/Antenna Elements<br>in case of Massive MIMO) | Radio Unit Interface<br>Bandwidth |  |  |  |
|                          |                         |       |      | 15kHz or 30kHz (< 6 GHz)<br>120kHz or 240kHz (> 24 GHz) |                    |                |                                                                          |                                   |  |  |  |

- eCPRI supports stat-mux
  - Stat-mux fronthaul calculation in case of three sectors, 1 Peak + 2 Average (50% of peak)
- Midhaul & backhaul calculation will take into account stat-mux

#### Fronthaul/Midhaul/Backhaul Calculation

#### Single Cell Site/3 Sector 6 Carriers

PRB=Physical Resource Block Statistical Multiplexing (Statmux)=1Max+2 Average

| Band<br>Number    | Ban<br>d   | Bandwidth<br>[MHz] | MIMO/MIMO<br>Layers  | Fronthaul Data<br>Rate (Single Sector<br>Peak)<br>CPRI/ORAN Gbps | FH Data Rate<br>("3" Sectors)<br>CPRI/ORAN Gbps | Midhaul<br>Gbps | Backhaul<br>Gbps |
|-------------------|------------|--------------------|----------------------|------------------------------------------------------------------|-------------------------------------------------|-----------------|------------------|
| 5                 | 850<br>MHz | 10                 | 4T4R                 | 2.45 (CPRI option<br>3)/0.70                                     | 7.35/1.40                                       | 0.30            | 0.25             |
| 8                 | 900<br>MHz | 10                 | 4T4R                 | 2.45 (CPRI option<br>3)/0.70                                     | 7.35/1.40                                       | 0.30            | 0.25             |
| 9                 | 1.8G<br>Hz | 20                 | 4T4R                 | 4.9 (CPRI option<br>5)/1.40                                      | 14.7/2.80                                       | 0.59            | 0.50             |
| 41                | 2.6G<br>Hz | 20                 | 4T4R                 | 9.8 (CPRI option<br>7)/1.40                                      | 29.4/2.80                                       | 0.59            | 0.50             |
| n78               | 3.5G<br>Hz | 100                | 64T64R/8 layers      | 15.29                                                            | 30.59                                           | 4.44            | 3.78             |
| n257 (Split<br>2) | 28GH<br>z  | 400                | 128T128R/4<br>layers |                                                                  | NA                                              | 6.14            | 5.22             |
| Total             |            |                    |                      |                                                                  | FH=LTE CPRI+NR=89.39                            | 12.36 Gbps      | 10.5 Gbps        |
|                   |            |                    | Fror<br>Midl<br>Bac  | nthaul Interface Require                                         |                                                 |                 |                  |

cisco ile
## Maximum transmission bandwidth configuration 38.101 FR1 : below 6 GHz

Sub Carrier Spacing (SCS) Numerology

**Channel bandwidth PRB Values** 

| μ        | SCS   | 5     | 10    | 15    | 20    | 25    | 30                | 40    | 50    | 60   | 70   | 80   | 90   | 100  |
|----------|-------|-------|-------|-------|-------|-------|-------------------|-------|-------|------|------|------|------|------|
|          | (kHz) | MHz   | MHz   | MHz   | MHz   | MHz   | MHz               | MHz   | MHz   | MHz  | MHz  | MHz  | MHz  | MHz  |
| 0        | 15    | 25    | 52    | 79    | 106   | 133   | 160               | 216   | 270   | N/A  | /    |      |      |      |
| BW [MHz] |       | 4.5   | 9.4   | 14.2  | 19.1  | 23.9  | 28.8              | 38.9  | 48.6  |      | N/A  | N/A  | N/A  | N/A  |
| GB [KHz] |       | 242.5 | 312.5 | 382.5 | 452.5 | 522.5 | 592.5             | 552.5 | 692.5 |      |      |      |      |      |
| 1        | 30    | 11    | 24    | 38    | 51    | 65    | 78                | 106   | 133   | 162  | 189  | 217  | 245  | 273  |
| BW [MHz] |       | 4     | 8.6   | 13.7  | 18.4  | 23.4  | <mark>28.1</mark> | 38.2  | 47.9  | 58.3 | 68   | 78.1 | 88.2 | 98.3 |
| GB [KHz] |       | 505   | 665   | 645   | 805   | 785   | 945               | 905   | 1045  | 825  | 965  | 925  | 885  | 845  |
| 2        | 60    |       | 11    | 18    | 24    | 31    | 38                | 51    | 65    | 79   | 93   | 107  | 121  | 135  |
| BW [MHz] |       | N/A   | 7.9   | 13    | 17.3  | 22.3  | 27.4              | 36.7  | 46.8  | 56.9 | 67   | 77   | 87.1 | 97.2 |
| GB [KHz] |       |       | 1010  | 990   | 1330  | 1310  | 1290              | 1610  | 1570  | 1530 | 1490 | 1450 | 1410 | 1370 |

 $N_{RB}$  max, BW = channel bandwidth, GB = minimum guardband

#### Source:https://www.sqimway.com/store\_nr.php

#CiscoLive BRKSPG-2065

© 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public 109

# Maximum transmission bandwidth configuration 38.101 FR2 : above 24 GHz

Channel bandwidth PRB Values

| μ        | SCS<br>(kHz) | 50<br>MHz | 100<br>MHz | 200<br>MHz | 400<br>MHz |  |
|----------|--------------|-----------|------------|------------|------------|--|
| 2        |              | 66        | 132        | 264        |            |  |
| BW [MHz] | 60           | 47.5      | 95         | 190.1      | N/A        |  |
| GB [KHz] |              | 1210      | 2450       | 4930       |            |  |
| 3        |              | 32        | 66         | 132        | 264        |  |
| BW [MHz] | 120          | 46.1      | 95         | 190.1      | 380.2      |  |
| GB [KHz] |              | 1900      | 2420       | 4900       | 9860       |  |

N<sub>RB</sub> max, BW = channel bandwidth, GB = minimum guardband

cisco Live!

Source:https://www.sqimway.com/store\_nr.php

### Fronthaul Network Design Options



### Open & Automated Management

#### Outcome-driven automation



Closed-loop and outcome-driven automation, on premises and in the cloud. Simple integration into legacy RAN management domains & other NMS/OSS systems